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Critical behavior of tvvo-dimensional vesicles in the deflated regime
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The critical behavior of two-dimensional vesicles in the deAated regime is studied analytically
using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement
with the results of earlier studies the critical behavior is governed by a branched-polymer fixed
point. The shape of the critical line in the gauge model is deduced in the weak and in the
infinitely deflated regime.

Recently there has been considerable interest in under-
standing the behavior of vesicles' as a prototype of more
general systems such as interfaces, membranes, and ran-
dom surfaces. Real vesicles, e.g. , red blood cells, exhibit
a variety of well-defined but fluctuating shapes. Using
an arsenal of techniques (including Monte Carlo simula-
tion, series expansions, and scaling analysis), Leibler,
Fisher, and co-workers' have carried out detailed studies
of two-dimensional (2D) vesicles with a fixed number of
monomers forming a closed, planar, self-avoiding walk.
Even in two dimensions the behavior is very rich, charac-
terized by continuously variable fractal shapes, several
universality classes, including self-avoiding walk (SAW)
and branched polymers (BP), and novel dynamical phe-
nomena such as flicker. An internal pressure increment
hp acts on the vesicle controlling the internal area of the
vesicle. When hp &0, the vesicle becomes circular. Our
focus is on the deflated regime (hp & 0), where numerical
simulations have suggested that the vesicles collapse to
form a branched polymer. Very few, if any, analytic re-
sults are available in this regime.

We work in the grand canonical ensemble on a square
lattice with lattice spacing a. (We expect that our results
are independent of the lattice structure. ) The generating
function is given by

G(K W) = (1)
s:o~as

where the sum is over the set of 2D vesicles (self-avoiding
rings) with the constraint that the origin be one of the
boundary sites. Each vesicle S has an area !S! (the num-
ber of elementary plaquettes enclosed) and a self-avoiding
perimeter !85!in units of a (the number of monomers).
K and 8' are fugacities associated with the perimeter
length and the enclosed area, respectively. In the notation
of Leibler, Fisher, and co-workers, W=e~ (P=hpa /
ktt T). Our results are best explained in the context of Fig.
1. 8'=1 corresponds to the mell-understood case of a
pure SAW. We focus on W& 1 corresponding to the
deflated regime [when W) 1, G(K, W) is divergent for
K )0]. We find that (a) the pure SAW fixed point is un-

stable when W& 1. The two eigenvalues (critical ex-
ponents) are —', and 2; (b) the shape of the critical line
close to W= 1 is given by K, (W) E, (W'= 1)——(1—W) l . Further, for W=1, we recover the Duplantier"
result that the average area is proportional to the square
of the radius of gyration of the perimeter; (c) based on a
scaling analysis, we And that for 8' & 1 the average area is
proportional to the average perimeter; (d) in the W~ 0
limit, the critical line K, (W') —W l; (e) in this limit,
the average area is equal to one-half the average perime-
ter; and (f) in the notation of Ref. 1, the values of the ex-
ponents are v=v~ = —,', &=2, v~ = 2, and r= —,'. All
these agree with the results of computer simulations and
the physical arguments presented in Ref. 1.

Results (a), (d), and (e) are exact, while (b) and (c)
are based on highly plausible and standard scaling as-
sumptions. Result (a) is derived by constructing an Ising
gauge model interacting with O(n) fields whose free ener-

gy (in the n~0 limit) is related to G(K, W) in Eq. (1)

SAMf

FIG. 1. Schematic phase diagram in the (K, W) plane. The
asterisk indicates fixed points, the arrows show the renormal-
ization-group Aows, and the critical line separates regions where
the generating function G(K, W) is finite and infinite.
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and carrying out a renormalization-group analysis on it.
Results (d) and (e) are derived using rigorous inequali-
ties. Result (a) shows that for W'(1, the critical behavior
is difl'erent from that of the pure SAW. Results (c) and
(e) suggest that the critical behavior for all W( 1 is the
same and is governed by the W 0 fixed point. We find
that in this limiting case, the configurations are rings with
no internal points. On the dual lattice this corresponds to
branched polymers with no loops, with the exclusion of
those configurations which violate the self-avoidance of
the vesicle perimeter and the internal point constraint in
the direct lattice. These exclusions operate in the small
length scale limit and most likely lead to the fixed point at
8'=0 being a standard Bp fixed point. In the simplest
scenario, therefore, the critical behavior for all 8'& 1 is
governed by a BP fixed point.

We now proceed to a brief description of how our re-
sults were obtained. Consider a reduced Hamiltonian

H =Kg iTi~ Si'SJ+. u Z aij ajkoki'rrii 'i (2)
(ij ) fij, ,k, l]

where (i,j ) denotes nearest-neighbor sites, [i,j,k, l] refers
to a plaquette with vertices i, j, k, and l, o.

;~
= + 1, and S;

is an n-component vector having a modulus Jn. The
Hamiltonian equation (2) is invariant under local gauge
transformations S; e;S;, o;~ =e.;o;~.e~ with c; = + l.
Following de Gennes, we are interested in the n 0 lim-
it. As u ~, the second term in Eq. (2) is maximized by
the choice o;~ =1, modulo a gauge transformation. In this
limit we recover the pure SAW. The partition function of
Eq. (2) can be obtained by first tracing over the S s and
then over the o;~'s The former is analogous to the earlier
work of de Gennes and leads to closed loops denoted by I,
except that we have an additional contribution +r; J&~ i-

x 0'j'The trace over a;~ is carried out, following Ka-
danoff', and leads to the following result:

Z (K, W) = (2 cosh u )

I +„VK2+„QKlsslwls I+ @(n 2) (3)

where 8'=tanhu, V is the total number of lattice sites,
and the Ps denotes a sum over all vesicles without any re-
striction as to the location of the origin. The first term on
the right-hand side is the partition function of the pure
gauge model, whereas the nVK term arises due to trivial
loops formed by a bond of the lattice being traversed
twice. We note that for any translationally invariant
f(S), gqf(S) =Vgs o ~ svf(S)/I as I. It follows that

lim K ' =2K +G(K, W), (4)
n OaK —nV

and the singularity structure for Eqs. (1) and (2) are the
same. This equivalence allows us to glean information
about Eq. (1) by carrying out a renormalization-group
analysis of Eq. (2). We envisage carrying out a decima-
tion of the gauge variables and an unspecified renor-
malization-group scheme on the spin variables. The re-
normalization of u coming from the O(n)-invariant part
of the Hamiltonian involves closed loops of 8; and is of or-
der n and vanishes in the n 0 limit. The u renormaliza-

tion arises entirely from the decimation of the gauge vari-
ables and for a rescaling factor, b is

m'=wb'. (5)

In the 8 ~ 1 regime, there are two fixed points of 8'
8'* =1 and 8'* =0. The former case includes the pure
SAW with a critical value K, and critical exponents
I/vsAw yi =

3 (following from the exact result of
Nienhuis ) andy2=2 [following from Eq. (5)]. The criti-
cal line K, (W) is defined as the value of K which
separates finite and infinite values of G. The shape of
K, (W) in the W~ 1 —limit is readily shown, using stan-
dard crossover scaling assumptions, to be (Fig. 1)

~K, =K, (W) —K, (W= I )- (I —W)""'.

In order to define averages in the grand canonical ensem-
ble that coincides with the microcanonical averages, we
work with G(K, W), obtained by taking a suflicient num-
ber of derivatives of G(K, W) with respect to K (or W) so
that G —AK ~ [y& 0; b,K=K, (W) —K]; if this is valid
for hK&&h, K„ then the average area and average perime-
ter are

&Isl)—= w ' ~K-', &lasl&=-aK-',
8 (7)

respectively. Since there are only two fixed points of W,
W* =0 and W* =1, the critical line K, (W) is analytic in
the 0& 8'& 1 regime. Thus, the average perimeter is
proportional to the average area. This simple relationship
has also been observed in computer simulations.

We now focus on the crossover scaling form of the aver-
age area near W* =1 (the pure SAW):

(Isl&-~K '"F(z),

where Z=(1 —W)AK ' '. As W~ 1, Z~0 and F~
const so that the 8'dependence disappears as it must for
the pure SAW. As Z~ ~ [for a fixed W(1, this hap-
pens when (K, W) is much closer to the critical line
(K, (w), w) than to the SAW critical point (K,(1),l)],
F(Z) Z ' ' ' so that Eq. (7) is recovered.

Further, this fixes the exponent x to be equal to I/yi
=psAw. This result has been noted by Leibler, Fisher,
and co-workers' and has been derived by Duplantier.

From topological consideration, any self-avoiding ring
on a square lattice satisfies the equality I S I

= —1

+ laS I/2+N;, where N; is the number of internal points
(inside the vesicle, but not at the boundary). We derive
two inequalities for G(K, W) from this equation, as fol-
lows:

(i) Since N; ~0, laSI/2 —1~ ISI. Substituting into
Eq. (1), G (K, W) ~ W 'G (KW', 1). The right-hand
side is the generating function of a pure SAW and di-
verges for KW'~ & Ksp, w=—K, (W'=1). This implies that
K~(w) & KsAw/W

(ii) A lower bound for G(K, W') may be obtained by re-
stricting the statistical sum in Eq. (1) to ring configura-
tions without any internal sites (Isl = —1+IaSI/2).
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Then

G(IC, W) ~ g I~.'I'I+'WI'I,
SG BP
OE 8S

where BP refers to the above-mentioned ring configura-
tions. Using standard methods, one can show that the
right-hand side diverges at a critical value of K 8:Kgp.
Thus, It, (W) & (It »/W) '".

In the limit of W 0, K, (W) —1/W', and the critical
behavior is dominated by the BP configurations. The
S 6 BP are sums over branched-polymer configurations
on the dual lattice with some short-range restrictions re-
lated to the self-avoidance of the perimeter and the ab-
sence of internal sites. These diA'erences are expected to
be irrelevant in determining the critical behavior. The
same analysis on a hexagonal and triangular lattices gives
qualitatively similar results. K, (W) —W 'l for the hex-
agonal lattice, whereas E', (W) —W ' for the triangular
case in the W 0 limit. The proportionality constant be-
tween the area and the perimeter is 2, 4, and 1 for the
square, hexagonal, and triangular lattices in the W 0
limit. The behavior of the critical line near 8'=1 is iden-
tical for all the lattices.

Interesting efI'ects have been observed in Monte Carlo
simulations' in the deAated regime on adding an energy

cost due to curvature and its eA'ect on the branched-
polymer behavior. A modification of Eq. (2) may be used
as a Hamiltonian for this problem. However, the problem
has proved to be intractable, thus far. The SAW fixed
point is stable against curvature eA'ects. A likely scenario
is that the BP fixed point is also stable on adding a curva-
ture energy. However, should the BP fixed point be unsta-
ble, entropic considerations suggest that the resulting
configurations are at least as crumpled as the SAW. It is
straightforward to generalize Eq. (I ) to higher dimensions
where the sum is now over self-avoiding rings and for each
ring, we sum over all self-avoiding surfaces spanning the
ring. Studies of the corresponding gauge model are un-
derway.

We are indebted to Michael Fisher and Stan Liebler for
helpful comments. We learned from Fisher of the in-
dependent work by M. E. Fisher, A. J. Guttmann, and S.
G. Whittington (unpublished) that derives rigorous
bounds for lattice vesicles similar to those used in deriving
result (d). The work at Pennsylvania State University
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