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Nonadiabatic selection rules for the photoabsorption of H and He

H. R. Sadeghpour*
Joint Institute for Laboratory Astrophysics, Boulder, Colorado 80309-0440

(Received 1 November 1990)

The method of hyperspherical coordinates is used in obtaining very highly excited two-electron
adiabatic potential curves up to the n =12 hydrogenic threshold. The present numerical eA'ort ex-
ploits the analytic nature of the solutions to the Schrodinger equation at small and large distances to
diagonalize the hyperspherical Hamiltonian in the combined basis set. Numerical deficiencies re-
sulting from a linear dependency of the total nonorthogonal basis set are overcome in an automatic
fashion. A high degree of diabaticity is observed which limits the channel interaction to within a
select set of hyperspherical channels. The validity of this quasiconstant of motion as reported by
H. R. Sadeghpour and C. H. Greene (SG) [Phys. Rev. Lett. 65, 313 (1990)]for H is investigated for
the photoabsorption of He and higher-z members of the He isoelectronic sequence. A generalized
two-electron Rydberg formula capable of predicting the positions of the dominant He (ridge and
valley) resonances is given. A new feature of the very-highly-excited resonance structure for H
and He [observed only recently by Domke et al., Phys. Rev. Lett. 66, 1306 (1991)]is discussed. Sem-
iempirical multichannel-quantum-defect fits are also made to the photodetachment spectra of H
supporting the conclusions reached in SG.

I. INTRODUCTION

The study of "two-electron" atoms has remained an ac-
tive field of research, both in experiment and theory, due
to its fundamental importance as the prototype for
"many-particle" investigations. Detailed analysis of
electron-electron correlation effects in doubly excited
states has advanced tremendously since the introduction
of high-energy synchrotron photons to atomic spectros-
copy in the early 1960s. ' A group-theoretic approach
to the systematics of these resonances has uncovered ap-
proximate symmetries and correlation quantum numbers
that have helped greatly in the classification scheme of
the two-electron spectra. ' Numerical "experi-
ments" ' aimed at calculating accurate positions and
widths for these autoionizing states have greatly aided
our understanding of quantitative aspects of these com-
plexes. A molecular-orbital (MO) description of two-
electron states has also shed some light on the general
pattern of electron-electron correlation. "'

The method of adiabatic hyperspherical (HS) coordi-
nates was first introduced to the study of electron-
correlation effects .by Macek' in 1968 and has since
developed into a powerful tool for understanding these
types of processes. ' ' In this representation, the two
electrons are treated equally by introducing a joint coor-
dinate system: a hyperradius R giving a measure of the
"size" of the complex and a hyperangle o. defining the de-
gree of radial correlation between "valence" electrons.
The adiabatic approximation [analogous to the Born-
Oppenheimer (BO) approximation for diatomic mole-
cules] has proved remarkably valuable in interpreting the
correlation patterns of doubly excited states in the spec-
trum of He or H . ' ' In this approximation, the two-
electron Hamiltonian in HS coordinates is diagonalized
parametrically in R as in BO, and the resulting eigenval-

ues serve as potential-energy channels for electronic
motion. Unlike the BO approximation, the adiabatic HS
approximation does not rest on any obvious physical
justification. The adiabaticity in R derives mainly from
the analogy to the BO frozen-nuclei assumption. The re-
markable success of the adiabatic approximation in ex-
plaining the correlating nature of the multiply excited
states and their classification has nonetheless been the
major force behind its use.

Sadeghpour and Greene' (SG) used this approxima-
tion to calculate for the first time the very highly excited
'I" states of H up to the n =12 hydrogenic threshold.
In doing so, Ref. 17 utilized the fact that solutions to the
Schrodinger equation are analytically known at small and
at large R. The HS Hamiltonian was diagonalized in the
combined representative basis set. (This procedure had
first been recommended by Lin' and was recently em-
ployed by Koyama et al. ' ' for the study of high-lying
excited states below the n =7 hydrogenic threshold. )

The problem of linear dependency of eigensolutions ob-
tained from diagonalization in a nonorthogonal basis set
was resolved by transforming the adiabatic Hamiltonian
into a representation in which the overlap matrix be-
tween basis functions is diagonal. A very high degree of
diabaticity (weak coupling) between different adiabatic
channels was observed and interpreted in terms of con-
tour plots of the two-electron density. It was shown that
only those HS channels with similar angular and radial
nodal structure have appreciable channel interaction.
Those channels whose correlation characteristics
influence the photodetachment spectra of H were
identified and classified with quantum numbers for the
bending vibration of the three-body Aoppy rotor. A gen-
eralized two-electron formula was also given which de-
scribed the positions of most of the observed Feshbach
resonances in H, to date.

43 5821 1991 The American Physical Society



5822 H. R. SADEGHPOUR 43

The aim of this article is to give details of the numeri-
cal techniques employed for the present calculation, to
expand on the major findings of SG and to generalize
them for He and its isoelectronic ions, and also to offer a
possible explanation for the discrepancy that exists be-
tween the observed resonances in H and He. ' A
two-electron Rydberg-Rydberg formula is derived for
helium and analogous to that in SG for H, permitting
the classification of very highly excited two-electron
states of He. This formula assumes a pure Coulomb force
which the outer electron feels in the field of an excited
He core, and ignores the effect of the dipole field whose
presence in H is responsible for the formation of quasi-
bound states. The general agreement observed between
the experimental data and the level positions predicted
with this formula lends support to this assumption and
also magnifies the importance of the Coulomb attraction
for the doubly excited states of He. The analysis of this
paper suggests that it is just this Coulomb force which
causes the differences observed in the photoabsorption
spectra of H and He.

High doubly excited levels calculated in the adiabatic
approximation are also compared with the experiments
and some available calculations. Semiempirical mul-
tichannel quantum-defect theory' ' (MQDT) fits are
also made to the H photodetachment spectra in support
of the conclusions of SG. A novel feature of these very
highly excited states of H and He, namely, the pertur-
bation of broad resonances in a hydrogenic manifold by
the narrow Rydberg or dipole resonances converging to a
lower manifold, very recently observed in He, is dis-
cussed.

II. THE HYPKRSPHERICAL REPRESENTATION

can nevertheless be diagonalized at each R such that the
eigenvalues act as potential-energy curves and the eigen-
functions serve as adiabatic channel functions,

U(R; Q)4„(R;0)= U„(R )4& (R;0 ) .

The adiabatic approximation assumes that the off-
diagonal coupling matrix elements between the HS chan-
nels, (@„iB/BR@ ) and (C&„iB /BR 4„) for pWv, are
negligible compared to the energy separation between
them.

To obtain these potential curves, the fixed R Hamil-
tonian in Eq. (2) is diagonalized using a linear combina-
tion of nonorthogonal basis functions,

@„(R;0)=gP;c;„.

The first part of the basis set in t P; ] includes eigenfunc-
tions of the grand angular momentum operator of Eq.
(lb), i.e.,

'

A uI I (Q)=(l, +l2+2m +2) uI I (0), (4a)

where

uI I (+) +I I fl I (a) Yl I LM(rl r2)

acts an an "effective" charge for the system with z the nu-
clear charge and 0,2= arccos(r, r2).

It was suggested by Macek' that despite the fact that
the two operators A and C do not commute, the total
operator

U(R;A)=[A /2R +C(a, 0,2)/R]

The method of HS coordinates has been of intense in-
terest in the area of correlated electron motion; see, for
instance, the review article by Lin (Ref. 14). In the sec-
tion the method will be brie Ay sketched, and the
remainder of the section will be devoted to the numerical
technique used to obtain the HS potential curves.

In the HS representation the six-dimensional two-
electron Hamiltonian is transformed into an equation in
R =(r, + r2 )', a =arctan(r2/r, ), and 0—= (a, r„r2).
The full rescaled two-electron Schrodinger equation then
reads (in a.u. )

l& +l~ L +S+(—1)' ' f ——al l 1~ m

XYI I LM( 1r2)

with
l, +i ii+1

fI I (a)=(sina) ' (cosa) '

X2F, (
—m, l, +l2+m +2;l2+ —', ;sin a) .

(4b)

(4c)

where

02

i
BR

C (a, 0,2)+2 E-
R R

I2 $2
+ 2 + 2

jo 2 cos2a sin20

'P (R;II ) =0,

(1a)

(lb)

Here, YI I IM(r„r2) is the well-known coupled spherical
1 2

harmonic, 2F, ( ) is proportional to a Jacobi polynomial in
cos2a, and m is a non-negative integer indexing the nodal
structure of the HS harmonics in a. Nl l is a normali-

1 2

zation constant. The augmented two-electron basis func-
tions representing the asymptotic channel functions are
constructed from properly symmetrized one-electron or-
bitals,

is the squared "grand" angular momentum operator'
describing collective rotations of the two electrons on the
surface of a six-dimensional hypersphere. The quantity

1
I I ( 1 2) 2[R I ( 1)R I ( 2)YI I LM(r1r2)

C(a, 8,2)=—
cosa

z 1

sina (1 —sin2a cos812)'i
(lc) XRn, I, (r2»I, I, LM(r1 r2) 1) .
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A generalized eigenvalue equation is obtained after sub-
stituting into Eq. (2),

in which 0 is the full overlap matrix between the basis
functions. In the limit of infinite numerical percision,
this matrix is positive definite. In practice, however, the
overlap matrix is nearly singular. To treat the linear
dependence mused by this overcornpleteness of the full
primitive basis set, the HS Hamiltonian is transformed
into the representation which diagonalizes the overlap
matrix, amounting to an orthogonalization of the total
basis set. The transformed Hamiltonian has the form

U=o ' w Uwo

appropriate to the 'P' final-state symmetry. ' In the
asymptotic region, these adiabatic potential curves devel-

op a dipole tail in the case of H, and a combined
Coulomb and dipole form in He. This dipole field results
from the motion of the outer excited electron in the per-
manent dipole of the hydrogen atom or helium ion pro-
duced by the degenerate mixing of excited angular

12.0

11.0-

10.0-

a.o-

The matrices o and w are, respectively, the eigenvalue
and the eigenvector matrices obtained from the diagonal-
ization of the full overlap matrix 0 after discarding all ei-
genvalues of the overlap o& ~ e, where e = 10 . The rna-

trices o and w are therefore nonsquare matrices. The
transformed matrix U now obeys an ordinary eigenvalue
equation,

Ua„= U„(R)a„,
where the primitive eigenvectors are c„=w o ' a„.

III. RESULTS

A. 'P Potential-energy curves

The adiabatic potential-energy curves for the 'P sym-
metry relevant to the single-photon ionization of He and
the photodetachment of H are shown in Figs. 1(b) and
l(a) up to the n =12 hydrogenic threshold, respectively.
These curves are shown as R-dependent effective quan-
turn numbers
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h
e.o-

4.0-

3.0-

2.0-

1.0 I I
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v„= [ —(2/~') U„(R ) ]

versus &R . For the present calculation a primitive basis
set comprised of 49 HS harmonics and 123 two-electron
orbitals was used. The HS harmonics included quantum
numbers l, =(0, 1,2, . . . , 9), l2=l, +1, and
m =(0, 1,2, 3,4). The two-electron basis functions in-
cluded aH the parity-allowed intrashell states with
n, =n2, the intershell states with n2 = n &+1.

A few of the we11-known properties of these potential
curves are as follows: The sharp avoided crossing be-
tween the "+"(the more attractive curves near the nu-
cleus) and "—"(the more repulsive curves) implies that
the potential curves preserve their character through the
crossing region leading to sets of coupled diabatic
curves. ' ' These approximate quantum numbers, "+"
and "—," representing the in-phase and out-of-phase
motion of the two electrons, have been used to classify
these diabatic curves. '' ' In each n manifold, there ex-
ist n —1 (n) channels of "+ ( —)" character, each of
which can be specified in the far field region by the near-
exact group-theoretic quantum numbers T = 1 (0) and

K =n —1 —T, n —3 —T, . . . ,
—(n —1 —T)
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FICx. 1. (a) Adiabatic potential curves for the 'P symmetry
of H shown as eftective quantum numbers v„(R) vs &R (from
Ref. 17). (b) Same potential curves for He with the abscissa re-
scaled with the nuclear charge. Note that in He the attractive
Coulomb force binds in all channels. The ridge line is defined as
v~=18 ' &R for H and v~=(

2 )
' "&R for He.
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a += 3n + 2 —1,

3n

46n 8 16
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3n 29n
„I 1I+ 2 3 3n
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The first two expressions belong to H while the last two
forms are for He. It is worth mentioning here that the
existence of the attractive Coulomb force in He is
relevant for explaining the diFerent nature of the two-
electron resonances observed in He (Refs. 21 and 25) as
compared to those in H

momentum states of H(nl) or He+(nl). It was pointed
out by Gailitis and Damburg that this dipole moment
can be obtained using the first-order degenerate perturba-
tion theory. The asymptotic dipole potential in the
„[U I

"-th channel than has the form a „/(2R ), where

a & are simply eigenvalues of the Gailitis-Damburg

operator. ' The vibrational quantum number „[U I is
defined as „[u}"=—,'(n —1 —K —T). ' Approximate
expressions for these dipole moments can be written upon
using Eq. 38 of Ref. 3. The expressions for the "+"
channels with the quantum numbers K = n —2, and
K =n —4 or, alternatively, „[v I "=„[OJ+ and

„[vI =„[1I+are

E(m, n)=

In Eq. (10),

—2

n (2m —p„)
(10)

. 0

p„=n —
[
—2[2/n —(2 —o. ) /(n —p) ])

is the one-electron quantum defect for the resonances in
each „[0]+ channel. The Wannier ridge states are
classified with m =n and the Rydberg states are de-
scribed with I =n +1,n +2, . . . quantum numbers.

The predicted energy levels from Eq. (10), with m
treated as continuous, are shown in Fig. 2 along with the
experimental results for He. ' The lowest resonances in
each n manifold fall on the Wannier line (unit slope) as
expected and the higher Rydberg resonances fall oF the
ridge line and converge on the nth threshold.

The agreement between the predicted level positions
using the two-electron formula for He and the experi-
mental data confirms the Coulombic (Rydberg) nature of
these doubly excited states and the small eFect of the di-
pole field on the formation of these quasibound states. It
will be seen in Sec. III C that the existence of a handful of
resonances lying in the second lowest "+"channel of He
with E =n —4, or „[vI"=„[1I+,is a consequence of
the presence of this Coulomb field. Similar resonances
are absent from the H photodetachment spectra ob-
served to date. ' '

B. Generalized two-electron formulas
7.0- He

Two-electron Rydberg formulas,

& (n ) = —(z —o )'/(n —p )',
have been successful in the classification of the ridge
states of H, He, and other two-electron atomic sys-
tems. ' These formulas derive from an expansion of
the two-electron potential, Eq. (lc), about the saddle at
n =~/4 and 9&z-—m. In this section these well-known en-

ergy formulas are generalized to predict the positions of
all the resonances in a hydrogenic sequence. To this end,
the parameters of the generalized formulas are fitted to
the adiabatic levels of the 3[OI3+, q[OI~+, and 5[OI,

+ Wan-
nier ridge states in H (SG) and He. (No attempts were
made to obtain these parameters directly from the first
principles. ) The optimized values for the screening pa-
rameter o and for the quantum defect p are 0.1587 and—0.3770 for H (as given in SG) and 0.1389 and
—0.2043 for He, respectively. Note that the fit was made
to only three ridge-riding resonances in order to test the
accuracy of the adiabatic calculations and also to gauge
the predictive power of these formulas for the higher
doubly excited resonances.

For the doubly excited states of He, the two-electron
Rydberg formula is combined with the one-electron Ryd-
berg form for the higher resonances into a "Rydberg-
Rydberg" formula in a.u. ,

'

LO-

4.0-

3.0-

LO I I

R.O 3.0 4.0 5.0 6.0 7.0 I.O 0.0 10.0
Al

FIG. 2. 'I" doubly excited resonances converging on He+(n)
thresholds. The solid lines are from Eq. (10) using the pararne-
ters of the „[0I+ channels. The experimental resonances of
Ref. 21 lying in these channels are given as solid circles. The
observed resonances in the second-lowest "+,"„[1 j +, channels
are shown as squares. The dashed lines give the positions of
these resonances calculated in the adiabatic HS approximation;
see also Table II. Note that these same resonances are absent in
H photodetachment.
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C. Physical Interpretation

It was shown in SG that the total dominance of the
lowest "+" curves of the hydrogen negative ion,
„I v j

"=„I 0 j +, could be understood in terms of contour
plots of the two-electron density as functions of o. and
0&z. The higher n-manifold "+"channels exhibited extra
nodal lines in 0&2 near the Wannier ridge associated with
the degree of bending excitation „Iv j . It was conse-
quently argued that only "+"channels with no nodes in
0,2, i.e., with zero quantum of bending vibration

„I v j
"=„IOj +, similar to those in Fig. 3(a), will be pop-

ulated. Furthermore, high-lying double excited states
would be reached through an initial dipole transition into
the lowest channels of Fig. 1 followed by successive nona-
diabatic nonradiative transitions between the dominant"+"channels, each having similar radial and angular no-
dal character in a and 0,2.

The above argument holds valid for the helium photo-
ionization process as well. The 'P two-electron density
contour plots are shown in Fig. 3 in the He+(n =5) hy-
drogenic manifold at R =25.0 a.u. near the minima of
the adiabatic potential curves where the bulk of the reso-
nant wave functions belonging to these channels are lo-
calized. The difference between the photoionization spec-
tra of helium and the photodetachment data of H is the
observation of a handful of „ I 1 j+ resonance lying in the
second-lowest "+"channels of He with E =n —4. A
close look at the Figs. 1(a) and 1(b) provides the clue as to
the nature of this discrepancy. In the He+(n =3) mani-
fold, the „ I v j

"=
3 I 1 j+ diabatic channel is attractive at

all R due to the Coulomb attraction of He+ and supports
resonant states, whereas the 3I 1 j+ channel in H is to-
tally repulsive due to the repulsive nature of the dipole
moment in that channel; see Eq. (9). A calculation of the
oscillator strength for the excitation of the resonances be-
longing to the 3IOj+ and 3I 1 j channels in He (in the
adiabatic HS approximation) has shown that these reso-
nances receive roughly equal amounts of direct oscillator
strength, —10, from the He ground state. (In H
only the 3I 1 j+ channel is repulsive. ) Inferring from the
above arguments, once the 3I 1 j

+ channel of He is excited
by a direct dipole transition (the first time a „ I 1 j+ chan-
nel appears), the resonances in the higher „ I 1 j channels
are populated by the same nonadiabatic mechanism re-
sponsible for the excitation of „ I 0} resonances in H
and He while conserving the 0&2 nodal structure. Gen-
eralization of thii. s statement to higher-z isoelectronic
members, i.e., Li+, Be +, . . . , would imply that the pho-
toexcitation of the doubly excited resonant states in these
species will proceed approximately as in He and in each
case no more than the first two "+"channels of each hy-
drogenic manifold will be populated strongly.

These dominant photoexcitation channels are shown in
Figs. 4(a) and 4(b) for He and H, respectively, In (b)
only those diabatic channels with no quanta of bending

„Iv j "=„IOj are given for H (from SG). In (a), the
two lowest "+"channels, „t0j+ and „[1 j+, are shown.
The level positions are also laid down in each channel.
The nonadiabatic ladder line, the loci of the points of
closest approach between the curves, is clearly visible as a

straight line enroute to the double-ionization continuum
limit.

It should be noted that a recent study of the two-
electron dynamics in the MO picture has been able to
find surprising similarities between the HS and MO repre-
sentations. The bending quantum number „[vj" is
seen to be equal to the number of nodes in one of the
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FIG. 3. The adiabatic two-electron density function shown as
contour plots vs o.'and 0,2. In (a) —(c), contour plots for the

„Iv j "=~IOj+, 5I1j+, and ~I2j+ channels of He in the n =5
manifold are given at R =25.0 a.u. , respectively. The v quan-
tum number then respresents the number of the nodal lines in

0&2. The radius at which these densities are calculated corre-
sponds to the minima of the respective diabatic channels.
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D. 'P Energy Levels

In this section energy levels are calculated in the adia-
batic approximation are presented in Tables I and II.
The H data are calculated by integrating radial solu-
tions in each diabatic channel and matching in the
asymptotic region to QDT dipole wave functions. The
helium results are obtained, however, by the straightfor-
ward integration method. The surprisingly good accord
with the observed resonance levels again confirms the
smaller interchannel interaction between channels with
different radial and angular nodal character.

E. QDT Fits

Drawing from the conclusions of Sec. IIIC that in
each hydrogenic manifold, a single „IOI+ channel pri-
marily influences the photodetachment process, the spec-
trum of H is "calculated" assuming a two-channel pro-
cess for which an analytic form of the resonant cross sec-
tion exists. ' ' The weakly closed (energetically inacces-
sible) channel in which the resonance structure forms is
taken to be the „IOI+ channel. The open (decay) contin-
uum is assumed to be the „,IOI+ channel, although this

assumption does not affect the total cross-section fit. The
nonresonant background cross section is considered to be
a linearly sloping function of energy. The MQDT equa-
tions, (see Ref. 16), were fitted to the lowest observed res-
onance in each n series. The optimized energy-
independent parameters (two eigenchannel quantum de-
fects, one mixing angle for the channel interaction, and
two dipole matrix elements connecting the final states to
the H ground state) were then used to predict the rest of
the spectra. These fits are shown in Fig. 5, lending sup-
port to the conclusions reached in Sec. III C and in SG
that a selection rule Av+ =0 exists in the photoexcitation
of the doubly excited states in H . These fits also seem
to confirm that the experiment by Harris et a(. does ob-
serve two more dipole resonances not included in the ex-
perimental fit. One is the resonant state ~IO)s+ in Fig.
5(a), and the other is the excited state 7tOI 1+0 in Fig. 5(c).
(Table I of Ref. 22 gives a rather large width for the
5IO)7 resonance which can be understood by the pres-
ence of the nearby 5IOIs+ state not included in the fit. )
Minor discrepancies between the fits and the experimen-
tal measurements are apparently caused by the total
neglect of the energy dependence of the QDT parameters
and by the fact that the instrumental resolution of about

TABLE I. Energies of P states of H, in a.u. , relative to the double-escape threshold. The numbers in parentheses indicate error
in the last digits. The calculated values are from the adiabatic hyperspherical treatment.

~ Iv)

.t014

4I oIs+

8 t 0I 8+

8[0}2

, I OI 1o

8 IOJ 8+

8 I0I 10

8 I 0 I 11

, t 0)9+

9IOI 10

1of oI 1+o

1o[0I 1+1

„[0I,+,

11 I 0 I 12

12I0) 12

'Reference 22.
Reference 7.

'Reference 10.
Reference 20.

'Reference 9.
Reference 35.

Calculated

—0.036 78
—0.032 08
—0.031 44
—0.024 52
—0.021 30
—0.020 45
—0.017 52
—0.015 37
—0.014 53
—0.014 18
—0.012 98
—0.01156
—0.010 88
—0.010 55
—0.01009
—0.009 05
—0.008 50
—0.008 20
—0.008 02
—0.007 27
—0.006 53
—0.006 05
—0.005 42
—0.004 98
—0.004 56
—0.004 19

Expt. '

—0.024 518(11)
—0.021 393(11)
—0.020 617(40)
—0.017 333(11)
—0.015 249(07)
—0.014 594(04)
—0.014 333(04)
—0.012 877(30)
—0.011289(30)
—0.010914(07)

—0.010017(40)
—0.008 803(07)
—0.008 660(11)

Others

—0.037 16 —0.037 35' —0.036 735
—0.032 11

—0.024 55 —0.024 626 —0.024 685
—0.021 345

—0.017 38 —0.01743 —0.017 39
—0.015 255

—0.012 93' —0.01302 —0.012 99
—0.01142 —0.011 52

—0.010 86

—0.009 995 —0.01009'

—0.007 90 —0.008 05
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TABLE II. Energies of 'I' states of He, in a.u. , as in Table I.

.[U)."

4{o)4'

4{o)s'

0
4[o) 7+

4{0),'
4[o) 9'

4[0),"11

4{o)11
4[o) 1+2

4{o)»
4{i)4+

4{i) s'

4{&)6'

4{i)7+

s[o)6
s [0),+
s [0),+
, [0),+
, [0) 1+0

s[o)»
s[0) 1+v

s{o)1'8

s{ i)s+

s{ i)7+

6{o)8'

,{0),+11

6{0)ll
6{ojl'8
6{0)1,

,{1),+

,{0),+
7[o) 9+

7{0)10

7{o)1'1

7[oVZ

8{0)8

8{0)9+

8[o) 1'0

8[o)»
8{0)iZ

8{O)1+,

8{i)8
8{1),
8{i)10
9{o)9
9{o)lo

s, [O) „
9{&)9"

9{i)10

Calculated

—0.195 56
—0.161 98
—0.147 85
—0.140 36
—0.13606
—0.133 35
—0.131 53
—0.13025
—0.129 31
—0.128 61
—0.175 76
—0.153 77
—0.142 87
—0.137 34
—0.127 99
—0.108 21
—0.098 63
—0.093 04
—0.089 64
—0.087 41
—0.085 88
—0.084 78
—0.083 96
—0.11802
—0.101 48
—0.094 19
—0.089 24
—0.076 91
—0.070 12
—0.066 69
—0.063 98
—0.062 15
—0.060 85
—0.059 90
—0.083 30
—0.072 28
—0.066 12
—0.05844
—0.052 76
—0.049 82
—0.047 79
—0.046 31
—0.045 23
—0.062 43
—0.054 83
—0.051 13
—0.046 26
—0.042 16
—0.039 53
—0.037 75
—0.036 49
—0.048 42
—0.043 06
—0.039 66
—0.040 40
—0.036 45
—0.033 40
—0.038 88
—0.035 27

Expt. '

—0.1944(11)
—0.1620(11)
—0.1489(11)
—0.1431(11)
—0.1397(11)

—0.1794(11)
—0.1556(11)

—0.1261(11)
—O. 1057(11)
—0.0991(11)
—0.0943(11)

—0.088 1(11)
—0.0778(11)

Others

—0.194 54 —0. 194 871 —0.195 55
—0. 16127&—0.161704
—0. 150 59 —0.147 20

—0. 178 82 —0.174 45
—0. 152 75 —0.1490

—0. 12643 —Q. 126 743 —0.127 05
—Q. 1Q7 3Q2 —0.1Q8Q

—0. 119 182—0.119054

—0.088 60 —0.088 984 —0.0888
—0.78 35

—Q. 065 871 —0.066 45
—0.059 30

—0.050 714

—0.040 926 76
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TABLE II. (Continued).

io[0}io

,o[0},+,

10[0}12

'Reference 21.
Reference 8.
Reference 10.
Reference 20.

Calculated
—0.032 89
—0.030 12
—0.027 94

Expt. ' Others
—0.032 718

= 8 meV has not been convoluted into the fitted spec-
trum.

IV. SUMMARY

The objective of this work has been an investigation of
the dynamics of very-highly-excited autodetaching two-
electron states of H and He. In order to be able to car-
ry out the study at such high energies, stable numerical
techniques had to be devised to diagonalize the adiabatic
HS Hamiltonian. In doing so, accurate 'I" potential-
energy curves of H and He up to the n = 12 hydrogenic
threshold were obtained.

Significant insights into the photodetachment processes
in H and in the photoionization of He have been ob-
tained from the study of these adiabatic potential curves.

These systematics combined with the very recent experi-
mental observation of these highly excited resonant states
of H and helium have painted a simple picture of simul-
taneous excitation and autodecay processes. It is shown
that of all the 2n —1 'I" channels converging on an nth
hydrogenic threshold, only the lowest "+" channel
„{U}"=„[0}+,influences the photospectrum of H and,
to large extent, He. The small diA'erent that exists be-
tween the resonances in He and H is suggested to be
due to the presence of the Coulomb attraction force that
binds the outer electron to the ionic He+ core. Observa-
tion of the „[1 }+ resonances is also predicted in the pho-
tospectra of other members of the He isoelectronic se-
quence.

This general dominance is attributed to the angular
characteristics of the channel functions near the minima
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shown in (a) —(c), respectively. The experimental data are from Ref. 22. The quantum-defect parameters are assumed to be energy in-
dependent. The overall good accord with experiment emphasizes the general dominance of the „[U} =„[0} photodetachment
channels.
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of the HS potential curves. High-lying doubly excited
states are argued to be populated through successive
nonadiabatic nonradiative transitions between the like-
character channels that preserve Av+ =0. The autoion-
izing or autodetaching mechanism is also postulated to
favor the conservation of the Av+ =0 selection rule, i.e.,

the „I1j+ two-electron states to decay mostly to
, I 1 j+ continua and the „IOj+ resonances to decay to
& t 0 j

+ open channels.
Generalized two-electron energy formulas account for

the resonance positions to a good degree of accuracy, al-
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lowing extrapolation to very high quantum numbers.
Also, the agreement between the predicted level positions
using the two-electron formula for He with the experi-
mental data, (see Fig. 2), is suggestive of the Coulombic
nature of these doubly excited states and the diminishing
eA'ect of the dipole field on these resonances.

A novel feature of the high-lying two-electron states is
discussed in which the broad Feshbach resonances „IOI „+

are perturbed strongly by the narrow dipole or Rydberg
resonances forming in the closed n —1 channels, i.e.,

, IOJ+. The effects of this interference on the energy
positions and line shapes can be explained with the
method of MQDT. 25
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