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An alternative method is proposed for the calculation of dynamic polarizability: one that com-
bines the usual development over the excited states with additional terms obtained by multiplying
the zeroth-order wave function with a dipole-moment factor (i.e., a polynomial of first degree in the
electronic coordinates). The zeroth-order wave function includes correlation eA'ects accounted for
by a configuration-interaction perturbation subspace iterative method. The dipole-moment factor
makes extrapolation possible if the number of states is limited. Applications are presented for Li„
LiH, and CO. The obtained values are in excellent agreement with the experimental ones. The
analysis of the calculations shows that the extrapolation is not necessary for Li2 and LiH, the erst
excited states of which are of valence character, contributing strongly to the polarizability. In the
case of the parallel component of the polarizability of CO, extrapolation is necessary because the
first excited state of valence character appears in the seventh 'X+ state. In addition, we have calcu-
lated transition energies and moments for the few low-lying excited states of 'X and 'H symmetry
for each molecule.

I. INTRODUCTION

Since the advent of laser technology, there has been
much interest in both the measurement and calculation of
optical polarizabilities, which, in the limit of zero fre-
quency, are the well-known static electric polarizabilities.
Accurate experimental data are, however, rather scarce,
and often theoretical polarizabilities are considered to
provide the sole available or the more reliable informa-
tion about the system. Most of these calculations are lim-
ited within the static dipole polarizability approach. This
paper is concerned with the accurate calculation of the
isotropic and anisotropic components of the dynamic di-
pole polarizability a(co) of Liz, LiH, and CO for a wide
range of frequencies ~. These components are of consid-
erable interest because from them one can derive the
transition frequencies, refractive index, and Verdet con-
stants of a system, as well as information about its Ray-
leigh and Raman scattering.

The calculation of static polarizabilities is now well do-
cumented. Among the most commonly adopted methods
one may quote the uncoupled and coupled perturbed
Hartree-Fock approximation (UCHF and CPHF) the
CPHF is now almost routinely used (for instance see Ref.
4). The finite-field method has also been widely em-
ployed at the self-consistent-field (SCF) level and within
the configuration-interaction method. In the CPHF
the molecular orbitals in the presence of the external field
are obtained by perturbation (y;=y', '+&p,'"), while in
the finite-field approach they are the variational solution

of the Hartree-Pock equations, including the external
field Hamiltonian. In the latter case, the polarizability is
derived from the second derivative of the energy in the
presence of the external field. In the limit of small fields
and good numerical diA'erential techniques, both methods
become equivalent. ' To circumvent the difficulties of
large basis sets, the use of electric-field-dependent atomic
orbitals has been suggested, after an idea originating in
the early 1930s."' Two approaches have been pro-
posed: either the origin of the atomic orbitals of Gauss-
ian form is shifted by an amount proportional to the
field, ' or the orbitals are multiplied by an exponential
factor as in the gauge-invariant atomic orbitals (GIAO)
theory for magnetic properties. '

The practical calculation of dynamical polarizabilities
is not yet a routine work, owing to the increased number
of difficulties to be overcome. Indeed, besides the origi-
nal problems raised by the calculation of static polariza-
bilities already mentioned, one must deal with the good
description of the excited states. The frequency depen-
dence of molecular polarizability has been examined in
essentially two ways: the self-consistent-field configur-
ation interaction (SCF-CI) method' ' and the polariza-
tion propagator method [the random-phase approxima-
tion (RPA) or the more elaborate second-order polariza-
tion propagator approximation (SOPPA)j. ' Some recent
developments have shown that one can avoid the summa-
tion over states by inverting the CI or RPA matrix. '

These last methods were derived in the spirit of the
variation-perturbation method, ' later used by Karplus
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and Kolker for the time-dependent interaction.
We propose here a mixed method, introducing a

dipole-moment factor in the SCF-CI method, combining
thus the advantages of Karplus and Hameka-Iwata's
methods; this time-dependent ket method was initiated
by one of us (M.R.) in a previous paper. The method is
presented in Sec. II. In Sec. III we give a description of
the computational procedures, because accurate deter-
mination of polarizabilities requires both carefully
designed basis sets and correlated wave functions. In Sec.
IV we present and discuss the results of our calculations
on three systems for which static polarizabilities have
been calculated previously as Liz('X~+) (Refs. 25 —28),
LiH('X+) ' and CO('X+). ' A number of
reasons have guided us in choosing these molecules for
our exploratory studies: (i) they have recently been the
object of experimental and/or theoretical treatments, and
electric and spectroscopic data available are often known;
(ii) the molecules have different properties offering a pro-
bative test for our method —different symmetry proper-
ties and important ranges of static polarizability and an-
isotropy; (iii) in the case of Liz and LiH, all our results
concerning the dynamic polarizability are new.

In summary, our aims for this work on the calculations
of the dynamic polarizabilities a(co) of Li2, LiH, and CO
are twofold: (i) using a relatively large atomic orbital
basis and taking into account the correlation effects, to
test the time-dependent ket method; (ii) to properly
evaluate the inAuence and the usefulness of the polynomi-
al factor and the electronic correlation effects on the
wave functions leading to the best static a(0) and dynam-
ic a(co) polarizabilities.

Throughout, atomic units will be used: Qp = 1

bohr =5.291 77 X 10 " m; EH =1 hartree
=4.35975X10 ' J. The dipole moment is equal to
cap ——8.478 36X 10 Cm, and the dipole polarizability
is equal to e cioEH'=1. 64878X10 ' C m J

one usually introduces a dynamical first-order polariza-
bility tensor a(co) as follows:
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& 0 lice n & & n ItM I
0 & + & 0

I tul n & & n
I p I

0 &

Ep —E„—Ac@ Ep —E„+Ace

Putting

one has'

&ol vln & & n
I vlo&

n
E —E —%co0 n

a(co) = —e"(co)—e"(
—co) (6)

e"(co)= &0 Vl@i+ ),
where

vlo)
Ep

(8)

The ketltxt, + ) (together with its counterpart I@, )) was

introduced by Karplus and Kolker in their variation-
perturbation treatment, where the perturbed ground state
I 1(to(t) ) is first expanded in powers of Ao:

lp(t) &
= g @, le (t) &,

(3)

Expressions (3), where tie is the electric dipole opera-
tor, converge to the static polarizability a(0) as co

tends to zero:

&olvln &&nlvlo)

n 0 n

II. THEORY

A. Method

We consider an atom or molecule characterized by the
time-independent Hamiltonian Ho (eigenstates

I I n ),E„]), subject to the time-dependent perturbation
H, (t):

H, —ie le (t))
dt

V(civet+ e
—

input)I@, (t) ) (10)

In the steady state (after damping out of the initial tran-
sient phenomena), the simple harmonic dependence of
the perturbation allows us to write down directly

lc, (t) & =(le,+(r) )e'"'+ I+, (r) )e '"')e

V(r)(e' '+e ' ')

Equation (1) holds for a monochromatic radiation (pulsa-
tion co) in the electric dipole approximation
I
4 +(r) =4 (r ) =eo(0)], and in the gauge where the

electromagnetic field appears through its electric part of
modulus t o and not through its vector potential&.

For the system initially in its unperturbed ground
state, i.e.,

where ICt& ) satisfy Eq. (12),' '

(H, —E,+a~)
I

@+-, & =( & ol vlo &
—v) Io &,

and also Eq. (13),

(H, —E,+f~) Ie-+, &
= —vlo &,

pr ovlcled

&ol Vlo&=0, i.e. , &Olicclo& =0 .

(12)

(13)
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For reasons that will appear later, we assume that con-
dition (13) is fulfilled, i.e., the r origin is taken at the
center of electronic charge. It ensures continuity be-
tween the dynamic and static polarizabilities a(co) and
a(0) when co tends to zero.

Determination of the first-order kets lC&i+ ) and lC&i )
plays a central role in the actual calculation of polariza-
bilities a(co). For a few systems, this can be done by
direct resolution of Eq. (13). In the general case, how-
ever, a variational procedure is recommended, involving
the functionals

I.+-= &+-+, lH, —E,+a~le i+ &+2&oi vie+-, & . (15)

Obtaining accurate values generally involves use of ex-
tended atomic-orbital (AO) basis sets. Some authors,
however, find relatively good results with a small basis
set, for static polarizabilities, when using electric-field-
variant atomic orbitals (EFVAO), ' ' ' eventually fol-
lowed by the introduction of some correlation. As in
the GIAO method used for magnetic properties, ' unfor-
tunately, this implies evaluation of additional two-
electron integrals. Kirkwood and later Karplus write
l4'& ) as a product of io) by a linear combination of the
electronic coordinates; but, as already observed in a simi-
lar formulation for magnetic e6'ects, ' the method fails
when orbitals with higher quantum number are present

le+-, & =g"+-(r)io)+ y c„"+in -&,
+,n (%0)

where

(16)

g' —(r)= ga„"—u (u=x, y, z) .

Introduction of (16) into (12) and (13) is equivalent to
projecting these equations onto a basis
tx io),yio), zio), i

1 ), . . . , in ) J and gives for an 6, per-
turbation the following set of linear nonhomogeneous
equations:

x+
+

'
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(18)

where (n, is the number of electrons)

because it does not account for the existence of nodal sur-
faces in the zeroth-order wave function.

In the same spirit as in Ref. 44, we adopt here for the
construction of iN+—, ) (in the case where the electric field
lies in the x direction) a "mixed" procedure:
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*,=(0 (21)

a„,= g a"—(uw ) + g c„"+—(Oiu in )
, n+

with w =x,y, z.

(22)

After solving this system, and using the notation intro-
duced in Eq. (18), we get for component a „ofthe polari-
zability tensor (3) (in a.u. ):

Exactly as for the magnetic case, formulation (16)
combines a purely polynomial method (g —%0, C„—=0)
with the SCF-CI procedure (g*=o, c„—%0) related to the
second-order polarization propagator. ' ' ' Electronic
correlation is easily introduced (see applications below)
by simple extension of the set of in )-kets; however, con-
trary to the magnetic case [where the intrinsic purely
imaginary character of the perturbation H1 and of the
first-order ketlN, ) automatically ensures fulfillment of
the normalization condition ((Ol@,)+(@,lo) =0), the
purely real character of H, and lN +—

, ) in the electric case
imposes to move the origin to the center of electronic
charge ((Oiu io) =0, u =x,y, z) at each step of a
configuration-interaction calculation. This is not a
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difficult task for computation, since this concerns the
whole electronic wave function: it doesn't involve previ-
ous calculation of additional two-electron integrals.

B. Role of the dipole-moment factor g (r)

2. Limited summation and extrapolation procedure

In Appendix A it is shown that, in the limit of a com-
plete basis set of exact kets ~n ), the coefficients a„ofg(r)
are undetermined. If a limited number of states X is
used, then a„(N ) = (E~ ED+Aco—) ' and tends to
a„(~ ) =0 as N becomes infinite.

In the same spirit, one can show that increasing N
leads to an increase of the calculated value a together
with a decrease of a„(N). Thus the variation rate b,a/b, a
is negative (this also holds for the corresponding curva-
ture) if we add states in increasing energy order, and
tends to zero as N becomes infinite.

As a practical consequence, it is possible to extrapolate
a final value for a from the results obtained with a finite
number of discrete states. Since the continuum is not
taken into account in our calculations, we have to restrict
the summation to the discrete states lying below the first
ionization potential.

Formula (B5) of the appendix shows that the polariza-
bility may be written as

a~ a~'=a~f (N—) .

This suggests the use of an extrapolation formula of the
form

~x =«0(O)— (23)

where az and a&' are the polarizabilities calculated with
X states, with and without the "polynomial" contribu-
tion.

The value of the exponent p is determined by a least-
square fit, and then the extrapolated polarizability is ob-
tained by a linear regression in which the computed
values of a are written as

a~ =a„+bag (24)

In the case of the dynamic polarizabilities (Rco&0), this
extrapolation is done separately for the cases +%co and

%67.

We must stress the fact that the above extrapolation
rests upon the hypothesis of exact or very accurate eigen-
states

~
n ). In practical calculations it is seldom the case,

except for small systems like Liz or LiH. The case of car-

1. Gauge in variance

It has been shown '" that, when changing the gauge
from C.r (used here) to A p, only the coefficients of func-
tion g(r) change; the contribution of the kets ~n )
remains unchanged. The variation hg corresponds exact-
ly to the function X(r) appearing in the unitary operator
exp[i(q/h)X(r)] of the gauge transformation. The po-
lynomial g(r) thus ensures gauge invariance.

bon monoxide studied below has shown that the extrapo-
lation procedure is still relevant for larger systems. The
function g(r) partly compensates the weakness of the AO
basis set.

III. COMPUTATIONAL DETAILS

All the calculations reported in the present work have
been carried out at the ab initio CI level.

The choice of the atomic basis set is crucial for the cal-
culation of the spectroscopic and electric properties.
Indeed, if the calculation of energy and static dipole po-
larizability a(0) may be considered as a test for the
choice of Gaussian atomic basis sets and for the perfor-
mance of various CI methods, it is an even more severe
test when concerning the calculation of the dynamic po-
larizability a(co). In this case such calculation requires to
describe as well as possible (i) not only the X'X+ ground
state, in order to reproduce the static polarizability at
zero frequency, but also (ii) the excited states ('X+ and
II), in order to give the different discontinuities corre-

sponding to the resonance energies of these states
correctly.

In this study, Li2, LiH, and CO are ideal systems of in-
creasing difficulty upon which to test our computational
method.

We first carried out a series of checks on our computa-
tional techniques by calculating electronic transition mo-
ments and dipole polarizability of Li2. This molecule was
chosen since there is a large body of theoretical informa-
tion concerning the determination of spectroscopic and
electric properties available with different basis
sets. ' In the treatment of Li2 two different
Gaussian-type orbital (GTO) or contracted GTO (CGTO)
basis sets of increasing size and Aexibility have been used.
Their detailed description as well as the reasons of their
choice are given in previous papers, ' where they are
referred to as basis 1 for the [10sSp /SsSp ] GTO-CGTO
basis 3 for the [10sSp2d/SsSp2d] GTO-CGTO, built
from basis 1 augmented by two d orbitals with exponents
equal to 0.05 and 0.017.

As second example, we have selected lithium hydride
(LiH) because it is a two-valence-electron, singly bonded
molecule; features identified for LiH should be represen-
tative of what might be found in many chemical species.
For the same reason, LiH has been the subject of
numerous investigations in order to obtain spectroscopic
and electric properties from different methods and at
different levels of calculations, ' and the evalua-
tion of the polarizability tensor of LiH has been con-
sidered as a challenge for theoreticians. Comparison of
our results with previous accurate calculations
should provide a reliable test for our method. The basis
set used for LiH consists in the [10sSp3d/SsSp3d]
GTO-CGTO set for Li (basis 3 described before with an
additional d orbital exponent equal to 0.2) and a (10s6p )
basis for M built from the [8s6p] set of Huzinaga and
Lazzeretti et al. augmented by two additional diffuse s
orbitals (a, =0.03 and 0.01). This basis set has been
found to give reasonable values for energies, dipole mo-
ment, and polarizabilities of the LiH molecule.
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The study of CO molecule is certainly a severe test for
the performance of our method. Recently Kello et al.
have presented an interesting analysis of the performance
of high-level correlated methods (many-body perturba-
tions theory and coupled cluster methods) through the
geometry dependence of the energy, dipole moment, and
the parallel component of the static dipole polarizability
of this molecule. In our study, CO was chosen, too, in
the determination of the dynamic polarizabilities on the
basis of its specific difhculties. The main reason leading
to treat CO in the calculations of electric properties con-
sists in the possible difference between the two atoms as
regards intramolecular charge transfers, especially for the
electrons assigned to carbon and oxygen orbitals. Such a
difference induces a displacement of electrons along the
CO bond. However, the dipole moment, anomalously
weak, 0.1222 D (corresponding to polarity C 0+) at the
equilibrium geometry, is consistent with the description
of a triple bond and a lone pair of electrons on each atom.
It is well known that all electron calculations including
configuration interaction must be done in order to take
into account these particularities. The last difhculty in
the CO molecule is the presence of avoided crossings be-
tween the covalent and a series of ionic potential-energy
curves, and it is not easy to construct wave functions
which give reliable descriptions of valence-Rydberg in-
teractions in the bonding region, as pointed out by Coop-
er and Kirby. In order to solve the particular
difhculties of CO we have used a large basis set, which
may account for internal correlation effects and the possi-
ble Rydberg character of excited states. The basis set
used for CO consists in 64 CGTO's built from the con-
tracted (Ss, 3p) basis sets given by Dunning and Hay. '

To give more Aexibility, this basis set is decontracted in
(6s, 4p ) and augmented by one s and one p diffuse orbital
and two d shells on each nucleus to correctly describe the
Rydberg states and to ensure the polarization and angu-
lar correlation of the valence shell, respectively. The ad-
ditional orbital exponents of the Rydberg orbitals are
equal to 0.02 and 0.03 for s and p functions on carbon
and oxygen, respectively. The exponents of the d func-
tions are chosen in the same way as those used by Meyer
and Rosmus in their calculation of the dipole moment.
For C and 0, the basis set used is denoted as
(10s6p2d /7s5p2d ) GTO-CGTO.

To investigate the effects of electron correlation on the
spectroscopic states and dynamic polarizability, a series
of configuration-interaction studies was undertaken using
canonical molecular orbitals [linear combination of atom-
ic orbitals and molecular orbitals (LCAO-MO)j for Liz
and LiH and hybridized atomic orbitals (HAO) for CO.
Indeed, to take account of the nondynamic correlation
energy (i.e., the correlation within a shell of valence occu-
pied and virtual molecular orbitals), it is convenient to
start with a set of molecular orbitals different from the
usual canonical one resulting from the SCF ground state.
The HAO proposed by Malrieu et al. for this purpose
are obtained by diagonalizing the block matrices corre-
sponding to the AO's centered on each atom in the
ground-state Hartree-Fock density matrix. In the case of
CO, the Hartree-Fock determinant is

(core MO's)(3cr )2(4o )~(So )~(]~)~ .

Since the three o. occupied MO's are orbital mixtures
describing both the lone pairs and the o. C—0 bond, it is
worthwhile to isolate the lone pairs which contribute
poorly to the nondynamical correlation. The HAO pro-
cedure transforms the o. canonical MO's into two lone
pairs O(2s) and C(2s), and the O(2p, )—C(2p, ) bond
MO. The CO-HAO determinant becomes

(core MO's)(3cro) (4cr, ) (Scrco) (i~co)" .

In this way, the HAO procedure provides a partition of
the virtual MO's into valence antibonding MO's (o.*,m*),
node-rich MO's localized on each atom, and Rydberg-
type diffuse MO's.

Correlation effects have been taken into account
through the configuration interaction with perturbatively
selected interactions (CIPSI) procedure that treats
the external correlation by a multireference second-order
perturbation treatment from a variational subspace S
built up in an iterative way. Preliminary calculations of
energies have been made by the standard CIPSI algo-
rithm on small 5 subspaces of =400 determinants. Per-
turbation treatments involving larger subspaces (6000 up
to 8000 for the Liz and LiH (LCAO-MO procedure) and
about 1000 for CO (HAO procedure) have been achieved
using the diagrammatic version of CIPSI.

IV. RESULTS AND DISCUSSION

As we can see in Eq. (22), the calculation of the polari-
zability requires a sum over all the states ~n ) of the sys-
tem.

All low-lying states of the molecules connected to the
ground state by dipole-allowed transitions are of particu-
lar importance in calculating the polarizability. The
ground state being of 'X+ symmetry ('Xs+ for Li2), we
have been concerned by the calculation of the 'H states
('lI„ for Li2) for the determination of the perpendicular
component of the dipole polarizability and the 'X+ state
('X„+ for Li2) for the parallel one. The number of low-
lying states essential for a correct evaluation of the polar-
izabilities increases drastically from Li2 to LiH and CO.

Calculations were carried out with the two basis sets
described above. The three first low-lying states of 'X„+
and 'II„symmetry have been calculated and their ener-
gies were computed at the experimental equilibrium
geometry of the ground state 'X+ (5.051 a.u. ).

Our results are displayed in Table I and are compared
with previously published values obtained at the same (or
close) geometry. Except for the third transition of each
symmetry, the transition moment appears slightly sensi-
tive to the basis set used, and all the calculated values of
the vertical energies are in the range of 0.1 eV. Our cal-
culated electronic transition moments are in remarkable
agreement with those reported in the literature by
different authors ' ' for 1 '2+ ~ 1 'II„and
1'X+—+1'X„+ transitions. The energies calculated with
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TABLE I. Energies of the low-lying excited singlet states ('X„+,'II„) of Li2 and transition moments calculated at 5.051 a.u. with
basis 1 and 3.

Excited
states

Energies (hartree)
3 Previous'

works

Transition moments (a.u. )

3 Previous
works

11'+
2 1y+

3 1y+

0.065 383
0.137 749
0.169417

0.067 198
0.139 178
0.165 578

0.068 481
0.141 282
0.164 467

3.32
0.22
0.03

3.24
0.26
0.21

3.1615
3.16'
0.20b

1'rr.
2'H„
3 'II„

0.100032
0.142 475
0.171 584

0.095 433
0.141 909
0.167 155

0.095 302 2.73
0.67
0.04

2.80
0.59
0.23

2.7489
2.75
0.3596b

'From Ref. 56 (at 5 a.u. ).
"From Ref. 57.
'From Ref. 49.
From Ref. 51.

basis 3 compare well with the values of Schmidt-Mink
et ah. , who used slightly larger basis sets, and are also in
excellent agreement with the experimental data.
The values of the two components of the polarizability
calculated with basis 3 are listed in Table II for Liz. The
inhuence of the polynomial and the contribution of each
state show the essential role of the first jj 'X„+ and 1 'II„
states, the weak participation of 2 'H„state for the per-
pendicular component, and the negligible contribution of
the others states. The static components calculated with
the polynomial (318 and 174 a.u. ) and without the poly-
nomial (314 and 170 a.u. ) diff'er by about 1 —2% and are
in very good agreement with our previous correlated
values obtained via LCAO-MO-CI (306 and 169 a.u. ) and
approximate natural orbital (324 and 173 a.u. ) in a simi-

lar basis set. Comparisons with the recent calculations
of Muller and Meyer and Maroulis show a very good
agreement with the a „values of Maroulis obtained at
single-double-triple-quadrupole fourth-order Mdller-
Plesset perturbation theory [SDTQ-MPPT(4)] level while
the valence configuration-interaction plus core-
polarization potentials [CI(U)+CPP] results of Miiller
yields a perpendicular component 3—5 % smaller than
our results. Presumably, the reason for this discrepancy
lies either in the absence of a small exponent on the d
functions or on the use of a core polarization potential in
the study of Ref. 27. When the axial component is con-
cerned, our a„value is higher by about 5% than the
respective correlated values obtained by Maroulis or
Muller and Meyer. Our overestimated value is partly

TABLE II. Static polarizabilities components (a.u. ) calculated for Li2 at 5.051 a.u. and comparison with other calculations.

Basis set

Basis set

1

3
6s2p ld+(2s3p bond orbital)

CI(U)+CPP:12s7p2d 1f
CI( v) +CPP:12s7p 2d

Cl(v):12s7p2d
MPPT(4):5s 5p 1d
SDTQ:6s 6p 1d If

338
314

324b

306
316'

298.7
301.8"
305 4
300'
292'

Without polynomial'
&xx

161
170

Other calculations
&xx

173
169

169.4'
164.2"
163.9
166.8~

171'
170'

344
318

With polynomial

163
174

The contribution of the three states are, respectively (337;1;0);(149;12;0)for basis 1 and (312;1;1);(164;5,1) for basis 3.
bFrom Ref. 26.
'From Ref. 25.
"From Ref. 27.
'From Ref. 28.
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( a.u. )
(g.u.)

500

338 '

100-

0.05
0.06~2

p. hp
0.0954 hv (a.U.)

'nu

m onents of Li2 calculatedFIG. 1. Dynamic polarizability componen
at 5.051 a.u. with basis 3.

0 $ O hv (B.U.j0
O O672 Q. 0954

+ '~ugu
FIG 2 D nam&c polarczability denva ptive corn onents of Li2

calculated at 5.051 a.u. with basis 3.

in 'X+ and 'll states calculat-nic transition moments of the low- yj.ngTABLE III. Energies and electronic transi ion
ed for LiH at 3.015 a.u.

Transitions

x'x+~ w 'x+

2'r+
3 'r+
4 ly+
5'r+
6'X+
7'X+
8 'X+
9'r+

0.131402

0.215 756
0.229 146
0.237 234
0.256 819
0.267 065
0.273 853
0.281 096
0.319637

0.1314'
0.1319
0.1354'

Energies (hartree)
This work Previous work

0.939 0.9599
0.9376'

0.386
0.157
0.513
0.254
0.014
0.458
0.189
0.606

Transition moment (a.u. )

Previous work

X'X+~B 'H

2'n

4 'rr
5 'II
6'n

'From Ref. 64.
bFrom Ref. 58.
'From Ref. 60.

0.168 641

0.236 525
0.236 530
0.275 719
0.297 572
0.320 979
0.376 446

0.1696'
0.1682b
0.1718'

1.344

0.021
0.580
0.038
0.488
0.443
0.023

1.9223
1.3117'
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due to an absence of f functions, which increases the
magnitude of the correlation correction. For Li2 it is not
necessary to carry out an extrapolation procedure to ob-
tain improved values of the static polarizabilities; the
difference

n =1,3

(Ref. 79) is weak compared to the values of a calculated
from the three first states taken into consideration.

The frequency-dependent polarizabilities of Li2 are
displayed in Fig. 1. The first resonance occurs at the
lowest excitation energy of 'X„+ and 'H„symmetry i.e., at
0.067198 and 0.095433 a.u. , respectively. Our results
also show that the polarizability derivatives increase
more rapidly for the axial component than for the per-
pendicular one, with increasing frequency of the exciting
radiation (Fig. 2).

B. LiH

(a.u.) I

30.8

30 !.

For a correct evaluation of the static polarizabilities,
the number of low-lying states studied in the extrapola-
tion procedure are 9 and 7 for a„and a components,
respectively. In all cases, however, the contribution of
the first excited states of each symmetry is preponderant.

Energies and electronic transition moments calculated
from X 'X+ to 'X+ and 'Il states of LiH at equilibrium
distance (3.015ao) are displayed in Table III. Compar-
isons with previous theoretical works ' ' show for
both symmetry species an excellent agreement for the
first vertical energy transition X 'X+ —+ 3 'X+ and
X'X 8 'H.

Our calculated electronic transition moments for
X 'X+~ A 'X+ (0.939 a.u. ) and X 'X+~8 'II (1.344
a.u. ) also are in excellent agreement with those reported
by Partridge and Langhoff at 3 a.u. (0.9376; 1.3117) and
recently corroborated by Vojtik et al.

With many spectroscopic states involved in the calcu-
lations of the polarizabilities, we have obtained the final
values of the components by means of the extrapolation
technique described in Sec. II. This procedure gives an
upper limit of the polarizabilities components. Figure 3
shows the contribution of the different states as well as
the inhuence of the polynomial function. The only exper-

0.5 1.0 (a, u.)

FIG. 3. LiH: static polarizability components versus polyno-
mial factor. Extrapolated values are obtained from the follow-
ing equations: a„—a'„'=3.323a ', e„—a,', '=3.387a
(Dashed lines, without dipole-moment factor; solid lines, with
dipole-moment factor. )

imental result available for any polarizability of LiH is
the anisotropy An =a„—o. „=1.7+4.0 a.u. by Klemper-
er et al. cited in Ref. 80. All calculations carried out so
far emphasize the importance of the correlation effects,
which increase the SCF results and confirm that the a „
electronic value is greater than the a„one. Our extrapo-
lated values displayed in Table IV are compared with
those derived from the CI calculations of Gready et al. ,
the multiconfigurational self-consistent-field (MCSCF)
calculations of Bishop and Lam, ' the highly accurate
finite-field-perturbation theory with complete active
space (FPTCAS) SCF results of Karlstrom et al. and
Roos and Sadlej known to take into account the majori-
ty of important correlation effects and also with the
difFusion quantum Monte Carlo (DQMC) method of
Vrbik et al. The present calculated energy
( —8.043 588 a.u. ), slightly inferior to the recent accurate

TABLE IV. Total energy, dipole moment, and polarizabilities of LiH in a.u. for a bond length of 3.015 a.u.

pz
a
&xx
Aa (T)g
Aa„(T)g
ao.„(z)g
'From Ref. 34.
bFrom Ref. 25.
'From Ref. 31.
From Ref. 29.

This work

—8.043 588
2.322

26.9
30.8
0.4'

2.9'

DQMC'

—8.0670
2.27

24.6
30.9

CI(D+S)

34.2
34.4

Others
MCSCF'

—8.020 369
2.3107

26.4
29.8

'From Ref. 30.
From Ref. 81.

~See text.

CAS-SCFd

—8.046 990
2.308

26.3
29.3

CAS-SCF'

—8.020 638
2.320

26.3
29.9
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DQMC result of Ref. 34, compares favorably to the larg-
est CAS-SCF energy of Ref. 29 and is better than the
MCSCF value ' and the CAS-SCF result. In the same
way, our dipole-moment value, equal to 2.322 a.u. , agrees
very well with those derived from CAS-SCF calculations
carried out with diferent active subspaces. ' This
confirms the correctness of our choice of the correlated
wave function. Since our basis set has more di6'use func-
tions in the H region than the basis used by Karlstrom
et al. , the ionic character of LiH is more pronounced,
giving an increased value to the dipole moment and to
the polarizability components.

Our predicted accurate values of the electronic static
polarizability components (a,', =26.9, o.' =30.8), which
are approximately 2% above the convergent MCSCF and
CAS-SCF values previously published, give a similar neg-
ative electronic anisotropy. Moreover, it should be em-
phasized that our e value, found to be 30.8 a.u. , is in
perfect agreement with the recent DQMC value (30.9

)
34

The rovibrational contributions evaluated by taking
into account temperature ha(T) and electric-field depen-
dence ' Aa(E) have been found to be quite important.
Indeed, the vibronic parallel component correction (4.5
a.u. ) greater than that of the perpendicular one (0.4 a.u. )

leads to a change in the sign of the static anisotropy, in
agreement with the positive experimental data of
Klemperer. If now we consider the dynamic polarizabili-
ty of LiH, our calculations show that the parallel com-
ponent increases more rapidly than the perpendicular one
with increasing frequency of the exciting radiation. Fig-
ure 4 illustrates the variation of the electronic anisotropy

(a.u.)

versus the frequencies showing a change of the dynamic
polarizability anisotropy sign at =4950 A.

C. CO

The calculations have been done at the internuclear
distance of 2. 135ao, which corresponds to the minimum
of the ground-state energy calculated by us at the CI level
(experimental value 2. 132ao). Energies are listed in Table
V for the states of interest. For some of them, we can
compare our results with those of Cooper and Kirby
and those of Nielsen et al. Our values an in quite good
agreement with the experimental ones, as well as those
calculated in Ref. 70.

We give also their electronic configuration, the net
atomic charge, and the dipole moment between each ex-
cited state and the ground state (Table VI). The dipole
transition moment is an important observable, since it
determines the contribution of each excited state to the
polarizability. For the first two excited states of each
symmetry, we can compare our results (in atomic units)
with those obtained by Kirby and Cooper, respectively:
0.086 and 0.654 for the X 'X+ ~2 'X+ and
X 'X+ ~3 'X+; 0.899 and 0.435 for the X 'X+ ~1 'll and
X '2+~2 'H. The erst perpendicular and second paral-
lel transitions are of the same magnitude in both calcula-
tions, but the discrepancy is important for the first paral-
lel and second perpendicular ones. Qn the other hand,
our value for the first parallel transition (0.302 a.u. ) is
close to that deduced from the oscillator strength calcu-
lated by Nielsen et al. —0.328 a.u. Comparisons with
experiment can be done through the measurements of os-
cillator strength and radiative lifetime. Kirby and Coop-
er have calculated these quantities for the relevant tran-
sitions. For the fourth positive system X 'X+ —+2 'lI,
which is the best studied of the electronic transitions in
CO, the experimental data are in good agreement with
their calculations and so with our result. For the other

O.
0.1 0.5 a (a.u.)

—10
0 0.10 pv (g.U, )

FIG. 4. Plot of dynamic anisotropy y(co) for I.iH.

FIG. 5. Static polarizability versus polynomial factor for CO.
Extrapolated value is obtained from the following equation:a„—n,', '=15.94a " . (Dashed lines, without dipole-moment
factor; solid lines, with dipole-moment factor. )
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TABLE V. Energies (hartree) of the low-lying excited singlet states (1,'ll) of CO calculated at
2.135 a.u.

States

2 'X+ (8-D' states)
3'X+ (C-C' states)
4 'X+ (F state)
5 'r+
6 ly+
7 'r+
8 1y+

9 1y+

This work

0.384 898
0.405 567
0.463 972
0.480 940
0.506 798
0.521 806
0.589 122
0.588 675

Nielsen et al.'

0.4028
0.4241
0.4711
0.4968

Other work
Cooper and

Kirby

0.386 82
0.405 22

Experimental
values'

0.396 15
0.418 80
0.4547
0.462 05

1 'II ( 2 state)
2 'H (E state)
3 'll (L state)

'From Ref. 82.
From Ref. 70.

'From Ref. 68.

0.304 281
0.415 545
0.471 111

0.3135
0.4281
0.4843

0.324 47
0.414 33
0.492 41

0.2965
0.4232
0.470 45

transitions, comparisons are complicated by the large
discrepancies among the experimental measurements, ap-
parent even in the most recent studies, as we can see in
the diversity of values quoted in Ref. 83. At the present
time there seems to be agreement only for the first excited
state 3 'H, which has an important dipole-moment tran-
sition with the ground state (confirmed by the experimen-
tal data) and contributes greatly to the polarizability.

In Fig. 5 we have plotted the calculated values ob-
tained for both components of the polarizability of CO.
In the studied energy range (0 to 0.4 hartree) each com-
ponent exhibits a discontinuity. The corresponding ener-

gy cod is in very good agreement with the experimental

value for the first excited state of each symmetry, as it is
seen in Table VII. Such results confirm the quality of the
electronic calculations.

Moreover, for each excited state involved in the calcu-
lations, we have determined its contribution to the static
polarizability a„„ for the 'H states and a„ for the '2+
states (see Table VI). It is easy to see how the contribu-
tion of each state is a compromise between the magnitude
of its transition dipole moment and its proximity with the
ground state.

Another point of interest is that such partial calcula-
tions allow a better understanding of the contribution of
each state in terms of its electronic configuration.

TABLE VI. Low-lying singlet states ('X+ and 'H) of CO: electronic configuration, net atomic charge of C, transition moment, and
contribution to the static polarizability (a„ for the '2+ states and a „ for the 'H).

States

1 ly+
2 1@+

3 1y+

4 1y+

5 1@+

6 1y+

7 ly+
8 1y+

9 1y+

Predominant electronic
configuration'

2 4 4o oo co~co
2 3 4 +1o o co~coo co
2 3 4 +1o oo co~coco
2 3 4 1o oco~coco
2 3 4 +1o oco~coco

2 2 2 3 +1o oo co co~co~co
2 4 3 41&oo co~co~co
2 3 4 Olo oo co~coo co
2 4 3 +1oo co~co~co

Rydberg
character

3s(O) +3s(C)
3p, (C)
3p, (O)
3s(O) +3s(C)
3p(C)

3p(O)

Net atomic
charge of C

—0.39
—0.37
—0.29

1.22
1.78

—0.35
0.67

—0.18
0.71

Transition
moment

0.302
0.450
0.227
0.011
0.336
1.202
0.757
0.458

Contribution to the
static polarizability

0.476
0.998
0.222
0.0005
0.447
5.537
1.945
0.713

1'II
2 'II
3 'II

2 3 4 +1oo co~co~co
o oo coo o~co(3p )

2 2 1 4 1

2 2 1 +1oo co~o~co
3p(C)
3p(O)

+0.15
+0.23
+ 1.02

0.777
0.202
0.143

3.975
0.196
0.087

'Without the core.
Valence character when nothing specified.



5842 M. RERAT et al. 43

TABLE VII. Polarizability of CO: comparison with experi-
mental results. All values are in a.u.

Discontinuity energy

This work

11.22
11.25'
0.304

Experimental

12.15'

0.296'

n„(cu =0)

Discontinuity energy

13.39
14.96
15.66'
0.385

15.72

0.396'

'With vibronic correction (temperature dependence); see Ref.
81.
With extrapolation versus the number of 'X+ states involved

(see text).
' With extrapolation and vibronic correction (temperature and
electric-field dependence, this last correction has been evaluated
at 0.70; see Ref. 81).
From Ref. 84.

'From Ref. 68.

(i) If the excited state is a valence state, without Ryd-
berg character, its contribution to the polarizability may
be important and sometimes essential. This is the case of
the first 'H state.

(ii) If the excited state presents an important Rydberg
character, its contribution is very weak and is thus negli-
gible. For example, this is the case for all the 'X+ states
but the 7 and 8 ones.

To summarize, the contribution to the polarizability
decreases with the Rydberg character of the excited state.
Such explanations illustrate the difficulty of calculating
the polarizability of the CO molecule and the wide range
of published values, especially for the parallel component,
whereas the calculation of the perpendicular component
is easier.

The first 'H state, the 3 'Il state, is a valence state
whose dipole-moment X 'X+~A 'll may be rejected by
the relevant one-electron matrix element (5cr ~r ~2m. ). So
in the calculation of the a component, the first 'II state
already gives the magnitude of the polarizability. The
contribution of the polynomial function is of the same
magnitude. It is reduced, progressively but not drastical-
ly, by the contribution of higher excited states having
mostly Rydberg character. It is not necessary to include
these states in the calculations; the first 'H state is
sufficient to give an accurate lower bound of the perpen-
dicular component.

On the other hand, let us consider the contribution of
the 'X+ states. As noted by Kirby and Cooper, the first
excited state (2 'X+ ) presents two wells spectroscopically
observed, 8 'X+ and D' 'X+. While D' 'X+ is a valence
state (3o4o5cr 1sr 2vr.), t.he B 'X state has mostly
Rydberg character (3o 4o So lrr 7o ). Our calculations
at the equilibrium geometry of the ground state,
R, =2. 135 a.u. , describe the inner well B 'X+. The
predominant electronic configuration is in good agree-
ment with that of Ref. 83; it presents a great Rydberg

(a u-)

01 hv (&.U.)

FIG. 6. Dynamic polarizability components of CO calculated
at 2.135 a.u.

character through the "s" diffuse orbital of the carbon
atom and, for a third of it, on the "s" diffuse orbital of
oxygen.

The same situation holds for the 3 'X+ state, which
also presents two wells, C 'X+ (Rydberg state) and
C' 'X+ (valence state: 3o4o. 5cr lvr 2~ ) W. e describe
the inner well C 'X+, which has mostly C(3po ) Rydberg
character, in total agreement with Ref. 83. The three fol-
lowing states also have Rydberg character: O(3po ) for
4'X+; O(3scr) and some C(3scr) for 5 'X+; and C(3p~)
for 6 'X+. Except for the 3 'X+ state, whose contribution
is about 1 a.u. , all other 'X+ states do not contribute
significantly to the value of a„. In order to augment the
contribution to the 'X+ states significantly we must intro-
duce the 7 and 8 'X+ ones, which are the only valence
states at the equilibrium geometry among the low-lying
excited 'X+ states. The contribution of the polynomial
function is thus essential in the calculation of the parallel
component of the polarizability.

Since many states are involved in these calculations, we
can improve the calculation of a„by the method
developed in Sec. II, which is based on the extrapolation
with the number N of excited states. Figure 6 represents
such an extrapolation at zero frequency from the first
eight excited 'X+ states. After extrapolation, the parallel
component increases from 13.39 (N = g ) to 14.96
(N —+ oo ).

Table VII takes into account this correction. If, in ad-
dition, we take into account the rovibronic correction,
temperature and electric field dependence, as developed
in Ref. 81, the parallel component is now in very good
agreement with the experimental value.

Moreover, in Table VIII, we give some results of polar-
izability computations corresponding to the energy
values for which comparison can be done with other cal-
culations, TDHF and SOPPA, ' or experimental re-
sults. ' Our values have been calculated as indicated
before; a from the first 'H states, a„by extrapolation
with the number of 'X+ states. The extrapolation is simi-
lar to the zero-frequency case, except that we must extra-
polate separately for +%co and —Ace. Our results for
a =(2a„„+a„)/3 are in quite good agreement, until
A, ~3511 A, with those from SOPPA calculations. The
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TABLE VIII. Some dynamic polarizabilities, in a.u. , for CO: comparison with experiments and other calculations.

X (A) E (hartree) o'xx CXzz

This work'
~b

TDHF
Other calculations

SOPPA Experiment
yf

6328
5145
4880
4579
4358
3638
3511
2000

0.0000
0.0720
0.0886
0.0934
0.0995
0.1045
0.1252
0.1297
0.2278

11.22
11.52
11.68
11.74
11.81
11.88
12.22
12.31
17.38

14.96
15.32
15.45
15.51
15.58
15.64
15.92
15.98
17.30

12.47
12.79
12.94
13.00
13.07
13.13
13.45
13.53
17.35

+3.74
+3.80
+3.77
+3.77
+3.77
+3.76
+3.70
+3.67
—0.03

11.56
11.76
11.87
11.91
11.96
12.00
12.21
12.27
14.49

+2.94
+2.93
+2.92
+2.92
+2.91
+2.91
+2.88
+2.88
+2.07

12.45
12.69
12.82
12.86
12.92
12.97
13.22
13.29
15.95

+4.45
+4.52
+4.55
+4.56
+4.57
+4.58
+4.64
+4.65
+4.57

13.08
13.35
13.49
13.54
13.60
13.66
13.93
14.00
16.39

+3.57
+ 3.59

'Our calculated values are given without rovibronic corrections. For the parallel component, we have extrapolated with the number
of excited states involved in the calculations, as in the text.

Q ( 2Clrxx' +CXzz ) /3
y=a e

"From Ref. 17.
From international critical tables (Ref. 85 quoted in Ref. 17).
From Ref. 84.

difference with the experimental values is =0.5 a.u. ,
which is the order of magnitude of the rovibronic correc-

0

tion as shown for zero frequency. ' For A, =2000 A
(E=0.2278 hartree) our a value is greater by 1 unit than
the experimental one. In fact, the e component is be-
ginning to increase very quickly, as shown in Fig. 5, and
its determination is very sensitive to the wavelength. Our
y parameter, which characterizes the ahisotropy of the
polarizability, is a little larger than the experimental
value. It is intermediate between the TDHF and SOPPA
results; the values obtained by these methods for A, =2000
A are inaccurate, since these calculations do not show the
quick increase of the a„component sufficiently as the
energy approaches the value of the first 'Il state.

easily computed, since the first 'II state is of valence
character and extrapolation is not necessary.

In every case, our results agree very well with experi-
mental ones, if available.
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APPENDIX A: LIMIT OF THE POLYNOMIAL

V. CONCLUSION

We have presented calculations of the static and dy-
namic polarizabilities of Li2, LiH, and CO. The method
used is the conventional SCF-CI method of Hameka and
Iwata, based on the variational-perturbation techniques,
in which the first-order wave function includes two parts:
(i) the traditional one, developed over the excited states,
and (ii) additional terms obtained by multiplicating the
zeroth-order function by a polynomial of first order in the
electronic coordinates. This dipole-moment factor makes
an extrapolation procedure possible in critical cases.

Applications to Li2, LiH, and CO have shown the reli-
ability of the method: Li2 and LiH are ideal molecules,
for which the hypervirial theorem may be verified quite
easily, so that the method may be checked (see Appendix
A). On the other hand, CO presents a critical case, where
extrapolation is necessary. Indeed, the low-lying 'X+
states are of Rydberg character, thus giving small contri-
butions to the polarizabilities; one must use up to at least
eight states since the valence states strongly contributing
to o. appear only at the seventh and eight 'X+ states. On
the contrary, the perpendicular component may be more

a
' +c„I'„=(x'),

aP„+c„co„=x„,
with

(A 1)

(A2)

n

x„=(0~ g x, ~n &,
i=1

a)„=E„—E0 .

(A3)

(A4)

In the case of exact eigenstates
~
n ), the hypervirial

In order to simplify the formulas, the calculations
presented in Appendices A and B are done with condi-
tion (O~x 0) =0 satisfied. However, the conclusions
remain valid without fulfilling it.

Let us consider the peculiar case of the 0; „component
at zero frequency. In the principal axis of the polarizabil-
ity tensor, the single nonzero component of g'"'(r) is
a„"=a. Then Eq. (18) reduces to
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theorem holds, and thus

xn~n Pn

The solution of Eq. (Al) is straightforward; we get

xn —aPn
Cn

(A5)

(A6)

APPENDIX B: VARIATION OF THE a VERSUS a~

N
aN=aN&x'&+ g c„x„.

n —1

(81)

When limiting the summation to N states, Eq. (22) be-
comes, for e„„,

&x'& —g
xnPn (x') —gx„'

ne p2 ne
X ~nXn

n

(A7)

1= g ~n &(n~,
n=0

In actual calculations we must limit the number of states
N in the summation. Let aN be the corresponding
coeKcient. By introducing the decomposition of the
identity operator

With (A6),

x„
aN —a„&x &+ g

n=1 n

xnP„—aN X
n=1

(82)

N N

(x ) —gx„+g
n=1 n=1 n

(83)

ln Eq. (83), aN is the polarizability computed with the
formula including the eft'ect of the polynomial g(r), and
the last term, which we denote nN', is the usual polariza-
bility calculated by the "sum-over-states" method. We
may rewrite Eq. (83) as

we can write aN as

2
Xn

(O)—
2

N

COn X„
n=1

(84)

n =N+1
QN=

2
COn Xn

n =N+1

Since co„ is the energy of the transition from the ground
state, it is positive, and so aN. Moreover, the ~„appear-
ing in the denominator of aN are all greater than coN, so
that we have

with the help of Eq. (A7).
One can read that equation as

uN —a'N'=aNf(N) .

+N+1 +N (aN+1 N )
n =N+1

With the condition of Eq. (14), Eq. (83) leads to

(85)

ConXn +~N X Xn *

n =N+1 n =N+1

and an upper bound to aN,

1
0(QN (

CON

(A10)

(Al 1)

QN+1
~N+1

With the help of Eq. (A9),

n =N+2

2
XN+1

n =N+2
2

~nXn

(86)

QN+1

x„
n =N+2

XN+1+ X Xn
n =N+2

So, as N tends to infinity, aN tends to zero. Besides, QN+1
~N+1 2~N+1 ~nXn

n =N+2

(87)
2~nxn ~N+1XN+I + 2 ~nxn2 2

n =N+2
so that with Eq. (A13) we have

(A12) QN+1
~N+1

2
~N+1XN+1 +

n =N+2
2

COn Xn

QN+1 2
~N+1XN+1

XN+1(~N+1 X Xn X ~nxn )
n =N+2 n =N+2

QN+1 QN

XN+1~N+1+ X ~nXn X ~nxn2 2 2

n =N+2 n =N+2

(A13)

Because of (A10) we have

~N+1

QN+1 QN

2
~nXn

n =N+1
2

~N+1XN+ 1

2
Xn

n =N+1)
XN+1

n =N+1
x„g conx„( 0

N+1 n=N+1

(88)

QN+1 (QN (A14) As a consequence, aN is a decreasing function of aN.
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