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Nonrelativistic energy of the Li ground state
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Configuration-interaction calculations with energy-optimized basis sets and an empirical estimate
of all sources of truncation-energy errors are used to evaluate the nonrelativistic electronic energy
of the Li ground state. Our result E„,= —7.4780624(7) a.u. (Li) is 3 phartree below an upper
bound recently obtained by King using Hylleraas-type calculations, and 11 phartree above an old
estimate based on experimental data supplemented by relativistic, radiative, and mass-polarization
corrections, thus suggesting a reassessment of several related issues.

I. INTRODUCTION E =E +5 +6" '+5" +6

Recently, ' very precise nonrelativistic ground-state en-
ergies for Li through Ne + were calculated by means of
Hylleraas-type wave functions. Nevertheless, nonsys-
tematic truncations of Hylleraas expansions, or of any
other basis sets, fail to provide criteria for an internal
quantitative assessment of energy eigenvalues, viz. , it is
not possible to obtain energy error bounds afforded by
the calculation itself short of having to calculate a lower
bound involving rather complicated integrals.

In his paper, ' King quoted a nonrelativistic energy ly-
ing 14 phartree below his result, and he used that esti-
mate to assess the convergence of his results although, as
more Hylleraas terms are added, his successive energies
settle down to within 1 phartree. Therefore, either
King's results are not fully converged, as he seemed to be-
lieve contrary to our initial feelings, or the accepted non-
relativistic energy is at fault.

In an effort to clarify this issue, we set out to calculate
the nonrelativistic energy of the Li ground state to within
less than 1 phartree of uncertainty. We use
configuration-interaction (CI), energy-optimized Slater-
type orbitals (STO's), and empirical extrapolation formu-
las, as in previous work. Also, we employ a very general
and efficient program for atoms and molecules and any
number of electrons, all pointing to the possibility of car-
rying out similar work for larger systems.

In the Li ground state, beyond the Hartree-Fock
configuration, there are 1s and 2s single excitations, 1s2s
and 1s double excitations, and 1s 2s triple excitations.
We have carried out extensive STO optimizations for the
ls2s pair (which we defined as including both 2s and ls2s
excitations), until the uncertainty 5 in the corresponding
truncation energy error 6' ' becomes definitely below 1

phartree. This and the extent of the CI expansions em-
ployed guarantees that the remaining errors are in STO
truncations for the 1s pair, which includes both 1s and
1s excitations. Thus the corresponding nonrelativistic
energy E„,may be expressed as the sum of the variation-
ally calculated upper bound energy E„plus the basis-set

1s2errors 6' ' and 6" in the corresponding 1s2s and 1s
electron-pair calculations:

A small CI truncation-energy error 6c& will arise from
neglecting certain triple excitations. The uncertainty 5 is
obtained from a sensitivity analysis.

Equations similar to (1) have been used for a long
time; however, the present work seeks a substantially
improved accuracy with respect to any previous three- or
higher-electron calculations. Therefore, a detailed quan-
titative analysis is in order. In Sec. II we develop the
one-electron basis set and carry out an analysis of the
convergence of the 1s2s intershell CI expansion from
which an estimate of 5" ' is obtained. In Sec. III we
consider the 1s electron-pair expansion and in Sec. IV
we present the final results. Comparisons with previous
work and conclusions are given in Sec. V.

II. INTERSHELL EXPANSIONS

In this section we consider ground-state 1s2s expan-
sions of Li with the purpose of developing the basis set
and characterizing patterns of convergence to extrapolate
the energy for each I value in succession.

The energy increments AE;& follow patterns of the type

bE, (
= 3 (i +l +D)

where A, D, and p are parameters to be optimized and i is
an index labeling successive radial functions.

Patterns of convergence based on invariants of the
wave function, ' such as natural orbitals, yield very ac-
curate extrapolation energies; however, their calculation
might be extremely tedious. Here, instead, we recurred
to a sequence of optimized STO's and their correspond-
ing energies, feeling that this would be sufficient for our
purposes.

The truncation-energy error 6& for a given I will be
given by

bi=E„i E; i= g bEi-,
i =i„+1

where i„ is the number of STO's in the basis set for a
given l. Thus, we estimate the energy contribution of
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TABLE I. STO basis set and intersha11 expansions for the Li ground state; energies in a.u. (Li} and
energy increments in phartree. The STO s of the extended basis are indicated by an asterisk.

Basis size

7$
8s
9s

10s
11$
12s *

Energy

—7.433 197 111
—7.433 198 761
—7.433 199 381
—7.433 199 667
—7.433 199 802
—7.433 199 871

—7.433 199 951

1.650
0.620
0.286
0.141
0.063

0.284 474.259

First ten s-type STO's: 1s, 4.699; 1s, 2.478; 2s, 1.77;
3s, 4.85; 4s, 3.675; 5s, 9.184;

2s, 0.81; 2s, 0.643;
6s, 6.724; 7s, 9.50

6p
7p
8p
9p

1 0

—7.434 475 670
—7.434 477 192
—7.434 477 800
—7.434 478 072
—7.434 478 219
—7.434 478 296

—7.434 478 410

1.876
0.608
0.272
0.147
0.077

0.338 1752.717

First nine p-type STO's: 2p, 2.531; 3p, 2.901; 3p, 4.97; 4p, 1.46; 4p, 9.50;
5p 3.668; 5p, 10.863; 6p, 1.863; 7p, 13.398

5d
6d
7d
8d

10d *

—7.432 898 293
—7.432 900 168
—7.432 901 007
—7.432 901 406
—7.432 901 599
—7.432 901 732

1.876
0.839
0.399
0.192
0.133

ao d
First eight d-type STO's:

—7.432 901 992 0.585
3d, 3.78; 4d, 3.07; 4d, 12.60; 5d, 13.07; 6d, 3.69;
7d, 7 158, 8d 17 34; 8d, 2 65

176.300

7f
8f"
9f4

—7.432 761 916
—7.432 763 755
—7.432 764 570
—7.432 765 006
—7.432 765 233
—7.432 765 365

—7.432 765 591

1.839
0.815
0.436
0.227
0.132

0.584 39.898

First seven f-type STO's: 4f, 2.28; 5f, 15.65; 6f, 6.06;
9f, 16.47, 9f, 5.79

7f, 5.18; 8f, 21.32;

2g
3g
4g
5g
6g
7g
8

10 )fc

—7.432 734 260
—7.432 736 384
—7.432 737 468
—7.432 738 178
—7.432 738 588
—7.432 738 821
—7.432 738 964
—7.432 739 050
—7.432 739 107

2.124
1.084
0.710
0.410
0.233
0.143
0.086
0.057

OO g
First six g-type STO's:

—7.432 739 248 0.660
5g, 10.676; 6g, 3.51; 7g, 13.09; 8g, 6.23; 9g, 7.796;
10g, 16.658

13.556

2h
3h

—7.432 729 199
—7.432 730 036 0.838
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TABLE I. (Continued).

Basis size Energy —aE, , —aE,

4h
5h
6h
7h*
8h*

—7.432 730 515
—7.432 730 869
—7,432 731 084
—7.432 731 216
—7.432 731 306

—7.432 731 545

0.495
0.337
0.215
0.132
0.090

0.674 5.853

First five h-type STO s: 6h, 13.96; 7h, 4.42; 8h, 16.32; 9h, 6.56; 10h, 8.10

21

31

4i
5i
6, ~

71

8
~g

OO

—7.432 726 744
—7.432 727 357
—7.432 727 757
—7.432 728 004
—7.432 728 176
—7.432 728 300
—7.432 728 381
—7.432 728 442

—7.432 728 677

0.613
0.400
0.247
0.172
0.124
0.080
0.061

0.500 2.985

First five i-type STO s: 7i, 16.72; 8i, 5.33; 9i, 6.36; 8i, 17.38; 10i 7.70

1k
2k
3k
4k
5k
6k*
7k*

—7.432 726 247
—7.432 726 565
—7.432 726 771
—7.432 726 913
—7.432 727 026
—7.432 727 099
—7.432 727 146

—7.432 727 261

0.318
0.206
0.142
0.112
0.074
0.046

0.234 1.569

First five k-type STOs: 8k, 18.18; 9k, 6.027; 10k, 7.032; 9k, 19.425; 11k, 8.157

ll
2l
3l
4l
sl*
6l'

—7.432 726 008
—7.432 726 191
—7.432 726 316
—7.432 726 403
—7.432 726 466
—7.432 726 512

—7.432 726 700

0.183
0.125
0.087
0.063
0.046

0.296 1.008

First four l-type STO's: 9l, 20.521; 10l, 6.573; 10l, 21.841; 11l, 7.673

2m
3m
4m
5m*

—7.432 725 9859
—7.432 726 0696
—7.432 726 1249
—7.432 726 1628

—7.432 726 2793

0.0837
0.0553
0.0379

0.587 0.587

No m-type STO's included in final wave function

STO's with i )i„by means of Eq. (3) with parameters ob-
tained from i values up to i„,and also using a few i values
greater than i but which are not incorporated into the
final basis set in order to keep the calculation within
reasonable computer resources.

The 1s2s excitations contain terms of the type xy,
where x and y are orthonormal orbitals with the same I
quantum number. While studying the l=1 case, we no-

ticed that similar patterns were obtained if we removed
the xy configurations with l=0, achieving corresponding
truncation-energy errors coinciding to within 10 a.u.
We also obtained similar results for 1=5. Therefore, en-
ergy optimization of the STO basis and patterns of con-
vergence were carried out separately for each l without
including configurations with lower l values other than
1s 2s.
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In order to further simplify our analysis we lumped to-
gether 1s2s and 2s excitations. In Table I we present the
STO basis set and intershell expansions for the Li ground
state. The first five s-type STO's are taken from the work
of Bagus et al. The energy increments AE;I correspond
to the ith STO for a given I value. Because only a finite
number of STO's are considered for each l, corresponding
STO truncation-energy errors 5& will be associated to the
1s2s electron-pair expansion. For example, we use only
10 s-type STO's, resulting in 50=0.284 phartree. From
the values of 61, collected again in Table II, we get the
total intershell truncation-energy error for STO's up to
1=8:

TABLE III. Breakdown of energy contributions to the 1s2s
intershell electron-pair expansion; energies in phartree.

AE(

—474.259
—1752.717
—176.300
—39.898
—13.556
—5.85.'.
—2.943
—1.553
—1.008
—0.587

8
Q"2'(8)= g b, &= —4. 155 phartree .

1=0
(4) —2.077

We now add the values of 61, l 8, to the angular en-

ergy increments calculated with the given basis, to obtain
converged angular energy increments AEI shown in the
last column of Table I, and given once again in Table III.
These are subsequently fitted to an expression of the type

AEi =F(l +y) +G(l +o ) (5)

based on theoretical arguments developed for the 1s
electron pair in He. F, y, G, and cr are parameters to be
optimized. We found the —6 power to be the leading
one, the —4 power affording a small correction. For the
truncation-energy error in the 1s2s electron pair due to
STO's with l )9, we get

b, " '(~ )
—6" '(8)= g b,E&= —2.077 phartree .

1=9
(6)

b," '=6" '( ~ ) = —6.232 phartree . (7)

Thus, adding Eqs. (4) and (6), we get, for the total
truncation-energy error 5" ',

g 1s2s —6.232

We assign to our empirical extrapolation an uncertain-
ty equal to the sum of the three following terms.

(i) The sum over l of one-half the difference between
the energies extrapolated by using the actual and the ex-
tended set, respectively, for each l value (uncertainty for
each radial expansion).

(ii) The sum over l of the uncertainties obtained, for
each l, as the sum of assigned absolute uncertainties in
AE,&. The latter are equal to the difference between com-
puted values of AE;I and those obtained from the fitting
to a given pattern (an additional uncertainty for each ra-
dial expansion).

(iii) One-half the difference between two extrapolated
energies corresponding to two different patterns for the l
expansion, Eq. (5) (an uncertainty for the angular trunca-
tions for l )9).

In this way, the uncertainty 6 assigned to 6' ' is

As can be seen in Table I, the last few STO's are not in-
cluded in the final wave function. Thus we have two STO
sets: the actual set used in the complete calculation, and
an extended set used to further study the convergence
patterns.

5=0.72 phartree .

III. K-SHELL EXPANSION

(8)

—0.284
—0.338
—0.585
—0.584
—0.660
—0.674
—0.500
—0.234
—0.296

1=0
—4.155

TABLE II. Estimated truncation energies for the 1s2s inter-
shell electron-pair expansion, for l ~ 8; energies in phartree.

In principle, one could carry out calculations for the
K-shell 1s excitations similar to those done for the inter-
shell 1s2s excitations. However, the sought-after accura-
cy and the number of basis functions that would be re-
quired would exceed our presently available computa-
tional resources. Therefore, we have settled on a sensi-

1stivity analysis to estimate 6" .
To this end we consider an electron-pair K-shell expan-

sion for the Li ground state, involving 1s and 1s excita-
tions truncated at increasingly large basis sizes, and com-
pare the energy results with a two-electron Li+ wave
function computed with the same basis. The results,
given in Table IV, show that as the basis set is increased
from 7s6p5d4f 3g 2h 2i 2k ll to 10s9p Sd7f 6g 5h 5i 5k41,
the energy increments for the ground states of X-shell Li
and Li+ approach each other, coinciding in 10 a.u. in
the last entry.

If this trend continues up to an arbitrarily large basis
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TABLE IV. Comparison of energies for the Li ground-state 1s K-shell expansion and the Li+ ground-state expansion; energies in
a.u. (Li). Energy increments, E;„„,in phartree.

Basis size

7s6p5d4f 3g2h2i2k11
8s7p6d5f4g3h3i3k21
9s8p7d6f 5g4h4i4k31
10s 9p 8d 7f6g 5h 5i 5k 41

size

Li (K shell)

—7.474 935 913
—7.475 172 652
—7.475 354 305
—7.475 415 558

Eincr

236.739
181.653
61.253

Li+

—7.279 283 945
—7.279 520 928
—7.279 702 741
—7.279 764 013
—7.279 913386

Eincr

236.983
181.822
61.262

149.373

size, the energy increments should coincide to the same
accuracy, and the sum of them through infinite order will

1sbe equal to 6" . Using the exact nonrelativistic energy
result of Pekeris, ' we get

b," =E(Li+, Pekeris) —E(Li, current basis)

= —149.373 phartree, (9)

as shown in the last entry of Table IV.
It might happen that the above-mentioned trend is in-

terrupted before reaching a very large basis size. In that
1scase our procedure would be unreliable and 6" would

likely be smaller (in absolute value) than that given by (9).

IV. FINAL RESULTS

A full list of configurations up to given l in the one-
electron basis was computed by means of the program
woNpsE. " The input to this program allows the missing
of some configurations; thus we have been very careful to
avoid this possibility. (Any errors in this step would
cause the final energy to lie above the true eigenvalue
E„,. ) To avoid human errors in constructing
configuration lists for a larger number of electrons, a fully
automatic program is being developed.

We first calculated the variational upper bound energy
E„with the final STO basis, including in the CI list all
single and double excitations, as shown in the first entry
of Table V.

We then add all triple excitations up to l=3, finding
out that for a given type of configuration, say, excitations
into pdf beyond certain orbital-index values (four p, two

d, and four f orbitals in this particular case), give very
small energy contributions and may be removed from the
final wave function at a cost of a CI truncation-energy er-
ror hei=0 15 phartree.

This reduction "trick" permits us to include triplet ex-
citations until l=5, keeping computer times under 30
min on a microVAX 3900 computer. (We feel that short
computer times are important in any tedious nonau-
tomatic work, in order to carry out all computer runs
within a single human concentration span, and to check
whatever is deemed necessary. )

At this stage, l=5, we see that the energy contribu-
tions of triple excitations are 0.1 phartree; thus further
harmonics in the triple-excitation expansion are not
deemed necessary. In Table V we show the results of
these calculations, the last entry being E„+Acl.

In Table VI we collect the latter result with the data of
Eqs. (7)—(9) and Eq. (1) to get E„,=7.47806241(72) a.u.
(Li), and compare this result with previous ones.

V. CONCLUSIONS

In Tables I—V we presented basis sets, patterns of con-
vergence for the energy, and truncation-energy errors. In
Table VI we obtain a value of E„, with an uncertainty
5=0.72 phartree which divers from previous results: It
is 3 phartree below King's 600-term Hylleraas-type upper
bound, ' and 11 phartree above a ponderated empirical es-
timate based on experimental data supplemented by rela-
tivistic, radiative, and mass-polarization corrections.

TABLE V. Complete set of CI calculations with the final STO set.

Configurations included

Hartree-Pock 1s 2s
Single and double excitations
Triplet excitations up to /=1
Triple excitations up to l=2
Triple excitations up to l=3
Truncated triple excitations up to l=3
~ci
Triple excitations up to 1=4
Triple excitations up to l=5
E„+ha

Energy

—7.432 725 6920
—7.477 860 8867
—7.477 890 2560
—7.477 904 4
—7.477 906 25
—7.477 906 10
—0.000 000 15
—7.477 906 52
—7.477 906 662
—7.477 906 81

CI length

1

804
1620
2948
4740
2158

2778
3653
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TABLE VI. Nonrelativistic energy E„, of the Li ground
state, in a.u. (Li), and comparison with previous results.

Specification

E.+~ci
g 1s2s

mls

E„(King)

Energy

—7.477 906 81'
—0.000 006 23
—0.000 149 37'
—7.478 Q62 41+0.QQQ QQQ 72
—7.478 059'
—7.478 073

'Table V.
Equation (7).

'Equation (9).
Equation (8).

'Reference 1.
'Reference 2.

Our results indicate that King's upper bound recovers
99.993% of the correlation energy rather than the
99.97% originally reported. ' This should encourage a
more systematic Hylleraas-type calculation, done

"Pekeris-style" (keeping all terms up to a given sum of
powers of r„r2, and r3) in an eft'ort to obtain truly
Hylleraas-type converged results.

On the other hand, the previously accepted estimate
of E„, is definitely at fault, as any possible asymptotic ir-
regularity in K-shell patterns of convergence will make

smaller than quoted in Eq. (9), causing an increase
in the value of E„„which would increase the present
discrepancy with the results of Ref. 2. Since the mass po-
larization used in Ref. 2 is essentially correct, the causes
of error must be looked in the relativistic and quantum-
electrodynamic corrections.

Relativistic all-order many-body perturbation-theory
calculations' yield very good agreement between calcu-
lated and experimental ionization potentials for Li and
Be+; however, corresponding nonrelativistic energies
were not obtained. Recent developments in Dirac-Fock
atomic calculations with 6nite basis sets' indicate that it
is feasible to carry out relativistic Ci calculations to the
same accuracy as nonrelativistic ones, and this is surely
the path to follow next.
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