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We describe two types of curvature-related interfacial transitions occurring in soluble amphi-
phile monolayers under compression. The first type corresponds to the buckling of areas with
sizes up to the monolayer’s de Gennes-Taupin persistence length squared, and starts to occur
when the interfacial tension is about one-half its bare value. The second type corresponds to the
transformation of the simply connected monolayer into either a dispersion of droplets or an inter-
connected bicontinuous structure. The resulting type of volume-spanning state is determined by

the sign of the saddle-splay bending constant.

Two of the most familiar manifestations of the unique
nature of amphiphiles— molecules with different attri-
butes at opposite ends—are the formation of compact
monolayers at interfaces and of micellar aggregates in the
bulk phases. Although descriptions of the onset of micelle
assemblage, at the so-called critical micellar concentra-
tion (CMC), are often preceded by that of the develop-
ment of interfacial monolayers, these two forms of amphi-
phile collective configurations have not been explicitly
characterized as states linked by a phase transition. Here
we investigate a model amphiphile monolayer described
by the Helfrich free energy and find two types of
curvature-related transitions occurring under monolayer
compression.

An important feature in our analysis is the considera-
tion that the amphiphiles are soluble in the monolayer’s
supporting solvent or solvents and that the entire interface
between, say, water and air, or water and oil, like in a sim-
ple test tube, is constituted by the monolayer. We assume
that the projected area of the interface on a plane Sy is
fixed, and that compression of the monolayer takes place
(below the CMC) by increments in the amphiphile bulk
concentration, i.e., increments in interfacial adsorption
produce a reduction of the interfacial area per surfactant
molecule. We choose S fixed because any change in S
will be accompanied by the transference of amphiphiles
between the monolayer and the bulk phases, leaving the
film pressure unchanged. In contrast, compression of an
insoluble surfactant monolayer in a Langmuir trough is
accomplished externally via the reduction of So. In this
case the total interfacial area is composed of two portions
separated by an amphiphile barrier: the monolayer and
the amphiphile-free interface. The reduction of S by the
displacement of the barrier produces by construction an
increment of the same magnitude in the area of the
amphiphile-free interface. As we see below, there is an
important difference in the free-energy expressions, and in
the properties derived from them, between these two phys-
ical situations.
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We follow Helfrich,! and others,>”7 in considering a
simple phenomenological model in which the monolayer
formed at a water-vapor (or water-oil) interface is treated
as a two-dimensional incompressible fluid film, ¢(x,y),
embedded in three-dimensional space. This type of model
membrane has been mostly employed in the description of
sheetlike bilayer assemblies implanted in a single solvent,
but regions of immiscible solvents separated from one
another by amphiphile monolayers have been similarly
treated.>*%7 The free energy frm per unit area that
quantifies the curvature elastic energy of the system is

Sfiim= % x(c —2¢¢)?+&C, 1)

where k and « are, respectively, the splay and saddle-splay
bending constants and ¢, ¢, and C are, respectively, the
mean, spontaneous, and Gaussian curvatures of the film.
The Gauss-Bonnet theorem, stated below, tells us that it is
not necessary to take the last term in Eq. (1) into account
if one considers only variations of the film shape which do
not change its topology, since the integral of C over the
whole film area is a topological invariant. To study the
shape response of the surface to compression, e.g., when
the film amphiphile concentration is increased, additional
contributions to the free energy need to be taken into ac-
count. These are the work of compression with its con-
comitant increment in surface energy that takes place
whenever a local bending of the film occurs, i.e., there is a
monolayer enlargement sustained by a net inflow of am-
phiphiles from the environment since no ruptures or pores
are allowed. To write these contributions let
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and dSo=dx dy denote, respectively, area elements of the
monolayer and its planar projection. The work of com-
pression is —I1(dS —dSo), where IT is the Langmuir sur-
face pressure of the film [[T=yy—y> 0, and y and y are
the actual interfacial tension and the bare (in the absence
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of amphiphile) interfacial tension, respectivelyl. Now, a
compact monolayer that maintains its area per amphiphile
constant when it is deformed out of its planar shape will
produce a bare area element ds —dS, which when filled
with amphiphile contributes an amount y(dS —dSy) to
the monolayer’s free energy. Therefore, the free energy in
excess per unit area between bent and flat states f can be
written as f = ffim+ fcomp Where
21/12
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fcomp =—A {

and where A=I1—y=1vy,—27.

Surfactant monolayers under compression have been re-
cently’ studied with the employment of a similar free-
energy expression. However, the system studied in Ref. 7
corresponds to insoluble amphiphiles on a Langmuir
trough and, as mentioned, differs from ours in that reduc-
tion in the monolayer’s projected area is accompanied by
an equivalent increment in the trough’s amphiphile-free
surface area with bare tension yo. Thus, instead of the
monolayer enlargement term one must consider the con-
tribution y0(dS —dSy), and A in Eq. (2) becomes A =II
— yo= — 7. Insoluble monolayers have a fixed number of
amphiphiles, whereas any departure in shape of a soluble
monolayer with respect to the reference flat state
¢(x,y) =0 will lead to an increment in the film area, i.c.,
deformations are always accompanied by the creation (or
destruction) of portions of monolayer through exchange of
amphiphiles with the bulk.

The monolayer thermal shape fluctuations, or undula-
tions, imply that normals to {(x,y) have their directions
correlated only up to a length £ which is called the de
Gennes-Taupin persistence length,? therefore, the mono-
layer can be considered on average to consist of a collec-
tion of independent patches, or units, of sizes of O(&2)
within each of which the film retains coherence. Film por-
tions with areas increasingly smaller than the maximum
size of O(£?) would appear to be more tightly bound ob-
jects since they have increasingly higher correlated orien-
tations throughout. As suggested by Helfrich,® and subse-
quently confirmed by renormalization-group -calcula-
tions,> the monolayer undulations produce a reduction of
x with increasing observation scale length /, or equivalent-
ly, with increasing membrane size /, according to the ex-
pression x(I) =k, +(3kT/4n)In(a/l), where x,, is the
microscopic scale-length value of x, and a is some micro-
scopic distance, e.g., the amphiphile size.” At the scale-
length equal to the persistence length &, given by
E=aexp(dnk,,/3kT),° the effective rigidity x(£) van-
ishes, that is, only sections or pieces of film with areas up
to O(£?) are sustained as structural units with well-
defined uniform and unbroken average shapes. Undula-
tions also lead to the renormalization of the tension and
the saddle-splay constant, and for a membrane size or
scale length / one obtains y(/)=y,,[1+(1/4x)In(//a)]
—akT[(1/a)?— (/D)2 and &)=k, +(5/6x)In(l/a),
where 7, and kK, are the microscopic scale-length values
of y and &, and « is a constant.’ (The effect of the renor-
malization upon cg is not considered here.) It is important
to notice that the derivation of the expressions for the re-

normalized x(!) and ©(/) do not require the microscopic
tension 7,, to vanish.>°

Therefore, in order to examine the bending of coherent
pieces of film at the chosen membrane portions of size /
about their average or coarse-grained flat states, we mini-
mize F=[fdS, with k=x(), £=k() and y=7y(),
a <! <&, only over an area of O(/?), say a circle of ra-
dius / with the boundary condition (8£/8r),=;=0. The
problem is seen now to be analogous to that of the buck-
ling under compression of an elastic plate, familiar in the
theory of strength of materials. First, we consider the size
dependence only on x, and then comment on the
modifications of our results for size-dependent y (the
dependence of K on / is unimportant here). The Euler-
Lagrange equation associated to Eq. (3) indicates that the
interface remains flat provided A <A, but it bends pro-
gressively with increased compression when A <A.. For
the geometry we have chosen, solutions of the form
8¢/6r ~J1 (W 2k ~1/2) (where J, is the Bessel function of
the first kind) bifurcate from the trivial solution 8¢/dr =0
when Ji(A 2k ~V21)=0, this is A.=14.68x/ "2 or
¥e =70/2—7.34xl ~2. Buckling occurs first at the max-
imum scale length or portion size £ when y=y0/2 (which
is often observed to be a rough value for y at the CMC),
followed with further amphiphile additions, by the buck-
ling associated to smaller scale lengths or portion sizes.
We obtain a line of self-similar buckling transitions for
which the critical A.(/) and the effective x(/) scale with
the size / of the bulges or prominences created out of the
flat surface (see Fig. 1). The critical value of the interfa-

FIG. 1. When the monolayer is progressively compressed via
amphiphile additions it buckles first at a critical value of the in-
terfacial tension with sizes of the order of its persistence length.
Further compression produces buckling at smaller scales.



RAPID COMMUNICATIONS

5738 A. ROBLEDO, C. VAREA, AND V. TALANQUER 43

cial tension y. decreases with decreasing / and vanishes
at a limiting length &' given by yo=14.68£' "2 [«
+ (3kT/47)In(a/&')]. When a renormalized tension y(/)
is considered the line of buckling, transitions may no
longer show a monotonic decrement in bulge size with in-
creasing compression, and appear with sizes smaller than
0(&?).

In Ref. 7 a buckling instability for the entire macro-
scopic monolayer of size L in a Langmuir trough was
found to occur, in the absence of gravity, at a negative
tension y.=—n’k,/L? or vanishing tension for an
infinite monolayer. In Ref. 7 no undulations were con-
sidered, and therefore the buckling wavelength is of the
order of the monolayer size. The consideration of gravity
greatly reduces the buckling wavelength and also the ab-
solute value of y, but it remains negative.7 The difference
in the value of y. between the two types of monolayers,
soluble and insoluble, is easily accounted for by their
different definition of A, yo —27, and — ¥, respectively, in
Eq. (2).

We now discuss the implications of the Gaussian term
in fam. For a system of surfaces that consists of a simply
connected piece to which n, handles have been attached
and an n; boundaryless disjoint pieces or spheres, the
Gauss-Bonnet theorem states that

deS=27t(1+2ns—2n;,). 3)

Thus, the free-energy cost fiop for creating a sphere of ra-
dius R (plus sign), or a handle of equivalent size and cur-
vature (minus sign), out of the simply connected interface
is

47R?. (€))

2
1 K
f,0p=[y+2x[i—co] i-—RZ

Therefore, when fi,, vanishes the interface undergoes a
phase transition in which its connectivity changes, and ac-
cording to the sign of K, the magnitude of fCdS jumps
from a value of 27 to * oo (see Fig. 2). The gain in
configurational entropy by fragmentation of spheres or
proliferation of handles stabilizes the volume-filling phase.
The size of the objects formed can be estimated from
fiop=0, e.g., when co=0, R= [2x+%)/y1"2. For mi-
cellar solutions formed in the presence of monolayers at
water-vapor interfaces, 2k+ik~10"12 erg and y~10

b) (a)

FIG. 2. Topologically driven interfacial transitions. (a) A
dispersion of droplets is obtained when the saddle-splay constant
K<0. (b) Proliferation of handles produces a bicontinuous
structure when x> 0.

erg/cmz, then R~30 A which is a reasonable value for
empty micelles. On the other hand, for microemulsions
formed in the presence of monolayers at water-oil inter-
faces (containing cosurfactants), 2x+ik~10 '3 erg and
y~10 "2 erg/cm?, one obtains R ~300 A, and thus larger
objects support the swollen micellar or bicontinuous mi-
croestructures of these systems. When undulations are
taken into account [and fiop is minimized with size-
dependent y(R), xk(R), and K(R)] one obtains

R=[a'kT/Bry+ym)1'2,

where o =8rla+(1/37n)], ie, YR? ~kT. Hence, for
given y fluctuating structures produce objects larger than
those quoted above if a'kT/[8x+ (y/y,)1> — Qx+K).
Recalling that buckling (at the scale of &) takes place
when y~ y0/2, micellization can occur before buckling
only if yo < (1/47) (kTR ~2—7,,), where R is determined
from

2km+Km=QkT)/Q2r)In(R/a)+ (1/87) (y,nR2— a'kT) .

In contrast, since handles can be created with zero curva-
ture, whenever k¥ > 0, handles proliferate before buckling.

The possibility of topological changes governed by the
Gaussian curvature have been discussed before,®'0!!
however, we specifically address here the case of the insta-
bility of a single interface consisting of a monolayer and
stress its possible relation with the well-known phenomena
that takes place at the so-called critical micellar concen-
tration. To demonstrate the usefulness of this approach a
description of the (incompletely understood) CMC phe-
nomena associated to Winsor microemulsion phases'? can
be readily obtained in terms of the monolayer topological-
ly driven transitions. A straightforward generalization of
the bilayer expression for x derived by Petrov, Mitov, and
Derzhanski'® for monolayers leads to the following ex-
pressions for ¢p and K

_ AnA (/A —1/A) kn/ AR + ke[ AP)

2d(kp/An+k./A:) )

Co

and

knk.(1/A4n —1/A) Ckn/ AR — ko /A2)d
ApA(kp/AR+k/AD)?

, (6)

f=

where A, and A, are the mean area per head and per area
of the amphiphile, respectively, k; and k. are positive con-
stants defined in Ref. 13, and d is the monolayer thick-
ness. An inspection of the factors in the expressions for ¢g
and x above indicates that increments in salinity of the
aqueous solvent, or decrements in the length of the amphi-
phile hydrocarbon chain (which are likely to produce ei-
ther monotonic increments in k; and A, or monotonic de-
crements in k. and 4.) may lead to one change in the sign
of ¢o and two changes in the sign of &,'® such that addi-
tion of amphiphile to bare water-oil interfaces prepared
with different bulk salt concentration yield oil-in-water
micellar, bicontinuous, or water-in-oil micellar mi-
croemulsion phases. The required equality of chemical
potentials for phase coexistence between (one or two) bulk
solvent phases and the incipient microemulsion phase
formed from the fragmentation or handle proliferation of
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the original monolayer is given by the soluble amphiphile
factor A =7y9—2yin Eq. (2).

We remark here on a similarity between wetting and
micellization phenomena. One of the wetting transitions
takes place at the interface of a two-phase state when
three-phase equilibrium is approached. There, the thick-
ness of the interface diverges signaling an instability
caused by the saturation of the species with smallest con-
centration in the interfacial region, and the alternative
structure for this region is the appearance of the phase
rich in this component in bulk. In a manner analogous to
this wetting transition we found that the increment in am-
phiphile concentration eventually saturates the interfacial
region forcing again its instability. The monolayer re-
quires an alternative that would let it occupy volume, only
now the appearance of a third phase, partially miscible in
the former two, is not favored. The aggregation of the
amphiphiles into volume-filling structures, micellar or
bicontinuous, is the prevailing alternative. Wetting and
curvature transitions relate, respectively, to area extension
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and bending energy costs of interfacial fluctuations. Gen-
erally ¥> yo/2, and the effects of the former type of fluc-
tuations conceal the physical features of the latter; howev-
er, amphiphiles efficiently suppress interfacial tension and
the latter type of transitions may occur in systems that
contain them.

Our aim has been to offer a minimal model for the
characterization of the curvature interfacial transitions
(we have not considered at this stage possible transforma-
tions under compression of the monolayer internal struc-
ture that may arise from degrees of freedom such as
amphiphile-tail conformations). Although the breakdown
of Langmuir monolayers under compression is a well-
known phenomenon, the experimental investigation of the
interfacial transitions discussed here, do not correspond to
those of an insoluble monolayer in a Langmuir trough. 4
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