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Nonorthogonal basis sets in quantum mechanics: Representations and second quantization
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A tensorial formalism is presented for the general use of nonorthogonal basis sets in quantum
mechanics, both in representation theory and in second quantization. The natural formulation of
second quantization for nonorthogonal basis sets defined here is shown to be formally very similar
to the usual formulation for orthogonal basis sets. The formalism is used to study orthogonality
effects in a Hubbard model defined on a semi-infinite lattice.

I. INTRODUCTION

In quantum mechanics the choice of a basis set is
necessary both for the obtainment of concrete representa-
tion of vectors and operators in Dirac space, ' and for the
definition of them in Fock space. The usual formulation
of matrix representations and second quantization as-
sumes the orthogonality of the chosen basis set, which, in
principle, imposes no limitations and simplifies the asso-
ciated algebra. Nevertheless, nonorthogonal basis sets
have shown their utility in different areas of physics, such
as quantum-field theory ' on one hand, and molecular,
solid state, and polymer physics on the other: tech-
niques like the linear combination of atomic orbitals
(LCAO) allow the reduction of the state space to low di-
mensions, maintaining quality in the approximation. An
evident way to take advantage of these properties is using
the nonorthogonal basis set for defining the work sub-
space and orthogonalizing it afterwards. Another pro-
cedure widely used in molecular physics is to define ma-
trix representations directly with the nonorthogonal basis
carrying the overlap matrix along the equations. ' The
matrices obtained in this manner are not usual matrices
in the sense that they do not transform normally under a
change of basis; they correspond to objects defined in a
space with a nonunitary metric.

However, there are situations where none of the previ-
ous procedures can be applied and where an extension of
the formalism is required for the use of nonorthogonal
basis sets. This is the case, for example, in the study of
many-body effects in infinite or simply very large systems.
For this, second quantization has proved to be an almost
indispensable tool, " which imposes an orthogonal basis.
For qualitative parametrized calculations it has been
quite common to assume an orthogonal basis neglecting
nonorthogonality effects. ' Recently some methods have
been developed where these effects are included in the
Hamiltonian operator in an approximate manner. How-
ever, a better approximation requires a correct treatment
of the basis.

In this paper representation and second-quantization
formalisms are extended to nonorthogonal basis sets by
means of the introduction of the dual basis. ' ' The im-

plicit tensorial character of vectors and operators due to
the nonorthogonality of the basis appears explicitly in the
formalism and therefore will be incorporated in the nota-
tion. Although some of the concepts used in the present
paper are already found in the literature (see Refs. 5 and
14 for representations, and Ref. 4 for second quantiza-
tion), they are used for very specific tasks and in very
specific contexts, the whole lacking uniformity and
demanding a general scope formalization. The main con-
tribution of this paper is the formalization of these preex-
isting handling to provide a flexible tool for directly using
the nonorthogonal basis without the need of previous or-
thogonalization.

In Sec. II the dual basis is introduced leading to a ten-
sorial representation formalism. Section III redefines
second quantization by introducing different equivalent
formulations of it. In Sec. IV the applicability of the for-
malism is shown with the study of nonorthogonality
effects in the Hamiltonian of a semi-infinite one-
dimensional Hubbard model. ' After the conclusions in
Sec. V, the Appendix includes the more cumbersome but
necessary derivations and proofs of relations used
throughout the paper.

II. DUAL BASIS AND TKNSORIAL
REPRESENTATIONS

% being the Hilbert space associated with a given
physical system, we will have I ~e;) ) denote a complete
basis of it, denumerable, assuming the separability of &.
It is known' that there is a unique complete set of vec-
tors I ~

e') I called dual basis that satisfies

(e'~e ) =(e;~e~) =5' .

Using the completeness of both sets, it is very easy to ob-
tain the closure relations

& I e; ) ( e 'I =& I
e ') ( e; ]

= I .

If a general vector ~it ) is expanded in the I ~e, ) I basis
with coefficients c;&, the relationship

43 5770 1991 The American Physical Society



43 NONORTHOCxONAL BASIS SETS IN QUANTUM MECHANICS: 5771

will hold, S, . =(e;~e ) being the metric of the { ~e, ) j
basis. Considering this metric as a finite matrix, one ob-
tains

S-,, =&e, ~e, ),
S"=

& e'~e~)

(9a)

(9b)

e,,= y(S-')„&e,~q& . (4)

which helps us very nicely to obtain an explicit form for
the dual basis defined in Eq. (1) by comparing both clo-
sure relations (2) and (5),

(e'I=y(S '), (e I,
J

~e'&= y(S-'),*, e, ) .
J

(6a)

(6b)

For later use it is interesting to know the relationship be-
tween the metrics of {~e; ) j and [ ~e') j. It is straightfor-
ward to obtain it from (6), i.e.,

& e'~e~& =(S-').. .
the first consequence being that if the direct basis [ ~ e; ) j
is normalized its dual basis will generally not be, unless

[ ~ e; ) j is orthonormal.
Given direct and dual basis, typical objects in the asso-

ciated representation of the space state will be scalar
products like (e;~P), (e'~P), (e'~H~ej ), etc. , ~P)(H) be-
ing a general vector (operator) in &. The way these ob-
jects transform under a change of basis reveals their ten-
sorial character (see the Appendix). Hence, the introduc-
tion of tensorial algebra will be useful, allowing more
transparency in our representation formalism.

Tensors are usually defined in the real domain, while in
this case we need to work on the complex domain. The
main difhculty is related to the anticommutativity of the
scalar product defined in &. To overcome it, we intro-
duce what we call the property of the indexes: an index
will be proper (improper) when referring to a ket (bra) of
the direct basis or to a bra (ket) of the dual basis. Any
use of the anticommutativity of the scalar product will be
associated with a change in the property of the related
indexes. We shall write improper indices with a bar on
them. We can now denote the following objects in the
form

q'= (e'ly),

@, =(@le, ), H-, =&e, iHie, &,

H =(e;IHlej'),

H 'J = (e'IH le~ &,

which are tensors of rank one or two. Upper (lower)
indexes are associated with contravariance (covariance),
as shown in the Appendix.

With the introduction of the metric tensors

The well-known closure re1ation for nonorthogonal basis
sets' easily follows:

y e, &(S ');, & e) I

= I,

H p= c,s-. .
lJ lJ

which is the same as

(12)

in the usual matrix notation.
What we shall call natural representation, consisting of

a choice of tensors with indexes with the same property
(for example, all proper), will be of special interest later.
It avoids the appearance of metric tensors in the equa-
tions, making them formally identical to those obtained
with the orthogonal basis-set formalism. The eigenvector
equation will then be

H'P=sg' . (13)

The price to be paid for this is the loss of the hermiticity
of H' considered as a matrix, i.e., not H' =H,~, but rath-
er H'=H . This is related to the fact that in the
definition of H' the operator is acting on elements of
different basis sets (direct or dual) when acting on the ket
or the bra. It represents, however, no special difhculty;
moreover, it can be advantageous. ' This natural repre-
sentation will be very useful in the treatment of second
quantization, as wi11 be shown in Sec. III.

The flexibility of the tensorial formalism presented so
far can be very useful in one-particle problems such as
mean-field-like theories for atoms, molecules, and solids.
See, for example, the case of infinite systems without full
translational symmetry, where scatteringlike techniques
based on Green's functions are widely used ' Both the
explicit carrying of the overlap matrix or the orthogonali-
zation of the basis are rather cumbersome tasks for these
systems, whereas the choice of a suitable tensorial repre-
sentation for the Hamiltonian and for the Green's func-
tion can reduce the computational effort considerably.

III. SECOND QUANTIZATION

From among the possible manners used in the intro-
duction of the second-quantization formalism we have

the handling of the formalism becomes very easy by sim-
ply making use of tensorial algebra and observing the rule
that contractions will only be performed on indexes of
the same property. The order in which tensors are writ-
ten becomes irrelevant. Henceforth, for index contrac-
tions, the sum will be implied unless otherwise specified.

Depending on the type of tensors chosen to describe
the system and quantum observables, different tensorial
representations of & may be obtained, all equally valid.
The relation between them can be easily obtained by
means of the metric tensors. One possible choice is the
widely used matrix representation that utilizes it and H

lJ
for a vector and an operator in &, respectively. In this
representation, an eigenvector equation

H~@) =. q)
would appear as
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chosen the following.
(i) From a given one-particle nonorthogonal basis set

we generate the Fock space, obtaining a nonorthogonal
basis set for the whole space and its correspondent dual
basis.

(ii) We define creation and annihilation operators by
defining their actuation on the basis, obtaining their com-
mutation relations.

(iii) We study the Hermitian conjugation of the opera-
tors defined, obtaining annihilation and creation opera-
tors on the dual basis. The relations among them and
their behavior under changes of basis will indicate the
tensorial character of these operators.

(iv) At last we show the form of quantum-mechanical
operators using the creation and annihilation operators
defined.

A. Fock space, direct and dual basis

What we studied in Sec. II is valid for an arbitrary
state space. Now we are dealing with the Fock space V
associated with a bosonic or fermionic system: the main
idea is to build a direct and dual basis of the whole space
from the direct and dual basis of one-particle states. Let
us then consider [ e, ) },the complete basis of the Hilbert
space associated with one particle, &„and its dual basis

[ ~e') }. It is easy to see that the set [ ~Dg ) } of all possi-
ble tensorial products conveniently symmetrized (an-
tisymmetrized) of X one-particle basis vectors itself con-
stitutes a complete basis of the Hilbert space of X bosons
(fermions) &z. If [ ~e, ) } is not orthogonal, neither will

[ ~Dg)} be, both met-rics being related through a general-
ly complicated expression. If we now build the Fock
space with the direct sum

6
N~O

(14)

)=&X(+I) 'P[le &~ a' e &}
P

(16a)

~e
'. . . e )=JUL(+1) PP[~!e ')8 . ~e )}, (16b)

P

with JV=(X!) ~ for fermions, and A=(X!ii;n;!)
for bosons, n, being the number of times ~e,. ) appears in
the sequence. Defined this way, they will generally not be
normalized to unity, their norm squared consisting of an
X-degree polynomial in the different scalar products be-
tween basis vectors of &&. The chosen normalization will
allow the characterization of a change of basis in 9' by a
simple linear combination of the creation and annihila-

where Ao is the one-dimensional space generated by the
vacuum vector ~0), then trivially choosing this vector as
the direct and dual basis of Ao, the union

[ ID' & }
N~o

will be a basis of V, nonorthogonal for vectors with the
same number of particles and orthogonal for the others.
The parallel building of a set union of dual basis sets
gives the correspondent dual basis in X Hence, the ex-
plicit form of the vectors of both basis sets will be

tion operators (see the Appendix), essential for obtaining
a formalism parallel to the one for orthogonal basis sets.
Although this nonunitary norm of the basis vectors has
to be kept in mind, this will not affect the fundamental re-
lations of the formalism. In the following sections we
shall work with the occupation-number notation where a
vector like the one defined in (16a) will appear as ~n; ),
while the correspondent of the dual basis (16b) will ap-
pear as

~
n ').

B. Creation and annihilation operators

Let us define the creation and annihilation operators in
the previously constructed Fock space. For doing this,
we just need to define their actuation on the basis vectors.
Using standard occupation-number notation, this defi-
nition reads

a, n, ) =(n, +1)'
~

n+ I ),
a'~n; ) =n, ' !n, —1)

for boson creation and annihilation, respectively, and

(17)

[a, , a, ]=[a ', a ']=0,
[a ', a ]=5'

for bosons, and

[c;,c, }
= [c ', c'}=0,

[c ', c, }=5,'

(19)

(20)

for fermions.
One of the major differences between the generalized

formalism presented here and the one restricted to or-
thogonal basis sets arises when the Hermitian conjuga-
tion of the creation and annihilation operators is studied:
the Hermitian conjugation of the creation (annihilation)
operator does not result in the annihilation (creation)
operator but rather in the annihilation (creation) operator
defined on the dual basis, i.e.,

(a, )t~n & =n, '"~n' 1&, —

(a ') ~n') =(n;+1)' ~n'+ I )
(21)

c; ~
n) =( —1) '(1 —n; )~!n, + I ),

c '~n; ) =( —1) 'n, ~n;
—1)

for fermions, where X; stands for the number of occupied
one-particle states with indexes smaller than i. The nota-
tion for these operators is rather different from the usual
one: instead of the f symbol, the position of the indexes
is used to distinguish between creation and annihilation.
One important reason for this is that these operators are
not Hermitian conjugates of one another, as shall be
shown. However, other notations are possible' that al-
low a better comparison with the usual formalism. The
notation chosen is the best suited for the purposes of this
paper, being the most transparent for the tensorial
characteristics and manipulation.

Once defined, it is easy to obtain the familiar commuta-
tion and anticommutation relations between them,
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for bosons, and

(c, ) ~n')=( —1) 'n, n' —1),
(c ') ~n') =( —1) '(1 —n, )~n'+ I )

(22)

&D. Ia;" 'ID/ & =M&D."ID/ )5~M =&vs.,5

&Dp I;"'ID )*=~(Dp ~D )*5~~=NS p5~~

coincide.

(28)

for fermions. This can be proven by showing that the re-
lations

(n'~a '~n, ') =(n, ')'~'5

(23)
(n, '~(a ') ~n') =(n, +1)' 5, ,

=(n')' 5,

hold for any vector of the direct and dual basis, when the
occupations other than the ith are the same, while both
matrix elements vanish when these occupations are
difFerent for the bra and the ket. Provided this, the com-
pleteness of both basis sets ensures the validity of the re-
lation (21) for bosons. For fermions the proof is analo-

gous.
Hence, we define the creation and annihilation opera-

tors on the dual basis of V for bosons as 8'=(a ') and

a-,. = (a, ), so that

') =(n, + I )'~'~n'+ I ),
in) n 1/2 n' 1)

(24)

and similarly c ', c-, for fermions. Henceforth many rela-
tions will hold both for bosons and for fermions. Equa-
tions to appear for bosons will have their counterparts for
fermions unless specified.

%'e can now define the number operator associated
with a basis vector

~ e, ) as usually

n; n, =a, a' n, =n, n, (2S)

n; n' =a' a, n' =n;n' (26)

This nonhermiticity is a logical consequence of the
nonorthogonality of the basis: This set of vectors cannot
be thought of as being eigenvectors of any observable.
Therefore, the question of how many particles are to be
found in any of them has lost its sense. However, due to
the way the creation and annihilation operators were
defined, the eigenvalues of n, and n; will be always in-
teger numbers.

The total number operator X defined as

tV=a, a ' (27)

does not change its form under a basis change (see the
Appendix), which ensures its hermiticity. This property
is guaranteed in this context by the orthogonality be-
tween basis vectors with a difterent number of particles,
which makes the matrix elements

(with no summation over i), where the hat has been put
onto the operator to distinguish it from its eigenvalue. It
should be noted that this operator is generally not Hermi-
tian, its Hermitian conjugate being the number operator
defined over the corresponding dual basis vector

C. Tensorial formulations

For a second quantization to be useful, the transforma-
tions of the creation and annihilation operators have to
be algebraically simple when the one-particle basis set is
changed. For orthonormal basis sets, the creation opera-
tor transforms like a ket of the one-particle basis, and
the annihilation operator like a bra. The particular
definitions of creation and annihilation operators given
above have been chosen so as to behave satisfactorily un-
der basis changes, generalizing what was explained for
the orthonormal basis. In the Appendix these behaviors
are studied and we arrive at the conclusion that a ' trans-
forms like (e'~, a; like ~e, ), a ' like e'), and a-, like (e;~.
Hence, as in Sec. II for representations, these behaviors
show the tensorial character of these operators. Using
the same conventions as in Sec. II, they can be assimilat-
ed to rank-one tensors: a ' contravariant proper, a; co-
variant proper, a ' contravariant improper, and a-, covari-
ant improper. Hermitian conjugation changes the prop-
erty of indexes, just like complex conjugation does for
vector representations. The notation used here is ex-
tremely transparent for basis changes and tensorial ma-
nipulations. Covariance and contravariance will be relat-
ed through metric tensors, i.e.,

&Ij~a =S a-. ,
(29)

a, =S-.,a ~,

relations derived in the Appendix that relate the annihila-
tion (creation) operator on the direct basis with the one
on the dual basis.

In the same way a nonorthogonal basis set gives rise to
several possible tensorial representations, di6'erent
choices of creation and annihilation operators generate
what we shall call diA'erent formulations of the second
quantization. The first introduced formulation at the be-
ginning of this section, given by a, and a ', will be called
natural formulation, the index associated with both being
proper. Its advantages are the commutation relations of
Eqs. (19) and (20) and that the form of equations in this
formalism is identical to those obtained for the orthonor-
mal basis (as will be seen later). The price to be paid for
this is that the hermiticity relation between the creation
and annihilation operators does not hold. A formulation
that includes this last characteristic is the one parallel to
the matrix representation in Sec. II: choosing a-, and a;
as the annihilation and creation operators, respectively.
They are related through Hermitian conjugation, but
they do not satisfy the commutations of Eqs. (19) and
(20). Depending what properties are to be used, one for-
mulation or the other should be chosen. The advantage
of this formalism is that the transformation from one for-
mulation to the other is rendered formally trivial by mak-
ing use of the metric tensor s to change the chosen
creation and/or annihilation operators.
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D. One- and two-particle operators

The explicit form that one- and two-particle operators
will present in this formalism can be easily obtained from
the known form of these operators when the basis is
orthonormal, just by changing the orthonormal basis into
a nonorthogonal one and making use of what was previ-
ously presented regarding basis changes in representa-
tions and in creation and annihilation operators. The re-
sulting one-particle operator in the natural formulation
reads

(31)

which, as can be seen,

h "a a '=(h S ")(a S -)a '=h 5sa a '
ov p6 ov 6

=h a "a, (32)

is related to the natural one simply by metric tensors.
Two more possibilities are there, using the other two pos-
sible combinations of indexes.

There are 16 different forms for expressing the two-
particle operator V as a result of the four indexes to be
contracted. In the natural formulation its form is

V= —'V" a a & aO5 P V

where the rank-four tensor V"& has the form

V"s=((e"le (e l)&(le &@les&),

(33)

(34)

where the direct products imply no (anti)symmetrization.
Using metric tensors we can obtain any other possible
version. For example, for the matrix formulation we ob-
tain

h =h "a„a

where the tensor h~v is the natural representation of the
operator h in first quantization. Changing the basis oth-
erwise, the matrix formulation is obtained:

suming a single atomic orbital per atom, an s orbital, for
example). The proposed Hamiltonian reads

~= Ugn;tn;&+t g ct c
&i,j),o-

(36)

in the usual formalism, where (ij & denotes nearest
neighbors, U is the on-site biparticle Coulomb integral

U=(e;e; (37)

and t is the nearest-neighbor hopping integral,

t=(e, lT+ v, „,le, &, (38)

for i and j nearest neighbors, assuming every other term
is negligible. Orthogonality of the basis is implicitly as-
sumed since the usual second quantization formalism is
employed. Two main approximations have been made
referring to a realistic system: the very limited basis and
the consideration of extreme short-range interactions.

If the infinite system has full translational symmetry, U
and t can be thought of as not varying with the site.
However, if this symmetry is lacking they will generally
be site dependent. Let us concentrate on the behavior of
U. Two major factors will cause this dependence: on the
one hand, the charge variations will alter the screening
implicitly assumed in the neglect of all the other integrals
and consequently will vary the value of U; on the other
hand, the assumed basis orthogonality will make the basis
element of one site depend on the other sites' disposition,
altering again the U value. With the here-presented for-
malism we can study the latter effect.

As a typical case where these effects appear, let us con-
sider the proposed semi-infinite chain that can be seen as
the simplest case of a crystal surface or as a polymer
chain end. Considering the actual nonorthogonal basis,
we can think of the Hubbard Hamiltonian as written us-
ing the natural formulation of second quantization, where
the two-body operator would read

~pg. +~ $~ g
pvo-6 (35) gU; n;tn;t (39)

which again can be obtained from the natural formula-
tion by using metric tensors. These forms of the opera-
tors also make their invariance under basis changes expli-
cit.

with n;& and n, &
as number operators. Taking into ac-

count that the above expressed U integral is the one ob-
tained for the direct basis elements, we see that

U = U-. —. . .1111 (40)
IV. EXAMPLE QF APPLICATION: HUBBARD
HAMILTONIAN IN A SEMI-INFINITE CHAIN

As a simple application of the formalism we shall study
the effects that the nonorthogonality of a local basis can
introduce in a Hubbard Hamiltonian defined in a semi-
infinite one-dimensional lattice. The Hubbard model'
has been and continues to be much used in solid-state and
recently in polymer physics as the simplest model that in-
corporates full many-body effects to study magnetism, su-
perconductivity, etc. '

The model can be defined as follows. Cxiven a fermion-
ic system defined on a lattice, a local atomic basis
[ l e;,o & I is chosen as a one-particle basis set, where cr

stands for the spin variable and i for the atomic site (as-

U( ) Uii SijSikU (Sii)2U
11 jki i (41)

where the diagonal elements of the metric tensor S" are
the only quantities to be calculated by means of an inver-
sion of the overlap matrix. Considering for simplicity the
only important overlap as being the one between nearest
neighbors, s, by an iteration procedure one easily obtains
S" as a function of s and the site i. Introducing it in Eq.

can be assumed to be site independent if we do not con-
sider the above-mentioned screening variation.

The analysis reduces to relating both tensorial forms of
the same object. It is formally trivial using metric ten-
sors. Calling U(i)= U,", , then
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studied as a function of the site and the nearest-neighbor
basis functions overlap, obtaining a substantial reduction
of its value for the first sites of the chain.

The formalism can be used to extend all the existing
many-body formalisms, especially Green's functions and
perturbation theory, to nonorthogonal basis sets. This
work is now in progress.
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APPENDIX: BASIS CHANGES
AND TENSORIAL BEHAVIOR

FIG. 1. Effective on-site Coulomb integral U(i) as a function
of the distance of the i site to the surface in units of the limiting
value at infinite distance. The graphs corresponding to different
values of the nearest-neighbor overlap s are presented.

(41), U(i) is obtained. In Fig. 1 the results of
U(i)/U( ~ ) are plotted versus site i for several values of
s. These results show that the nonorthogonality effects
tend to disappear quite rapidly when entering the bulk,
but they can be quite important in the first sites, reducing
the value of the integral that would enter the two-particle
operator in the natural formulation of the Hamiltonian.
In the orthogonal basis formalism the value of U(i)
would remain constant for every site. This would sub-
stantially alter the characteristics of the solutions at the
surface, especially charge and spin arrangements at the
outer sites of the chain. The effect of the decreasing of
U ( i) due to the presence of the surface should be present
in the model for a more realistic description of the system
under study, as it is when a nonorthogonal basis is con-
sidered. The formalism proposed here includes this effect
naturally, while, in the case of the usual orthogonal basis
formalism, it has to be included in an ad hoc manner.

In this appendix it will be shown how the tensors
defined in the paper transform under basis changes,
confirming the assumed tensorial character. The first
question to consider-is how the dual basis changes when
the direct basis is changed. Let us then consider the two
basis sets I ~e, & I and I ~e„& I with their respective metric
matrices S and R and their respective dual basis sets

I ~
e '

& I and I ~

e"& I . Let their relation be

e„&=y( & );„~e;&, (Al)

( g ),.„being the matrix elements of the basis change ma-
trix A. The relation between both dual basis sets, accord-
ing to Eqs. (3) and (6), will be

~e~ &= g(S),,(A ), (R ') „~e'&, (A2)

which can be significantly simplified when stating that

R=A SA, (A3)

and introducing it into Eq. (A2), one readily obtains the
desired transform

~e~&=y(A ')„*;~e'& .

V. CONCLUSIONS

In this paper a general tensorial formalism for repre-
sentations and second quantization using nonorthogonal
basis sets has been presented. The dual basis is the key
concept that allows the generalization and introduces the
tensorial behaviors. By explicit construction of a basis in
the Pock space from a one-particle basis, different possi-
ble formulations of the second quantization are obtained
that relate to each other by metric tensor manipulations.
The natural formulation is the one most similar to the
formalism for orthogonal basis sets, maintaining commu-
tation relations but not hermiticity relations between
creation and annihilation operators.

As an application, the behavior of the on-site integral
U in a semi-infinite one-dimensional Hubbard model is

Let us now consider the coefficients g'=(e'~P& of the
expansion of a vector ~f& in the basis I e, &]. The way
these objects transform when changing to the I~e„&I
basis can be easily obtained by making use of the closure
relations of Eq. (2),

(A5)

In the same way it can be seen how the objects
g; = ( g~e; & transform

g =g(A ),„g, . (A6)

These last equations show that P, transforms like a ket of
the direct basis, which is called to be a rank-one covari-
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ant tensor (and which is proper, following the criteria ex-
posed in Sec. II), and that g' transforms like a bra of the
dual basis, i.e., contravariant (and also proper). That is
the reason for the positioning of the indexes. If we
rewrite the basis change matrix and its inverse in tensori-
al writing as follows,

~„=(~),„=("le„),
~,t =( ~ -')„=(e~~e, ),
W' =(W)„*,=(e„~e'),
~"=(~-'),"„=(e,~e&&,

the expression of the transformations showed above be-
comes an index contraction

(A8)

struct the two-correspondent basis for the whole Fock
space in order to de6ne by them the correspondent
creation and annihilation operators. With 8 operators we
will refer in this section to both bosons and fermions be-
cause the results found here are equally valid for both. It
can be shown (it is implicitly proven by Balian and Brez-
in ) that the relations between the two sets of operators
are

a P

a"=
)M g P~

1

(A9)

i.e., they behave as the rank-one tensors described in Sec.
III.

With the above results, the invariance of the total num-
ber operator X can be easily seen. For the natural formu-
lation defined in Sec. III (for other formulations the
derivation is the same),

X=a;a '= A,I'A '„a„a =a„a " . (A 10)
Following this procedure we can obtain the tensorial

character of the difFerent scalar products involving one or
two basis elements, like the examples shown in Eq. (8),
and also of objects involving scalar products of tensorial
products of basis elements, like the case of the biparticle
integral of Eq. (34). The conclusion after following this
procedure is the following rule: every ket (bra) of the
direct basis that appears in the object to be characterized
associates with a covariant proper (improper) index in the
tensor, and every bra (ket) of the dual basis associates
with a contravariant proper (improper) one. As stated in
Sec. II, the handling of vectors and operators becomes
the same as the handling of tensors with their usual rules,
simply by observing that contractions are only possible
between indexes of the same property. The basis-change
tensors themselves enter the algebra as regular tensors;
they are able to change their form to tensors two times
covariant or contravariant just by making use of the
metric tensors defined in Eqs. (9a) and (9b).

For the handling of the second-quantization operators
and for the derivation of relations among them it is
necessary to know how they transform under basis
changes in the Fock space related to changes in the one-
particle basis. Given two of these one-particle basis sets,
I ~e, ) I and I ~e„)I, related by the tensor 3„', we con-

At last, we present the proof of Eq. (29) in Sec. III that
relates difFerent tensorial forms of the creation and an-
nihilation operators, not only because of its utility, but
also because with the same technique many other rela-
tions can be derived, by assuming a nonorthogonal basis

I ~e, ) I and an orthogonal one I ~e„)I. For the latter we
know that

(A 1 1)

and then, just by transforming and backtransforming [be-
cause of the use of Eq. (Al 1) summations are presented
explicitly]

(A12)

which is the same as

(A13)

For the other relations the derivation is the same.
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A possible alternative notation for the operators would be 8 '

and u; for annihilation and creation operators on the direct
basis, respectively, and 8-,. ( =d;) and 8 '

( =& '
) for annihila-

tion and creation operators on the dual basis. It has the ad-
vantage of reducing to the ordinary notation for the orthogo-
nal basis when the position of the index is disregarded.
Moreover, this notation for the natural formulation is very
similar to the usual one for orthogonal basis sets. It is, how-
ever, not as suited for the general formalism as the notation
introduced in Sec. III because of the appearance and disap-
pearance of f's with the changes in the property of the
indexes. For example, Eq. (29) would read 8'=S"9,"-. and
& ~=S-..d ~.
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