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Exact self-similar shapes in viscous fingering
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Analytical self-similar profiles of the Saffman-Taylor experiment in a sector of a disk are deter-

mined by conformal mapping in the absence of surface tension. I show the existence of a con-

tinuous set of symmetric solutions in either the convergent or divergent fluid-flow case.

This paper gives the self-similar shapes of viscous fin-

gers in an arbitrary open sector cell in the absence of sur-
face tension. Up to now, analytical solutions have been
discovered for only two typical geometries of the Hele-
Shaw cells: the classical linear' one corresponding to
O0=0 and the divergent right-angle one (80=x/2). First
introduced experimentally, the sector geometry, inter-
mediate between the linear and the circular geometry, is a
very useful tool for understanding the spatial and time
evolution of systems in situations far from equilibrium,
like seeds in an undercooled melt. Unfortunately, the lack
of known exact analytical results has inhibited the com-
plete understanding of this growth process.

I propose here a systematic way to derive these sym-
metric profiles (without any guessing) corresponding to
either divergent or convergent flow. I generalize the
method of McLean and Saffman to any geometry and
find a continuous set of solutions for an arbitrary angle be-
tween —2n ( Oo & z. The experiment indicates that only
one solution is selected ainong this continuum which is
characterized by the dimensionless width A, of the finger.
In the divergent case, the self-siinilar shape looks like a
petal, and X is the ratio between the petal angle measured
at the center and the cell angle. For the convergent flow,
X is the ratio between the angle of the finger tails and the
sector. As for other instabilities, we expect that the
neglected surface tension, once introduced, will select
the self-similar pattern, and thus X. In any case, the
knowledge of exact results is a first step to explain the
selection mechanism which occurs for this instability; any
tentative treatment will be mostly perturbative, even if it
is in some singular sense like the WKB method. This is
the reason why it previously had been applied to only the
right-angle sector. Moreover, once selected, these ana-
lytical solutions reproduce the experimental fingers at low
surface tension.

Since the pioneering work of Saffman and Taylor, ' the
viscous fingering in a Hele-Shaw cell has induced
numerous experimental, numerical, and analyti-
cal' ' ' studies (for a review, see Refs. 4, 7, and 9). This
instability has always been a prototype to understand the
evolution of growing patterns. Similar to the solidification
process at low growth rate, but in many respects much
simpler, it has aided in the understanding of the rather so-
phisticated role of a tiny surface-tension amount, whether
it is isotropic' or not, " the effects of local perturba-
tions, ' the stability of steady-state solutions, '3 etc. Fun-
damental but open questions, such as the effect of capil-

larity on the time-dependent pattern'" or the link between
the diA'usion-limited aggregation model and macroscopic
continuous models, have been answered in part. Never-
theless, many of these results concern the linear geometry
and not the circular one which is much more common in
nature. Either the viscous pattern in the Paterson '

geometry or the growing seeds show very regular petals,
self similar in times, localized in fictitious sectors. This is
true, at least in the first stage of growth. Due to this simi-
larity with the Saffman and Taylor finger (called hereaf-
ter ST), Paterson has tried a conformal transformation of
the ST solutions to interpret his experiment. Although
unsuccessful, this was the first attempt to relate known es-
tablished results of the linear channel to the unknown cir-
cular geometry. This analytical family of solutions shows
that the sector geometry presents continuous features
which can be extrapolated to interpret dynamical process-
es in the absence of rigid walls.

Let us recall here that viscous fingering is a free-
boundary problem. The fluid flow of the pushed oil is La-
placian, since v =V& and hp =0 if one assumes the Darcy
law for the Hele-Shaw cell. In the absence of surface ten-
sion, the interface is an equipotential of p and satisfies the
continuity equation: n V@=n. dr;„t(t)/dr, with r;,t(r) a
current point of the interface and n the normal at this
point. Assuming self-similarity is a convenient simplifi-
cation of time-dependent free-boundary problems, but
very often not rigorous. Hakim has shown that self-
similar solutions form an exact class of solutions if one
neglects surface tension and assumes that the experiment
is done with a constant extraction or injection rate im-
posed at infinity. For these self-similar solutions, observed
in the experiment, the interface evolves in time as
(2t+1) '~ for divergent fiow or (1 —2t) '~ for convergent
Aow (in this case, time grows from negative values).
Perhaps the comparison between self-similar solutions and
steady-state fingers displaced in a channel does not seem
obvious. In order to emphasize the link between these two
instabilities, a proposal' to transform the sector geometry
(x& plane) into an infinite strip (x plane) by conformal
mapping is as follows: z =(2/Oo)ln(z~) with Oo positive
when air pushes oil from the center, (0~ Oo (2x), and
negative when from the periphery, ( —2m & Oo~ 0). Fig-
ures 1-3 show the corresponding characteristic points of
the two planes. This mapping transforms the petal shape
of the interface, for a divergent channel, (Fig. 1, x~ plane)
into a more familiar finger shape (Fig. 3, x plane), while
the walls become parallel. Note that the origin of the sec-
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8 Re(iv) q
as Re(H)

1 —X gp BS
xsq X tl R (H)

1 —k (1 —X)gp 8s

since dS= —ds(1 —
A. )/xqs. The Cauchy integral theo-

rem gives us Re(H) once the imaginary part of H along
the whole s axis is known:

R (H) Qp
1 ( ) ~ 1 p

t 'd ImH(t)
kz n « t —s

where P is the principal part of the integral. Taking into
account the last couple of equations, we get without any
difFiculty, after some algebra, the following integral equa-
tion for the interface:

exp(epx )sin (0)
dte Q qt

exp (epx )sin (0)
P dt 2

q(t —s)
Note that for Op=0, we must recover the ST solution.
This integral equation has a well-known solution, found a
long time ago by ST (Ref. 1) and MS (Ref. 3) and the in-
tegrand of the left-hand side has the same value as for
Op=0 up to a proportionality constant that is a[s/(1—s)] ' . lt is not necessary to be more precise concerning
the constant a of proportionality for the following. Do not
forget that x is also a function of s, since

~ 1 —X ' e'q
z =x+iy = — dt (3)4~ gt

We now face three coupled equations [Eqs. (2) and (3),
and Eq. (18) of Ref. 3] for three unknown functions of s:
x(s), q(s), and 0(s). To begin the necessary elimination,
let us first eliminate the exponential in Eq. (2) simply by
derivation:

cos(0)sin(0) (1 —s) + d sin(0)a + 1 —s
s c&

with a =Op(1 —X)/tr. Then take the Hilbert transform of
each term of this equation. Remember that O vanishes
when s ~ 0 or s & 1. We obtain, without diIIIiculty,

cos(20) 1 —~ 1+ 1 + 1
d cos(0)+ 1 —s

2 q s s (1 —P)2 ds q

1 sin(0)
2$ g

1 cos(0) 1

gs S

These two equations are no more than the imaginary and

we can pass over directly from x~ to o., meaning we can
open the half sector from

~ ep/2~ to tr. Doing that, we lose
the correspondence between both geometries; Op=0 and
Op&0, which is very useful, since the Op=0 instability is
now well understood. This possibility must be kept in
mind in order to save tedious calculations. As in Ref. 3,
we introduce the complex derivative of the potential w,
qexp( —ie). We normalize this function by fixing its
value to 1 in the tail of the finger (s =0) [see Eq. (18) of
Ref. 3].

To establish the first equation for the profile, we use the
fact that the interface is equipotential and we deduce (Re
denotes the real part)

real parts of the following Riccati equation' for the
analytical function G =e' /q —1:

d a 6 1+6
ds 2 s 2s(l —s)

ep(2 —x)xF
2R

y/ =As ' (1 —s)'

A, Op
, —,1 —s

2~ '2'

with

ep(2 —x)XF —+
, 2 2x '2

XOp 3
, —,1 —s

2R '2'

le(ep)ep2 =2tan
2

I [1 —0 (2 —X)/2']r(1+1.eo/2')

, r[-,' —0,(2 —x)/2~]r(-, +pep/2~)

and e(ep) the sign of ep.
Attempts to simplify the writing of this solution were

not successful excePt for sPecial values of ep. 0, z/2,—tr/2, and zr. In the first case, we recover the ST solution
after the necessary mapping n] z. The two following
cases corresponding to right-angle sectors are given by the
set of Ref. 2, providing the correspondence s =sin (2a)
and a =e(ep)(1 —X)/2 (a has been defined here previous-
ly and also in Ref. 2).

For divergent Aow, we cannot accept that F diverges for
s =0, since we have required that 6 vanishes for this
value. Moreover, x~ and y ~ must be monotonic functions
of s, so the hypergeometric functions, mentioned above,
must not vanish for 0&s & 1. As a consequence, the I
functions cannot have a negative variable. This imposes a
lower bound for A, when ep is greater than tr/2:
A, ;„=2—n/ep (found in another way in Ref. 16) and an
upper bound A. ,„=—tr/ep for ep values less than —tr.
This means that unique fingerlike solutions of this kind
cannot exist for these extreme Op values. For O=n, the
only possible solution (k = 1) is the half circle.

Finally, the simplest way to illustrate these solutions is
to compute a few terms of the Gaussian hypergeometric

a 1 1—1
2 (I —g) 2 (1 —s)

Note that 6 must vanish for s =0. This nonlinear equa-
tion may appear rather complicated to the reader and, at
this stage, the improvement rather weak. Nonetheless, it
is really an improvement, since we have transformed a
free-boundary problem (impossible to solve) into a unique
nonlinear difI'erential equation for the interface. A stan-
dard substitution transforms a Riccati nonlinear differ-
ential equation of the first order into a linear homogene-
ous diff'erential equation of the second order. Most of the
time, there is no closed-form solution to this associated
linear equation, but it happens here that it is the standard
equation of hypergeometric functions F. ' The details to
derive the solution will not be given here; one only has to
follow the method of Ref. 17 without any subtlety and we
obtain

e0(l —X)/2nx, =.(0,).
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series. ' As an example, I have drawn in Figs. 1 and 2
some typical cases corresponding to 00=+ 60 . When
compared to results of Ref. 2, the convenient profiles su-
perimpose the experimental fingers. They can also be
compared to diA'usion-limited aggregation simulations,
since it has been shown that the average of time-de-
pendent patterns are well represented by steady-state
fingers at vanishing surface tension. Perhaps these

closed-form solutions will be of some help in understand-
ing the X-selection mechanism by a small surface tension.
I have found that this formulation in terms of the MS
variables is very convenient for a numerical approach,
which will be the subject of a separate publication.

I am very grateful to Y. Couder, V. Hakim, M. Ra-
baud, and S. Tanveer for very instructive discussions.
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