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Polynomial solutions of the planar Coulomb diamagnetic problem
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It is argued that a set of manifestly normalizable solutions of the two-dimensional Coulomb di-

amagnetic problem generated by the fine-tuning of the external magnetic field is unphysical. An im-

plication of this for the Hill determinant method is pointed out.
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The Coulomb diamagnetic problem remains a fascinat-
ing unsolved problem of nonrelativistic quantum mechan-
ics. Its two-dimensional version being separable is natu-
rally more tractable.

This two-dimensional problem has a set of exact solu-
tions which are normalizable. These are obtained for a
specific choice of a relevant coupling constant ratio. To
keep this report self-contained we first review the origin
of these solutions.

Working in cylindrical coordinates (p, P) and using di-
mensionless variables, the primary task is to solve the ra-
dial equation

u" +(p —2g )u'+(5/+a)u =0,
where
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This leads to the three-term recursion relation
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Equation (4) admits polynomial solutions which can be
obtained by direct substitution, but are seen more com-
pactly by setting

u= pa„g", a0%0 .
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In Eq. (1) primes denote derivatives and we have used

p=—v, g, v=—+2k'/pro„co, =, a2 =
pc Ace,

(2)
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so that a, AO unless a=O. The coefficients being succes-
sive, polynomial solutions are obtained by demanding an

ak%0, ak+, =ak+z=O, k =1,2, . . . .

Hence, a polynomial solution of degree k requires
B is the magnetic field in the Z direction and co,
the corresponding cyclotron frequency. With R

~e ~ ~ u(g), one gets

5=2k

and a/, +]=0, i.e.,
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The set of a values that satisfy the tuning condition
above leads to polynomial solutions. The structure of Eq.
(11) is such that the roots occur in pairs +a unless a=O
is a root. The +cx's correspond to the problem at hand
and the —u's determine the polynomial solutions of the
problem with the Coulomb potential repulsive. Equation

(11) thus determines the polynomial solutions of both
problems, albeit with a different number of nodes.

These solutions, which are normalizable, are, all the
same, physically unacceptable. A straightforward argu-
ment sufTices to justify this assertion.

Consider the simplest set of polynomial solutions that
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is obtained for k =1. These are characterized by
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polynomials for special a leading to a 5=2k type of spec-
trum are illegitimate, we would like to observe that this is
not meant to be a general result. In some other context
polynomial solutions may legitimately arise upon the tun-
ing of a parameter, due to some compelling circumstance,
such as, for example, the sudden emergence of a symme-
try of the associated Hamiltonian. This is best illustrat-
ed by turning to the very illuminating example of the sex-
tic double-well potential in one dimension. In this case
the Hamiltonian can be written as

Such solutions possess one radial node only irrespective
of the value taken by m. Furthermore, there is no restric-
tion on the allowed values of m. Thus there is an infinity
of such one-node solutions. Let us focus attention on
solutions of large positive m. In fact, let m —+~. One
then has

Z, ~+4%, (15)

(16)

Since co, ~0 and E& is positive the wave functions must
approach those of the scattering states of the two-
dimensional Coulomb problem. It is readily seen from
Eq. (14) that the set i/j, does not satisfy this require-
ment. The Coulombic limit of these solutions is thus er-
roneous and hence these solutions simply cannot be phys-
ical. The same argument applies to other sets of polyno-
mial solutions. There is no choice but to admit that for
these special sets of o; values there must exist other solu-
tions that are physical.

One must naturally wonder about the origin of such
spurious solutions. Although we do not have a definitive
answer to this question, a logical possibility immediately
suggests itself. Solutions that are normally divergent for
arbitrary values of a can accidentally become polynomi-
als and hence normalizable for some special values of a.
In this sense such solutions may be termed "zero measure
solutions, " that is, they have no acceptable continuation
as a function of e away from the tuned values. This situ-
ation can be obtained in practice. For the sake of illus-
tration we point out two distinct ways in which this can
happen.

First, consider a formal class of solutions to Eq. (7) ob-
tained by setting a coefFicient aI, + &

=0, where k takes any
one of the values 0, 1,2, . . . , at a time. This requirement
is consistent with Eq. (7). The resulting solutions are
clearly divergent, for they lead to undesirable limiting re-
sults in the pure Coulomb and Landau limits. However,
for the tuned set of a values that make a&+2 vanish
simultaneously such solutions become polynomials of de-
gree k corresponding to the energies 6=2k.

Second, demand a set of solutions to Eq. (7), such that
6 takes the values 2k, with k selected as before to be an
integer. These solutions also diverge, for the energy has
no reference to the Coulomb coupling at all and the Lan-
dau limit is erroneous. But, again, when 0. takes one of
the values determined by Eq. (11), both a&+, and al, +2
vanish and the polynomial solutions reemerge.

Having firmly established that in the given context the

H=@ x+—/3 x (17)

The parameter /3 is a suitable dimensionless ratio of the
two coupling constants in the problem. Extracting the
1eading asymptotic factor e ~ one arrives at a three-
term recursion relation that for arbitrary /3 admits infinite
series solutions. But, for /3=1/(2k+3), k =0, 1,2, . . . ,

a subset of the solutions turns out to be a set of orthogo-
nal po1ynomials with a weight factor of e ~ ~ . More
specifically, for k =2n, n + 1 even-parity polynomial
solutions are obtained with node numbers 0, 2, 4, . . . , 2n.
For k =2n +1, n +1 odd-parity solutions result. These
solutions can be argued to be physical. This pattern
emerges, because for these P values the Hamiltonian de-
velops an SL(2,R ) symmetry.

Consider now the two-dimensional (2D) Coulomb di-
amagnetic problem in the same light. A 20 isotropic os-
cillator problem has an SU(2) symmetry while the 2D
Coulomb problem has O(3) symmetry. The combination
has merely SO(2) as the residual symmetry. The energy
thus depends on ~m ~, so that the levels +m are degen-
erate. Adding to this a suitab1e Zeeman term we arrive at
the Coulomb diamagnetic Hamiltonian. This removes
the +m degeneracy. Even for the tuned values of n
(which incidently form a very irregular pattern unlike the
/3's of the double-well problem) no special symmetry of
the Hamiltonian is noticeable. Hence, from the group-
theoretic point of view also, one does not see any reason
to expect polynomial solutions.

Finally, we turn to the implications of our result. The
problem at hand involves a multiple-step recursion rela-
tion. A four-step relation seems to be natural. In this
circumstance, the assessment of the normalizability of
any proposed solutions becomes a formidable task in
practice. Thus indirect additional checks on the feasibili-

ty of such solutions are certainly to be welcomed. Our
result provides one such check. Regarded as a function
of o;, the energy is such as not to admit the 5=2k values
corresponding to polynomial solutions for the discrete,
but an infinite set of special a values.

This last remark has a nontrivial bearing on the Hill
determinant approach to the present problem. Pandey
and Varma have recently reported a numerical computa-
tion of energies using this approach. Their reported ener-

gy trajectories in a space explicitly pass through the ener-
gies corresponding to the polynomial solutions for the
tuned o.'values. In view of the arguments presented
above such energies are unlikely to converge uniformly to
physically acceptable values for all values of a. Thus
the theoretical basis of this method, as applied to the
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class of problems to which the Coulomb diamagnetic
problem belongs, deserves to be reviewed. To the best of
our knowledge, only for the case of anharmonic-oscillator
bound-state problems has the question of the normaliza-

bility of the Hill determinant solutions been investigated
in depth. ' In the present case this method has the merit
of building in the limiting solutions a priori that makes
such an investigation even more worthwhile.
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