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Vector statistics of multiply scattered waves in random systems
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Statistical distribution functions are derived for the polarization of optical waves transmitted
through a random medium. Excellent agreement is obtained with experiment. Our most sig-
nificant result is the distribution function for the ellipticity t. , the ratio between the major and
minor axes of the elliptically polarized scattered light. This has a maximum at e=O and vanishes
for e=l, indicating that linear polarization is the most probable state and that circular polariza-
tion has vanishing probability. The averaged ellipticity is found to be (e) =1 —ln2 =0.307.

The statistical properties of scattered waves from ran-
dom media have recently attracted much theoretical'
and experimental " interest. Interference between dif-
ferent Feynman trajectories leads to long-range inten-
sity fluctuations, which were recently confirmed experi-
mentally' "for narrow samples. For wide samples, how-
ever, the intensity fluctuations at a given point are
governed by Rayleigh statistics, P(I;) =(I;) 'exp( I;/—
(I;)), where I; is the intensity of each component of the
electric field. An interesting question is how to character-
ize the statistical properties of the vector nature of the
scattered optical ~aves. When an incident linearly polar-
ized wave undergoes a single scattering it remains linearly
polarized. The new feature of multiple scattering is to
change its polarization state in a statistical manner. This
property is demonstrated in Fig. 1, where we show a typi-
cal picture of speckle spots caused by scattered optical
waves, with the polarization state of a speckle (coherence
area) being measured via the rotation of a polarizer. At
some speckle spots, the wave remains linearly polarized,
whereas at other spots, it becomes circularly polarized,
and at still other speckle spots, it is elliptically polarized.
Thus, the statistical distribution of this elliptically polar-
ized scattered light is an interesting unresolved problem.
The same question can also be asked for scattering of elec-
trons or neutrons from random systems where the spin re-
places the role of the polarization.

Here, we study the statistical distribution of the polar-
ization state of multiply scattered optical waves. We

FIG. 1. Speckle pattern for multiply scattered optical waves,
showing the elliptical polarization of various speckle spots.

determine the probability distribution P(e) for the ellipti-
city t.' of the elliptical polarization state of the light. This
distribution has its maximum at t. =0, which implies that
the scattered wave favors a nearly linearly polarized state.
The averaged ellipticity was found to be (e) =1 —ln2
=0.307. We have also calculated the distribution func-
tions P, (I, ) and Pb (Ib) for the intensities along the major
and minor axes, a and b, of each ellipse and the distribu-
tion Pe(8) of the tilt of these principal axes relative to the
incident polarization. All these vector field distributions
deviate markedly from the Rayleigh statistical law. In
particular, P, (1,~ 0) ~I„Pb(Ib) diverges as Ib
while the joint probability P(I„Ib)vanishes when I, =Ib,
indicating a vanishing probability for circular polariza-
tion. These distribution functions are all calculated as a
function of the depolarization of the multiply scattered
light p =(I~)/(I„),with x the direction of the incident po-
larization, and were found to be in agreement with our ex-
periment.

Suppose an incident wave with electric field E;„=Eox
propagates in a random medium in the z direction and due
to multiple scattering is scattered into all directions. We
concentrate on directions in the near vicinity of the z
direction, which implies that the scattered wave is given
by E=E„x+E~y. The real and imaginary parts of E„
and E~ each obey Gaussian statistics. This follows from
the central limit theorem, since each component consists
of an infinite sum of partial waves which have traversed
independent Feynman trajectories. From the fact that (I)
and (I ) do not depend on the direction of E;„it follows
that E, and E~ are uncorrelated. ' ' Thus, P (E; ),
(i =x,y) is simply

P«;) =~ '&IE;I'& 'exp( —IE;I'/&IE;I'&).
The vector nature of the scattered wave is therefore deter-
mined by four independent Gaussian variables (ReE„
ImE„ReEr, ImE~). In order to specify the vector statis-
tics of the scattered wave, we will require the statistics of
the relative phase y which is determined from E~/E
=~E~/E„~e'". Since y=pr —p„,where p; is the phase of
E;, and (p„,pr) are independent and uniformly distributed
between —tr and tr, the distribution function for P(y) is
given by P(7) =(2tt —~y~)/4tr . With this, the problem
reduces to one of three statistically independent variables
(IE.I, IE, I, ) ).
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We have, however, only two principal axes, a and b, along which we would like to find P, (I, ) and Pb(Ib), so one might
expect these to be independent. One of the main interesting results of this paper, however, is that the degree of correla-
tion between I, and Ib is, in fact, extremely high.

Our most general joint distribution function is

2(I. —Ib)(p+1)'P(I„Ib,8 p) = 2,I2 exp[ —(I,+Ib) (1+p) /2(I)p] cosh[R(8)], (la)

where R(8) =[(1—p )/p][(I, —Ib)/2(I)] cos28, (I) =(I,)+(Ib), ' and 8 is the angle between the principal axes and the
(x,y) coordinate system and is restricted by —x/4& 8& n/4. When (la) is integrated over 8, the joint probability
P(I„Ib,p) is given by

(I.—I„)(1+p) ' (I,+Ib)(1+p) (1 —p2) I, Ib-
2&I&p 2p &I&

(lb)

where Io is a zero-order Bessel function. The interesting feature of this distribution is that it vanishes for circularly po-
larized speckles where I, =Ib and it diverges for Ib 0.

From Eqs. (la) and (lb) we are able to obtain analytical results for a variety of other important distribution functions.
We first show our results for the most interesting case of complete depolarization, p =1, and compare them with the mea-
sured distributions. The distribution functions for P, (I,) and Pb(Ib) are given by

P, (I, ) =exp( —2I,j(I))[2/(I&exp( —2I,j(I))+d(I, ) erf[(2I, /(I)) '~2]] (2a)

and

P, (r, ) =P.(I,) d(r, ) exp—( 2Ib j(I)),—

where

d(I, ) =x'~'[(8l, /&I&') 'I' —(1/2I, (I)) '"] .

I

constraint (E„[= [E~). Thus, the circular polarization has
vanishingly small phase space relative to linear polariza-
tion.

We now turn to the correlations between the intensities
along the principal axes of the ellipses, defined by C

„

(I, Ib&/(I, —&(Ib&. Our analytic result is

We see that P, (1,) and Pb(Ib) are very diff'erent,
P, (I, 0) ~I, whereas Pb(Ib 0) ~Ib ', which is a
manifestation of the high probability for a linearly polar-
ized state.

We now compare these theoretical results with our
measured distribution functions. We have measured with
the aid of a He-Ne laser the scattered intensity from a
BaSo4 diff'use coating, by determining (see Fig. 1) the el-
liptical polarization of each speckle spot by extending the
video methods used previously. ' ' In Figs. 2(a) and
2(b), we plot the measured distribution functions for the
major axis, P, (I,), and for the minor axis, Pb (Ib ). These
distributions required the measurements of 2.88 million
data points. The agreement with the theory (solid curves)
is evident from the figure.

The most informative distribution function is for the el-
lipticity e = (Ib/I, ) ' which for p 1 is found to have the
surprisingly simple form
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This has its maximum value at b=0, vanishes at e=l,
and yields (e) =1 —ln2 =0.307. In Fig. 2(c), we compare
this result with the measured distribution P,(e) for
p 0.93. The agreement is satisfactory and confirms that
the most probable polarization is linear and the least prob-
able polarization is circular. This can be understood from
the fact that for a linearly polarized speckle, the relative
phase y 0 but the amplitudes (E„~and IE~[ are arbi-
trary; whereas for circularly polarized speckles, the fixed
phase is y=+/2 but the amplitudes are restricted with the
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FIG. 2. Distribution functions for intensities along the major
and minor principal axes of the elliptical polarization. Histo-
grams represent experimental data obtained in reflection from
BaSO4 with p 0.93. The solid curves represent our theory for

p 1. Note that deviations from the p 1 curves are only
significant for p«1. (a) P, (I, ), the intensity along the major
axis, with the sohd curve from Eq. (2a); (h) Pb (Ib), the intensity
along the minor axis. The solid curve is from Eq. (2b); (c)
P,(c), with e - (Ib/I, ) '~2. The solid curve is from Eq. (3).
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41 (rn+n+2)[F(m+n+2, n+ —', )/(n+ —,
' ) F—(m+n+2, n+ —', )/(n+ & )]

f (m+2)r(n+2)[2F(m+2, —', ) —,' F—(m+2,—', )][F(n+2,n+ —', )/(n+ —,
' ) —F(n+2, n+ —', )/(n+ —', )]

(4)

where F(x,y) =2F
~ (l,x,y, 2 ), and 2F ~ is the hyper-

geometric function. As m or n increases, C
„

increases
rapidly, indicating a surprisingly strong degree of correla-
tion between I, and lb. We have measured C „and find
good agreement with the result of Eq. (4). In Fig. 3, we
compare theory and experiment for C „with m, n ~4.
The agreement is evident from the figure, and confirms
experimentally the high degree of correlation between I,
and lb. In contrast to these strong correlations we plot in
the inset of Fig. 3,

((I. Ib) Ib&—

((I.—I, ) &&Ib&

We see that all the points are near unity, indicating that
for a given average intensity, the distribution of elliptical
shapes has the property that I, —Iy is nearly independent
of lb.

We now derive Eq. (1) and the distribution functions
which follow from it for a general depolarization state p.
The joint probability for the three independent variables
(IE„I,IE~ I, y) is found to factorize in the following way:

P(IE I, IE, I, & ) =Pi(IE I »2(IE, I)P3(r ),

I

where IE;I P; (IE; I) follows a Gaussian distribution and
P3(& ) = (2' —I &'I )/4' . Defining variables x and y by

x =I +Iy,

p = [(I Iy ) +—4I„Iycos y] '

with I; = IE; I, we obtain the intensities (I„Ib)along the
principal axes of the ellipses as

I, = —,
' (x+y),

Ib = —,
' (x —y).

From Fig. 1, we see that each ellipse is tilted with an
angle 8 relative to the (x,y) axes. This angle is given by

2IE I IE, lcosr

From these relations, we obtain the most general distribu-
tion function P(I„Ib,6) as given by Eq. (la). Integrating
over 0 leads to our Eq. (lb).

From Eq. (lb), we obtain the generalized distribution
function for the ellipticity P,(e,p) which is given by

p ( ) 8(1 —e')(1+p)p (9)
(1 + e2) 2[(1+p)2 [(1 62)/(1+ e2)] 2(1 p) 2] 3/2

For p =1, Eq. (9) coincides with Eq. (3) whereas for p =0 (which corresponds to single scattering), P(E) =8(e) which
means that the ellipses degenerate into strictly linear polarization. This determines all the statistical properties of the
distribution functions of the ellipses for an arbitrary depolarization p. From Eq. (la) we derive P(e, 0,p) which can be
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FIG. 3. The correlation functions, C „=(I,Ig&/&I, &(Ig& for

1 ~ e, n ~ 4. The experimental results for p =0.93 are plotted
against the theoretical predictions of Eq. (4), p= 1. The values
(m, n) are listed in the squares which represent the data points.
The dashed line represents perfect agreement. The strong corre-
lations are apparent in the fact that C „&l. Inset: C'„,exper-
iment vs theory (the latter are numerical results).

FIG. 4. The distribution function P+(8+,p) for the angle be-
tween the major axis of the ellipse and the incoming polarization
vector: (a) Experimental results in reflection; squares: p =0.93,
BaSO4 diAuse coating, estimated transport mean free path = 5

pm; open circles: p=0.2, Ti02 in polystyrene, estimated trans-
port mean free path = 50 pm; solid circles: p=0.04, anodized
aluminum. The sohd lines are guides to the eye. (b) Theoreti-
cal predictions from Eq. (11) for values of p matching those of
the experimental curves.
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decomposed into P+(e, 8+,p)+P (e,8;p) where P ~ (e,8+,p) is the probability distribution when 8 is measured rela-
tive to the major or minor principal axes, respectively. From the fact that P~(e, 8+.,p) =P (e, 8 +tr/2;p) we find

P+ (e, 8+.,p) = l(I +e') (I+p) + (1 —e') (1 —p) cos28+ ]8p(l —e')
(10)

I/2-
b

arctan
a

We see that only for complete depolarization, p =1, is the distribution function P(e, 8,p =1) independent of 8 and coin-
cides with Eq. (9). This is as expected since for p =1 there is no preferred direction for the principal axes of the ellipses
and their directions are uniformly distributed. As p decreases, this uniformity is lost and a peak is developed around
0 =0.

Integrating over e we get,
r w &/2 ~ )/2 ~

Pq(8+,p) = 1—6ap a b (11)
trb b a

where a = 1+p+ (1 —p) cos28+ and b = (1+p) —(1
p) cos28+.
In Fig. 4, we plot our experimental distribution function

P+(8+',p) for p =0.93, 0.2, 0.04, and compare it with Eq.
(11). Due to noise in the experiment, which tended to ob-
scure the angle at which the intensity of a given speckle
spot peaked, the maxima are rounded compared to the
theoretical curves; otherwise the agreement is quite good.
We see that as p decreases P+(8~) becomes more peaked
around 0+ =0.

We have also extended' the present method to a gen-

I

eral outgoing wave-vector direction which forms an angle
8 relative to the incident electric field E;„.We find that all
the present results are still valid but are rescaled by re-
placing p with p'=p/(sin 8+pcos 8). The consequences
of this scaling will be presented elsewhere. '
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