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Approach to the shifted 1/N expansion for the Klein-Gordon equation
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A different approach to the shifted 1/N expansion technique is developed to deal with the Klein-
Cxordon particle trapped in a spherically symmetric potential. Properly modifying the definition of
the perturbative expansion of the energy eigenvalue, and without making any approximation in the
determination of the parameters involved, we obtain suSciently good results compared with the ex-
act ones for the Coulomb problem. The calculations are carried out to the second-order correction
of the energy series.

I. INTRODUCTION

The 1/N expansion technique has proved itself in solv-
ing the Schrodinger equation for a large number of physi-
cally interesting potentials yielding sufFiciently accurate
results. ' It has also been applied to solid-state phys-
ics ' and quantum-field theory.

This technique has recently been modified by Imbo and
co-workers' ' and called the shifted 1/N expansion. A
suitable shifting parameter was introduced, which has the
meaning of an additional degree of freedom, that consid-
erably improves the analytical structure of the perturba-
tion series for the eigenvalues and surpasses most approx-
imation methods in its domain of applicability and accu-
racy as well. '

To the best of our knowledge, only a few groups'
have so far applied the 1/N expansion technique (unshift-
ed and shifted) to study the relativistic bound-state ener-
gies of spin-0 and spin- —,

' particles. It has been noted,
however, that the rate of convergence of the unshifted ex-
pansion is very slow for the relativistic part of the energy
eigenvalue as compared to that for the nonrelativistic
part. Panja and Dutt have extended this technique and
introduced a shifting parameter to deal with relativistic
particles (with and without spin). For the Coulomb case,
exact analytical expressions and highly convergent ex-

pansion were restored for the relativistic correction of or-
der 1/c2.

In this paper, an alternative approach to the shifted
1/N expansion technique is introduced to work out the
energy eigenvalues of a Klein-Gordon (KG) particle. We
have defined the energy eigenvalue series as
E =Eo +E

&
/k +E2 /k + ' and determined the shift

parameter requiring that E~ =0.
This approach provides remarkably very accurate re-

sults for the energy eigenvalues for the Coulomb poten-
tial. The calculations of the energy eigenvalues were car-
ried out to the second-order correction.

In Sec. II we develop the formalism of this technique
for the Klein-Gordon particle. Exact numerical results
for the KG-Coulomb potential ' are presented in Sec.
III, together with our results. Section IV contains con-
clusions.

II. THE METHOD

The radial part of the KG equation (in units fi=c =1)
for a scalar particle of mass m moving in a spherically
symmetric potential V(r) is given by' '

d (k —1)(k —3)+ —
I [E—V(r)] —m I U„(r)=0,2 2

dr 4r

where k =N+2l and U„(r)is the reduced radial wave function. In terms of the shifting parameter a, i.e., k =k —a,
r

Eq. (1) becomes

d
,+, + I2EV(r) —V(r)'] U„(r)=(&'—m') U„(r).

dr 4r

It is convenient to shift the origin by defining

x =k'"(r r, )/r, , —

and to use the following expansions:

(3)
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V(r)=(k IQ)[V(ro)+ V'(ro)rox/k' + V"(ro)rox 12k+ . ),
E=E +E /k+E /k +-. .

where Q is a scale, whose magnitude is to be determined later. Equations (4},when substituted in Eq. (2), yield

(4a)

(4b)

d U„(x)
dx2

k (2 —a) (1—a)(3 —a)+4 2+ 4k
1 —,+ — . U (x)

2x 3x

2,'k+ Eo+ + +
Q k k' V(r )+ V'(r ), + V"(r ) + ' ' ' U, {x)

'2

V(ro)+ V'(ro) + V"(ro) + . . U„(x)=e„U„(x),
k 1/2 2k

where

e„=( r o2 /Q) [k {E0
—m ) +2EOE, +(E, +2EO E~ ) lk + ] . (6)

Equation {5) is a Schrodinger-like equation for the one-dimensional anharmonic oscillator problem which has been dis-
cussed in detail by Imbo, Pagnamenta, and Sukhatme. ' Therefore, following their formalism, we obtain

s„=k [—„'+2roEoV(ro)/Q —roV(ro) IQ]+ [(1+2n„)w/2—(2 —a)/2]

+(1/k ) [(1—a)(3 —a)/4+(1+2n„)7~+3(1+2n„+2n„)e4(1/w—)[Y&+6(1+2n„)s+3+(11+30n„+30n„)s3]j,
(7)

where n„is the radial quantum number and

and

c =c. /uj, j =1,2, 3,4 (8)

s, =2—a, e2= —3(2—a)/2,

e3 = —1+(ro /3Q) [Eo V"'(ro ) —V(ro ) V"'(ro )
—3 V'(ro ) V"(ro) ],

e4= —,'+(ro/12Q)[EO V""(ro)—V(ro) V""(ro)—4V'(ro) V'"(ro) —3 V"(ro) V"(ro)] .

Comparing the terms of Eq. (7) with those of Eq. (6) and equating terms of same order in k implies

(ro/Q)(Eo —m ) = [—,'+2roEo V(ro)/Q —roV(ro) /Q],

(ro/Q)(2EOE, ) = [(1+2n„)w/2—(2 —a)/2],
(ro /Q)(E

& +2EoE2) =
I (1—a)(3 —a)/4+(1+2n„)F2+3(1+2n„+2n„)ez
—(1/w)[e, +6(1+2n„)e,73+(11+30n„+30n„)s3]j .

(10)

(12)

From Eq. (10) we obtain

Eo= V(ro)+m (1+Q/4m ro)'

where ro is chosen to minimize Eo. That is,

(13)

where m is given by

w = [3+r, V"(r, )/V'(r, ) —4r', V'(r, ) V'(r, )/Q] '
and Q satisfies Eq. (15), which can be written as

(17)

dEo d Eo=0, , &0,
Io dpo

(14)

a =2—{1+2n„)w, (16)

therefore, ro satisfies the equation

roV'(ro)(1+Q/4m ro)' =Q/4m . (15)

To solve for the shifting parameter a, the next contribu-
tion to the energy eigenvalue is chosen to vanish, ' i.e.,
E, =0, which implies that

Q =[roV'(ro)] (2+2y), (18)

where
y= [1+[2m lroV'(ro)] j' (19)

Equations (16) and (18) along with Eqs. (17) and (19),
with Q =k, read

1+2l +(1+2n„}w=roV'(ro)(2+2y)', (20)

which is an explicit equation in ro. Once ro is deter-
mined, Eq. (13) gives Eo and Eq. (12) gives Ez. Finally,
Eq. (4) gives
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TABLE I. The energy levels for spin-0 particle in the Coulomb potential in units of 10 me .

States

1s
2s
2p
3$

3p
3d

99 997 335.93
99 999 334.00
99 999 334.00
99 999 704.00
99 999 704.00
99 999 704.00

ED+Ex/k

99 997 335.89
99 999 333.99
99 999 334.00
99 999 704.00
99 999 704.00
99 999 704.00

Exact (Ref. 25)

99 997 355.86
99 999 333.98
99 999 334.00
99 999 703.99
99 999 704.00
99 999 704.00

E =Eo+(1/2E&ro ) [ (1 —a)(3 —a)/4+ (1+2n„)E2+3(1+2n„+2n„)E4
—

( /tc) [82~+6(1+2n„)Z,Z3+ (11+30n„+30n„)E3]I . (21)

III. APPLICATION TO THE COULOMB
POTENTIAL

For the Coulomb potential,

V(r) = /3/r, P=e-

Eqs. (17), (19), and (20) yield

w =[(y —1)/(y+1)]'i

y = [1+(2mro//3) ]'~~,

and

(22)

(23)

(24)

ones given by Ref. 25.
The agreement of our results with the exact ones is

better than that of Panja and Dutt, especially for small l
states. Moreover, the convergence of the results listed in
Table I seems to be fast in a sense that the second-order
contribution to the energy series, E2/k, is very small (of
the order of 10 —10 ") compared with the contribu-
tion of the leading term, Eo. It should be pointed out,
however, that the accuracy as well as the convergence of
our results increases as the principal quantum number n

of the state increases.

P(2y+2)'~ = 1+2l +(1+2n„)[(y—1)/(y+1)]'~

(25)

We have numerically solved Eq. (25) for ro in terms of
mc and found the energy eigenvalues.

In Table I, the numerical results for the energy eigen-
values calculated by the leading term Eo of the energy
series and by Eo+E2/k are compared with the exact

IV. CONCLUSION

In this paper we have developed a formalism of the
shifted 1/X expansion technique for the Klein-Gordon
equation with radially symmetric potentials. For the
Coulomb potential the method looks quite attractive as it
yields highly accurate results. We have also seen that the
convergence increases as the principal quantum number
increases.
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