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The alignment of excited Ne’*

ions produced in collisions of low-energy Ne®*

ions in a sodium

beam target was studied. The linear polarization of both the 434-nm (n =9-—8) and the 298-nm
(n =8-—7) emission lines was measured for beam energies from 4.8 to 32.8 keV/amu.

Excited atomic systems formed in ion-atom collisions
are generally aligned, 2 with the result that decay radia-
tion is emitted anisotropically and linearly polarized.
Theories of ion-atom collisions can predict the ampli-
tudes for capture into specific levels labeled by a complete
set of quantum numbers #, /, and m.! However, cross-
section measurements give only the n or (n,/) depen-
dence®* of the electron-capture process. Moreover, un-
certainties due to anisotropic emission and polarization
often contribute the largest errors to the determination of
electron-capture cross sections to selective subshells.*
Obviously, measuring the alignment or orientation of the
states formed in the collisions provides additional infor-
mation and constitutes a very stringent test of various
theoretical calculations. Alignment is an important indi-
cator of the relative importance of radial and rotational
couplings® in the quasimolecule picture.®’ The energy
dependence of the alignment of the hydrogen 2p level
produced in H*-He and He™-H collisions has revealed a
spin-dependent effect in the (H-He)™ collision system. ®

In this paper we report our measurements of the linear
polarization of the 434- and 298-nm emission lines result-
ing from collisions of 4.8- to 32.8-keV/amu Ne!* ions
with unpolarized Na atoms. The linear polarization is
defined as [I(0°)—1(90°)]/[1(0°)+1(90°)], where I(0°)
and I(90°) are the intensities of the observed photons
with polarization vector along and perpendicular to the
ion beam axis, respectively. This collision system has
also been studied using a recoil ion source®!© in the ener-
gy region between 0.025 and 0.4 keV/amu. Lembo
et al.’ obtained a 100-pA Ne®' beam by bombarding a
Ne gas jet with highly-stripped Br ions (with an average
charge state of 18.5) from the Stanford FN Van de Graaff
accelerator. Their polarization measurements indicated
the m=0 magnetic substates were preferentially popu-
lated® at low energy. The data reported here extend the
previous work®!® from low energies (where, in the
language of the close coupling treatment, ! the molecular
state expansion method prevails'?) to higher energies
where the atomic-state expansion method or the atomic-
orbital—molecular-orbital matching method!! has to be
employed to calculate the magnetic substate distribution.

The experimental setup for our work is shown in Fig.
1. The *Ne!t ions are produced by the Argonne
PIIECR (positive-ion injector electron cyclotron reso-
nance) ion source, !> which operates at an rf frequency of
10 GHz. The source is on a high-voltage platform (350
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kV maximum), which has a measured stability of +4 V.
The ions are extracted, analyzed by a 90° magnet, ac-
celerated, and delivered to the collision chamber. The
beam currents obtained in the Faraday cup are typically
between 1 and 2 uA, depending on the beam energy. The
atomic sodium beam is formed using a two-stage oven!*
consisting of a reservior section and a nozzle section.
The nozzle consists of a molybdenum plate with nine
holes which form a 2X2 mm? array. Each hole is 200
pm in diameter and 3 mm long. The Na beam is directed
onto a liquid-N,-cooled surface in order to prevent depo-
sition of a Na film on the observation window. The tar-
get thickness was determined to be 1.4 X 10!'! atoms/cm?
with the reservior at 387 °C and the nozzle at 449 °C by
measuring the absorption profile of the sodium D2 line.
To further minimize the possible deposition of a depolar-
izing film'® on the observation window, we typically ran
the oven at low temperatures, 306 °C at the reservoir and
360 °C at the nozzle. Under these conditions, the target
thickness was estimated to be about 2 X 10!° atoms/cm?.
We used interference filters to isolate the 434 (n=9 to
n=8) and the 298-nm (n=8 to n=7) transitions in Ne’"
The light passed through a polarimeter, which consists of
a rotatable wave plate and a linear polarization analyzer,
before reaching the interference filter. The detector is a
water-cooled photomultiplier tube. The filter used for the
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FIG. 1. Schematic of the experimental setup.
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434-nm emission line is a ORIEL Model 5382 interfer-
ence filter with the transmission peak at 440 nm and a
bandwidth of 10 nm. For the 298-nm emission line we
used an ORIEL Model 5337 filter with the peak wave-
length at 300 nm and a bandwidth of 11 nm. Spectrosco-
py in the regions of 428-442 and 289-307 nm of the
Neb™ —Na system has been done by Lembo'® using a
0.32-m normal incidence spectrometer with a resolution
of 0.7 A. It is found that /=5,6,7,8 of the n=9 to 8 tran-
sition and /=5,6,7 of the n=28 to 7 transition cannot be
resolved. Transitions from the / <4 states make a negli-
gibly small contribution for both =9 and n=2§ states.
The bandwidths of our filters allow all transitions'> with
Al==1 and / = 4 to be seen by the detector. The An =2
transitions are well outside the bandwidths of the
filters. !> The method for determining the state of po-
larization of a beam of light in terms of its Stokes param-
eters is described in detail in Ref. 16. We used a stepping
motor to rotate the wave plate with respect to the polar-
izer which was fixed in orientation with respect to the
detector. A multiple-order quartz wave plate was used
for measuring the light polarization of the 434-nm emis-
sion line. The retardation was A/4 at 539 nm and A/2 at
434.2 nm. The wave plate for measuring the polarization
of the 298-nm emission line was a zero-order quartz wave
plate with a retardation of A/4 at 638 nm and ~A/2 at
297.1 nm. The linear polarization analyzer was a Glan-
Thompson prism polarizer, which is known to have an
extinction ratio better than 5X107° at 2 or less of its full
aperture, between 320 and 2300 nm. The Stokes parame-
ters can be measured by observing the variation of the
transmitted light intensity through the polarimeter as the
retardation plate is rotated.'® The 2w and 4w signals are
proportional to the circular and linear polarizations of
the light source. A typical four-peak modulation pattern
for the 434-nm line with one complete revolution of the
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FIG. 2. Photomultiplier count rate as a function of the angle
of the optical axis of the wave plate with respect to the linear
polarizer. Forty channels correspond to one complete revolu-
tion of the wave plate. The four-peak modulation pattern ob-
served with one revolution of the wave plate is characteristic of
linear polarization.
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FIG. 3. Measured linear polarization of the 434- and 298-nm
emission lines vs ion beam energy. The data for the 298-nm
emission line are connected by a dotted line, while a short-
dashed line is for the 434-nm emission line data. The connect-
ing lines are only to guide the eye.

A/2 wave plate is shown in Fig. 2. Forty channels in the
spectrum correspond to one complete revolution. The
accumulated beam charge per channel in the spectrum is
1.2X107*C.

The overall counting rate decreases as the beam energy
is increased. With the polarimeter in place, the signal
with the background subtracted at 434 nm was about 12
counts/sec at a beam energy of 12.8 keV/amu, and about
3 counts/sec at 32.8 keV/amu. The background, ~2
counts/sec, was fairly constant throughout the measured
energy range.

The observed linear polarization of the 434-nm emis-
sion line (see Fig. 3) is ~ +30% and almost constant in
the energy range between 5 and 30 keV/amu. As shown
in Fig. 3, there is a hint that the alignment of the excited
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FIG. 4. This figure shows a typical dependence of expected
linear polarization on the alignment produced in the capture
process, for captured states with orbital angular momentum
L=2,5, and 8.
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state decreases substantially at energies above 30
keV/amu in this system. The observed linear polariza-
tion of the 298-nm emission line is also shown in Fig. 3.
It is noted that the observed linear polarization of the
two emission lines at energies between 4.8 and 30
keV/amu is about the same as that measured by Lembo
et al.’® for energies between 0.025 and 0.4 keV/amu. Fig-
ure 4 shows a typical dependence of expected linear po-
larization on the collision-produced alignment? for vari-
ous transitions. The definition of the parameter A&
(Ref. 2) is given by

S[3m2—L(L+1)]o(m,)

m,

col —
Ay =

L(L+1)3o(m,) ’ W

m,

where o(m,) is the capture cross section of the magnetic
substate (L,m,). Since [I(0°)—1(90°)]/[1(0°)+1(90°)]
>>0, the data indicate that the collision strongly favors
the m =0 magnetic substate in this system'®!? over a very
wide energy region. Also the alignment in the n=09 states
seems to be larger than that in the n=8 states. Salin!?
has performed coupled-state molecular calculations of

electron capture from atomic hydrogen into slow (v=1
a.u.) fully stripped ions. The results of Salin’s calculation
for the Ne!" +H system, when applied to the quasi-
one-electron system Ne®' +Na, predicts a degree of po-
larization in close agreement with observed data.”!®
Salin’s calculation also predicts a statistical population
among possible / values for a given m (Refs. 9 and 12) by
taking into account strong post-collision Stark mixing in
the electric field of the residual target ion. As pointed
out by Lembo et al.® the absence of the ! degeneracy in
lithiumlike neon will serve to partially inhibit subsequent
Stark mixing. It will be interesting to study the state-
selective capture cross section®*!” with a high-resolution
spectrometer, ' instead of a simple interference filter, to
probe the extent of post-collision Stark mixing.
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