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Elastic scattering of relativistic electrons and positrons by atoms is considered in the framework
of the static field approximation. The scattering field is expressed as a sum of Yukawa terms to al-
low the use of various approximations. Accurate phase shifts have been computed by combining
Biihring’s power-series method with the WKB and Born approximations. This combined procedure
allows the evaluation of differential cross sections for kinetic energies up to several tens of MeV.
Numerical results are used to analyze the validity of several approximate methods, namely the first-
and second-order Born approximations and the screened Mott formula, which are frequently adopt-
ed as the basis of multiple scattering theories and Monte Carlo simulations of electron and positron

transport.

I. INTRODUCTION

An accurate description of elastic scattering of relativ-
istic electrons and positrons by atoms is required in a
number of fields (e.g, electron—y-ray shower theory, elec-
tron microscopy, electron-probe microanalysis). The
general theory of high-energy electron scattering has
been reviewed by Walker.! For kinetic energies larger
than a few keV, exchange and charge cloud polarization
corrections are negligible>> and the cross section can be
computed by using the static field approximation. In this
approximation, the differential cross section (DCS) is ob-
tained by solving the partial wave expanded Dirac equa-
tion for the motion of the electron or positron in the cen-
tral field of the atom. The convergence of the partial
wave series slows down for increasing energy and, at the
same time, the difficulty of obtaining the numerical solu-
tion of the radial equations for each phase shift also in-
creases with energy. As a result of these difficulties, only
a few systematic computations,*> limited to energies up
to a few hundred keV, have been reported to date.

In many practical circumstances electrons suffer multi-
ple elastic collisions within the scattering medium. An
accurate description of multiple scattering processes (in-
cluding energy losses) may be obtained through Monte
Carlo simulation.»” Most of the high-energy Monte Car-
lo codes currently available use some form of the multiple
scattering theory for infinite media together with approx-
imate DCS’s. An extensive compilation of approximate
formulas for the DCS may be found in the review of
Motz et al.® One class of Monte Carlo simulation pro-
cedures is based on the multiple scattering theory of
Goudsmit and Saunderson® and Lewis!® and incorporates
the DCS’s given by the first-order Born approximation or
by the screened Mott formula (see below). Other simula-
tion codes use the multiple scattering theory of Moliere!!
which is based on the DCS derived from the eikonal ap-
proximation. This theory has been reformulated by Ni-
gam et al.'? who used the Dalitz cross section,! i.e., the
DCS for a Yukawa field computed in the second-order
Born approximation. The accuracy of the Monte Carlo
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simulation depends on the reliability of the DCS’s under-
lying the adopted multiple scattering theory. Owing to
the lack of data bases for elastic scattering at high ener-
gies, it is difficult to ascertain the range of validity of
these approximate DCS’s.!*

In this paper we briefly describe a numerical procedure
which allows the evaluation of DCS’s for analytical fields
expressed as a sum of Yukawa terms for energies up to a
few tens of MeV. We present calculated total elastic
cross sections and transport cross sections for electrons
and positrons and for three elements (aluminum, silver,
and gold). The particular form of the potential allows the
easy evaluation of the DCS with three different approxi-
mations, which have been employed as the basis of
several MC procedures, namely, the first-order and
second-order Born approximations and the screened
Mott formula. The quality of these approximations is an-
alyzed on the basis of our numerical results.

We consider scattering fields of the form

7z N
V(r)=z—r~2 A;exp(—a;r) , (1)
i=1
where Z is the atomic number and z is the projectile
charge (equal to —1 for electrons and 1 for positrons).
This expression is well suited to fit the numerical poten-
tials obtained from self-consistent calculations.'>”!7 The
results reported below have been obtained by using the
parameters given in Ref. 17. We use atomic Hartree
units (i=m =e =1) unless otherwise specified.

II. NUMERICAL CALCULATIONS

Scattering amplitudes for the potential (1) have been
computed by summing the partial-wave series [Egs. (15a)
and (15b) of Ref. 1] with phase shifts §,, (with a =1 and
—1) evaluated numerically, or using the WKB and Born
approximations where applicable. WKB phase shifts
have been evaluated by applying the Langer method to
the second-crder Dirac equation (see Ref. 18, pp. 99, 227,
and 228). Relativistic Born phase shifts were obtained
from the Parzen formulas.!® Similar calculations have al-
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ready been performed for lower energies.>!>? The ex-
tension to higher energies requires the use of more refined
numerical methods to compute the first phase shifts,
since the accuracy of the computed DCS’s relies mainly
on the quality of these phase shifts.

The first phase shifts (/=0,1,...) have been deter-
mined by solving the radial Dirac equation using the
Biihring power series method!?! as described elsewhere.??
The function ¥V (r) has been replaced by the natural cu-
bic spline which interpolates the values of this function
for a grid of points dense enough to ensure that interpola-
tion errors in the potential have a negligible effect on the
computed phase shifts. The Biihring method has two im-
portant advantages in comparison with the more conven-
tional numerical procedures such as the Numerov,?
Runge-Kutta,?* and Milne methods? usually adopted to
solve the radial equations. First, truncation errors are
completely avoided and, therefore, the radial functions
are only affected by wunavoidable round-off errors.
Second, the spacing of the grid of points where V(r) is
tabulated has no effect on the accuracy of the numerical
procedure (provided the interpolating spline do approach
the actual field). We note in passing that conventional
numerical methods require the use of grids dense enough
to keep the effect of truncation errors below some reason-
able limit and, therefore, the density of the grid should be
increased for increasing energies to maintain the trunca-
tion error constant. The only disadvantage of the
Biihring method is its higher cost in computer time.

The algorithm to compute the phase shifts proceeds as
follows. First, Born phase shifts are evaluated for all or-
ders / up to a value of the orbital angular momentum
=L large enough to guarantee the convergence of the
partial wave series. Numerical and WKB phase shifts are
then computed for increasing orders; the relative
difference between these phase shifts decreases with the
order and for a certain order /=L, it becomes smaller
than a given value € (=5X10"* in the present calcula-
tions). The evaluation of numerical shifts is then discon-
tinued. For / > L, the phase shifts are approximated by
the WKB phase shifts which are computed up to an or-
der /=L, for which the relative differences between the
WXKB and Born phase shifts become smaller than €. For
/> L,, the Born phase shifts are used. The accuracy of
this scheme is mainly limited by €. Of course, the € value
has to be at least larger than the relative uncertainty due
to round-off errors in the numerical phase shift; other-
wise, the computation of exact shifts could never stop.
Our computer code generates up to 4000 Born phase

shifts, which ensure the convergence of the partial wave
series for energies up to about 20 MeV for all the ele-
ments. The DCS, do /d(Q, has been evaluated by direct
summation of the partial wave series.

The total elastic cross section o and the transport (or
momentum transfer) cross section o, are given by

=y [T99

o =27 [ sin0 d6 2)
and

a"Ewaoﬂ(l—cose)Z—;sinGdO . 3)

It is well known!!>2® that the angular distribution after in-
creasingly multiple elastic scattering becomes strongly
influenced by the value of o, and it is practically insensi-

tive to other details of the single scattering DCS.

III. APPROXIMATE CROSS SECTIONS

The field (1) leads to analytical expressions for the DCS
in the first-order and second-order Born approximations.3
The first-order Born cross section for electrons or posi-
trons of momentum p may be written in the form

-’f’%zn—mqnzdt‘i’s : @)
where
N al?
F(q)=i§] Aiw ()
is the atomic form factor [normalized so that F(0)=1]
do'® _ 47 1—B%in*(6/2) ©)

dQ q4 1_32

is the Mott-Born cross section,? i.e., the first-order Born
DCS for the wunscreened Coulomb field. Here
g =2p sin(6/2) is the momentum transfer and S is the
electron velocity in units of the speed of light. The
second-order Born cross section is given by the Gorshkov
formula—Eq. (A108) in Ref. 8. It is worth noticing that
the potential parameters used here, see Table I, were
determined in such a way that the form factor (5) for
small momentum transfers coincides with the form factor
computed from the Dirac-Hartree-Fock-Slater atomic
electron density and, therefore, the first-order Born DCS
(4) practically coincides with the one computed from the
numerical self-consistent field.

TABLE I. Parameters of the analytical potential (1) used in the present calculations (Ref. 17). For

aluminum, the potential has only two terms.

Element Z A, A, a; a, a;
Al 13 0.6002 0.3998 5.1405 1.0153

Ag 47 0.2562 0.6505 15.588 2.7412 1.1408
Au 79 0.2289 0.6114 22.864 3.6914 1.4886
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The Mott DCS,!32728 j e the exact DCS for an un-
screened Coulomb field, provides an alternative approach
to the cross section for an atom. In the calculations, we
have used the algorithm described by Vande Putte.?’ Ac-
tually, in the limit of large-momentum transfers, screen-
ing effects vanish and the Mott cross section should be
very accurate. However Mott’s DCS, as well as the
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FIG. 1. Total elastic cross sections for (a) electrons and (b)
positrons scattered by Al (Z=13), Ag (Z=47), and Au
(Z =79) obtained from the three-term potentials given in Table
I. The quantity plotted is B’c, with B*=(y*—1)/y? and
y=1+4+E/c?, in units of a3 (atomic units ) vs kinetic energy E.
The continuous curves are the results of the present calcula-
tions. Dashed and dotted-dashed lines correspond to the
screened Mott (7) and Gorshkov cross sections, respectively.
The first-order Born cross sections (4) are indicated by crosses.

Mott-Born DCS (6), diverges for small scattering angles.
To obtain a finite total cross section it is then necessary
to account for the screening by the atomic electrons.
This effect can be introduced approximately by consider-
ing the screened Mott DCS defined as®

da.(SM) ) do.(M)
dQ aQ ’
where do™/d Q stands for the Mott DCS [cf. Eq. (4)].
A related procedure has been described by Zeitler and Ol-
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FIG. 2. Transport or momentum transfer cross sections for
(a) electrons and (b) positrons scattered by Al (Z=13), Ag
(Z =47), and Au (Z =79) obtained from the three-term poten-
tials given in Table I. The quantity plotted is B*y20, in atomic
units. Details are the same as in Fig. 1.
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sen®® who used the eikonal approximation instead of the
Born approximation to evaluate the screening correction
factor. This last method leads to better results than Eq.
(7) at the expense of a considerable numerical effort that
makes it virtually useless for high energies.

In order to get a clear indication of the accuracy of
these approximation methods we consider the corre-
sponding total cross section and transport cross section,
which are plotted in Figs. 1 and 2 for electrons and posi-
trons scattered by aluminum, silver, and gold atoms as
functions of the kinetic energy E. These figures include
the present numerical results, the (first-order) Born for-
mula (4), the screened Mott formula (7), and the Gorsh-
kov formula® calculated for the same analytical field.

Owing to the fact that the DCS for high energies is a
rapidly decreasing function of 8, the major contributions
to the integral (2) originate from small scattering angles
where the three approximate formulas practically coin-
cide. Hence these formulas lead to nearly the same total
cross section (at high enough energies). The effect of the
second-order Born correction becomes prominent for low
energies. The relative differences between the numerical
and approximate total cross sections increase for decreas-
ing energies and for increasing atomic numbers. It is
worth noticing that for high energies these differences at-
tain a constant value, rather than decreasing with energy
as it could be naively expected. This is a direct conse-
quence of the failure of these approximations to ade-
quately describe the screening effect. It is also seen that
the Born and screened Mott total cross sections practical-
ly coincide since the ratio of Mott to Mott-Born DCS’s
for unscreened Coulomb fields approaches unity for 6—0
irrespective of the energy.

The reliability of the approximate formulas when used
in Monte Carlo simulations of electron and positron
transport may be stated in terms of the transport cross
section [Figs. 2(a) and 2(b)] which is the parameter which
has the dominant influence in the multiple scattering an-
gular distribution. The limitations of the first-order Born
approximation are clearly evidenced in these figures: it
leads to important errors except for low atomic numbers
and moderately high energies. The improvement intro-
duced by the second-order Born correction is effective for
high energies, albeit for low energies the Gorshkov for-
mula may be worse than the first-order Born approxima-
tion. For high energies, the screened Mott transport
cross section is slightly less accurate than the Gorshkov
one but considerably more reliable than the first-order
Born transport cross section. For high energies, the
Gorshkov and screened Mott cross sections lead to rela-
tive errors in the transport cross section which are of
similar magnitude and opposite signs. In the case of gold
and at an energy as high as 10 MeV these errors are of
the order of 5%. Hence, at least for high atomic num-
bers, Monte Carlo simulations of electron and positron
transport should be based on cross sections more accu-
rate than those given by the aforesaid approximations.
The present calculation method may be useful for this
particular purpose.’!

The author is indebted to Dr. D. Liljequist for interest-
ing discussions and to Professor R. A. Bonham for his
valuable advice. This work has been partially supported
by the Comisiéon para la Investigacion Cientifica y
Técnica (Spain), Project No. PB86-0589.

ID. W. Walker, Adv. Phys. 20, 257 (1971).

2J. D. Coffman, M. Fink, and H. Wellenstein, Phys. Rev. Lett.
55, 1392 (1985).

3F. Salvat, R. Mayol, and J. D. Martinez, J. Phys. B 20, 6597
(1987).

4M. E. Riley, C. J. MacCallum, and F. Biggs, At. Data Nucl.
Data Tables 15, 44 (1975).

5A. W. Ross and M. Fink, J. Chem. Phys. 85, 6810 (1986).

SM. J. Berger, in Methods of Computational Physics, edited by B.
Alder, S. Fernbach, and M. Rotenberg (Academic, New
York, 1963), Vol. 1, p. 135.

"W. R. Nelson, H. Hirayama, and D. W. O. Rogers, Stanford
Linear Accelerator Center Report No. SLAC-265, 1985 (un-
published).

8J. W. Motz, H. Olsen, and H. W. Koch, Rev. Mod. Phys. 36,
881 (1964).

9S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940); 58,
36 (1940).

10H, W. Lewis, Phys. Rev. 78, 526 (1950).

11G. Moliere, Z. Naturforsch. 3a, 78 (1948).

12B. P. Nigam, M. K. Sundaresan, and Ta-You Wu, Phys. Rev.
115, 491 (1959).

13H. Dalitz, Proc. Roy. Soc. (London) A 206, 509 (1951).

145, M. Seltzer and M. J. Berger, National Bureau of Standards
Report No. NBSIR 82-2572, 1982 (unpublished).

ISH. L. Cox and R. A. Bonham, J. Chem. Phys. 47, 2599 (1967).

16w, J. Byatt, Phys. Rev. 104, 1298 (1956).

I7F. Salvat, J. D. Martinez, R. Mayol, and J. Parellada, Phys.
Rev. A 36, 467 (1987).

I8N. F. Mott and Q. S. W. Massey, The Theory of Atomic Col-
lisions (Oxford University Press, London, 1965).

19G. Parzen, Phys. Rev. 80, 261 (1950).

20A. C. Yates and T. G. Strand, Phys. Rev. 170, 184 (1968).

21w, Biihring, Z. Phys. 187, 180 (1965).

22F. Salvat and R. Mayol, Comput. Phys. Commun. (to be pub-
lished).

23A. C. Yates, Comput. Phys. Commun. 2, 175 (1971).

248.R. Lin, N. Sherman, and J. K. Percus, Nucl. Phys. 45, 492
(1963).

25M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1974).

26D. Liljequist, F. Salvat, R. Mayol, and J. D. Martinez, J.
Appl. Phys. 65, 2431 (1989).

273, A. Dogget and L. V. Spencer, Phys. Rev. 103, 1597 (1956).

28N. Sherman, Phys. Rev. 103, 1601 (1956).

29D. W. Vande Putte, Nucl. Instrum. Methods 115, 117 (1974).

30E. Zeitler and H. Olsen, Phys. Rev. A 136, 1546 (1964).

3D, Liljequist, M. Ismail, F. Salvat, J. D. Martinez, and R.
Mayol, J. Appl. Phys. (to be published).



