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Quantum mechanics of radiation damping
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We develop a nonrelativistic formulation for the quantum dynamics of an electron coupled to its
own radiation field. For this purpose, we have applied the Feynman-Vernon approach to the com-

posite system in order to obtain the reduced density operator of the electron. In the classical limit,
some well-known results, such as the Abraham-Lorentz equation of motion, are reproduced. We
have applied the resulting formalism to the problem of interference in order to investigate the possi-

ble effects of the incoherent modes of the electromagnetic radiation on the interference fringes. The
results allow us to conclude that the coupling to the radiation field is not enough for one to observe

a strong influence of those modes on the interference phenomenon.

I. INTRODUCTION

The emission of radiation by accelerated charged parti-
cles is responsible for the losses suffered by them. This
effect is known as radiation damping.

A quantum description of the dynamics of an electron
coupled to its own radiation field must naturally describe
this damping phenomenon. There are many different
ways to deal with dissipative systems in quantum
mechanics, but, in this case, it seems natural to use the
system-plus-reservoir approach. In this approach, we
consider a conservative composite system, and then apply
the canonical process of quantization.

It is easy to see the convenience of this method. Radia-
tion damping is a consequence of the coupling between
the electron and its own field. Therefore, the latter is the
reservoir responsible for the losses suffered by the parti-
cle. Furthermore, we can represent the modes of the field

by harmonic oscillators and then we have a particle in-
teracting with a bath of harmonic oscillators, as in the
model currently used' to study quantum Brownian
motion. The same model has been applied to some other
problems such as dissipative two-level systems and
muon —electron-gas interactions. However, if we apply
this model to the electron —radiation-field coupling, we
need to modify some of the underlying hypothesis.

The first modification has to do with the initial condi-
tion for the density operator of the system plus environ-
ment. Following Feynman and Vernon, it is generally
supposed that the interaction is suddenly switched on at
the initial instant. Before this, the system and the reser-
voir are assumed to be completely decoupled. Now, in
the electron —radiation-field case, as the interaction is al-
ways present, the initial condition needs a different treat-
ment. The required formalism has recently been
developed in different ways by Hakim and Ambegaokar
and by Morais Smith and Caldeira.

The second modification is related to the spectral func-
tion of the bath which arises from the form of the in-
teraction itself instead of being imposed as a constraint.

The complete system electron plus radiation field is
Hamiltonian and its classical equations of motion allow
us to verify the compatibility between this approach and
the well-known classical results of the radiation damping,
such as the Abraham-Lorentz equation of motion. The
purpose of this work is to develop a quantum formulation
for the dynamics of an electron coupled to its own radia-
tion field in the nonrelativistic case, and then apply it to a
problem of electronic interference in order to investigate
the inAuence of the coupling on the interference fringes.

In Sec. II we show how to describe the complete sys-
tem electron plus radiation field both in Lagrangian and
Hamiltonian formalisms and then investigate its classical
limit. The quantum dynamics is developed in Sec. III,
while its application to a prototype of an experiment of
electronic interference is carried on in Sec. IV. Finally,
we discuss the results in Sec. V.

II. DESCRIPTION AND CLASSICAL LIMIT

We describe the complete electron —plus —radiation-
field system by means of the Lagrangian

I.o+LI +I EM

where

Lo= —,'mq —Vo(q) (electron),

L = —J A —
pP d r (interaction),1

I

2

—+V/ —(VX A) d r&ax 2 3

c Bt

(field) . (4)

In these equations, V, (q) is an external potential; p and J
are charge and current densities of the electron, respec-
tively; A and P are the potentials associated to the self-
field of the electron.
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We use the radiation gauge and choose /=0. We also
transform the interaction term from r A to r A using

=dr A= (r. A) —r A
dt

and neglecting the total time derivative.
We can change to the Hamiltonian formalism by intro-

ducing p and II, the momenta conjugated to q and A, re-
spectively. We find

27TC

ro

and we will study only the low-frequency regime where
N «A.

Therefore, in this low-frequency approximation, the
exponential term can be treated in the electric dipole ap-
proximation. We can further convert the sum into an in-
tegral over k. We find

H =Ho+HI +HEM + ' (6) HI= ——f pkqk dk . (16)

with

2

Ho = + Vo(q) (electron), (7)

Making a canonical transformation on the Hamiltoni-
an in order to exchange qk and pk, we modify the interac-
tion term which becomes

HI =4~ecq II(q, t ) (interaction), (8) H, = — J q„qk'dk .
4 o

(17)

HEM= f 2vrc II + (VX A) d r . . . (field),
1

It is interesting to put this term in the form

HI= X ~kqkq .
k

(18)

and where the ellipsis, representing the counterterm,
equals

2' p r r (10)

This counterterm is not imposed as in the formulation of
the quantum Brownian motion but is provided by the
transformation (5) and will cancel an additional contribu-
tion to the external potential that arises later on in the
calculation.

Now we can expand A and II in plane waves con-
veniently normalized in a large box of volume V and
write

A(r, t )= 2 q k(kr )uk'(r)
k, A.

1
XPki, (r )uk'(r)

4mc
' 1/2

27TCuk'(r)= ek&exp(ik r),
V

(12)

(13)

Hl Xpki. N uk'. (q)I
k, A,

(14)

We will evaluate this term in a certain limit related to
the length scale in which we are interested. This length
scale is much larger than the characteristic electronic di-
mension ro. In the classical limit, rp is the classical elec-
tron radius, and in the quantum limit, it is the de Broglie
wavelength of the electron. In terms of frequency this
means that we have a cutoff frequency 0 such that

where e&& are unit vectors along the polarization direc-
tions (A, =1,2) (ek„ek2 and k are mutually orthogonal).
We also assume that the polarization directions are
equivalent.

This expansion converts the field Hamiltonian into a
Hamiltonian of a set of independent harmonic oscillators.
The interaction Hamiltonian becomes

For this purpose we introduce the spectral density func-
tion of the reservoir

2

J(CO) =—g 5(CO —
Cuk ),

2 k mkco

where ak is the coupling coefficient in (18), mk are the
masses, and cok are the frequencies of the oscillators of
the bath. Transforming the sum over k in (18) into an in-
tegral over co we recover the form (17) if the spectral den-
sity behaves like

Xco, co 0,
J' '=0, )n, (20)

where A. =(2e /3c ). We shall also use the notation
A, =m~. For electrons, ~—= 10 s.

This spectral density needs some remarks. First, it
differs from the spectral density used in the study of
Brownian motion which behaves linearly below the cutoff
frequency. Second, we did not impose its form in order
to find some desired behavior in the classical limit, but it
is a consequence of the known form of the coupling be-
tween the electron and the electromagnetic field in the
low-frequency range. Finally, depending on the model, it
shows the same behavior as the spectral function for
acoustic phonons in a 3D solid (see, for example, Ref. 2).

It is interesting to compare the study of quantum
Brownian motion to the one of radiation damping. In the
former, one starts with a Hamiltonian like (6) with
coordinate-coordinate interaction and a counterterm.
Then, one chooses the spectral density in order to repro-
duce the correct classical limit, namely, the Langevin
equation. In the case of radiation damping, the Hamil-
tonian (6) is obtained from first principles, we have an ac-
tual counterterm and the interaction was reduced to the
coordinate-coordinate form. We did not impose any par-
ticular form for the spectral density, but this was natural-
ly provided by the interaction. Then we have to verify if
we find the correct equation of motion in the classical
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limit.
To do this we take the Hamilton equations of motion

from (6) and employ Laplace transforms to eliminate the
field variables. The details of the calculation are in the
Appendix and the resulting equation for the electron is

m q
—kq'+ Vo(q ) =F(t ), (21)

where m * is the electron mass, renormalized by the self-
interaction, and F(t) is a fluctuating force, satisfying the
fluctuation-dissipation theorem. Equation (21) is the so-
called Abraham-Lorentz (AL) equation, which gives the
approximated classical description of the electron dy-
namics taking radiation damping into account. It should
be noticed that the AL equation itself presents many
deficiences, such as runaway solutions, pre-acceleration,
etc. We refer the reader to careful discussions on this is-
sue in Ref. 7. We can also argue that there is a
correspondence between the approximated description of
radiation damping by the third time derivative of posi-
tion in (21) and the low-frequency limit of the spectral
function we have obtained here.

It is shown in the Appendix that m -=m in the nonre-
lativistic limit studied in this paper.

Now, the quantum dynamics follows from the
Feynman-Vernon scheme, with the coupled initial condi-
tion (see below) and the particular spectral density (19)
and (20).

The time evolution of the total density operator is
given by

p(t ) =exp( iH—t lfi)p(0)exp(iHt lfi) . (23)

p(entire system, O}

=p(electron, O)p(entire system in equilibrium) .

(24)

From now on we will represent the electron coordi-
nates by a single variable, say x, and the field variables by
the vector

R=(R„R2,. . .,R~) . (25)

In this notation the above initial condition is written as

So, we have to specify the initial condition p(0) in order
to proceed with the evaluation of p(t }. Since it does not
make sense to try to decouple the electron from its own
radiation field it would be totally unrealistic to use the
factorizable initial condition as proposed by Feynman
and Vernon. Instead, we could prepare the initial state of
the system by performing a measurement of position on
the electron at t=0 once it is in equilibrium with the
electromagnetic radiation. The corresponding initial
condition can be written as

III. QUANTUM DYNAMICS
p(x'R', y'Q', 0)=pa(x', y', 0)p,q(x'R', y'Q'), (26)

We are dealing with a composite system with many de-
grees of freedom, but the only variables of interest are the
ones related to the electron. Thus, if we start with the
density operator p(t ) of the whole system, we have to
eliminate the field variables performing the trace of p(t )

over them. This procedure defines the reduced density
operator of the electron as

P(t) =trEMp(t ) .

where the primes stand for the values of the variables at
t =0.

In the usual way' the reduced density operator assumes
the form

p(x, y, t)= f fdx'dy'J(x, y, t;x', y', 0)po(x', y', 0),
(27)

where

J(x,y, t;x', y', 0)=f f 2)x(t)2)y(t)exp —' tSO[x(t)] So[y(t)]}V—([x(t)],[y( r)], x', y')
x' y'

and 9'([x(t )],[y(t )],x', y') is the so-called influence functional

P([x],[y],x',y')= f f fdR'dQ'dRp, (x'R', y'Q', 0)f f 2)R2)Q
R' Q'

Xexp —
I S[l(xt), R(t)] Sl[y(t), Q(t)]+—SEM[R(t)]—SEM[Q(t)]} .

(28)

(29)

In the case where the initial condition (26) is valid, the
infIuence functional is a functional of the paths
x(t ), y(t ), and a function of the initial values of the vari-
ables of the electron, x',y'. In the equations above,
So SI and SEM are the actions of the electron, the in-
teraction, and the field, respectively.

For the sake of simplicity we will perform the calcula-
tions for

interference process.
The first thing to do is to calculate the inAuence func-

tional taking into account the initial condition (26). It
can be shown' that its imaginary part is

9'; =exp f f [g(u )]a, (u —s)[2q(s)]du ds
o o

Vo(q)=0 . (30) (31}

The result will be convenient for our application to the where
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q =
—,'(x+y ),

g=x —y,
(32)

(33)

(34)sincok(u —s) .

f g(u )q(u )du (35)

a, (u —s)= —g
With the aid of the spectral density (19) and (20) we easily
evaluate Eq. (31) to obtain

V;=exp f q( u)g(u) du + A—f , g(u)q'(u)du
36m o o

The first term in the above equation has the only eft'ect
of renormalizing the external potential (here, Vo =0), but
we do not need to worry, because the counterterm (10)
exactly cancels it. This cancellation can be seen by as-
suming, for instance, a simple spherical model for the
electron's charge distribution.

In the same way, the third term provides an elec-
tromagnetic contribution to the mass, leading to a renor-
malized electron mass.

Thus, the imaginary part of the inhuence functional
reduces to the second term in Eq. (35).

The real part is evaluated in a similar way. Following
Ref. 5 we have (P= 1/kz T)

13E
9'„=exp —

—,
' g coth

' 1/2

(A rIr BrIr* )—2

with the definitions

Ir =i(y' x')—+tor f [x(u ) y(u—)]exp(icoru )du,
1/2 1 /2

(37)

PyCOy

2 E.
1/2

p&co&

2 E.

E~+ d'or p (E 2 —top2)2

—1/2
1 laptop

(E2 ~2)2

(38)

(39)

and

0'y
4

P7l yCOy

where the energies E are the positive solutions of

(40)

2
PyCO&

tn (E d'or
)—

%'e find

P, =expS2,
where

(41)

(42)

S2= f f, ( )dtofcof g(u)g(u)cosco(u —v)du du
o 0 0 f f, (to)d~ g'+g'tof g(u)g(u)du

A~ o 0
(43)

with where

f, ( )=cototh /3%to
(44) f [rg(u )'q(u )+g(u )q(u )]du . (48)

f2(~)=

AQ)
oth

1+co r

To do this we have to evaluate the double path in-
tegral. This is easily done by expanding the integrand
around the classical paths of the action S1 and following
the same steps of a similar calculation in Ref. 5. This
gives

g ( u ) =2u co coscou —2 sinto u . (46) J(q, g, t;q', g', 0)= [f(t )] 'exp(iS„, +S„,), (49)

The next point is to derive the expression for the prop-
agator of the reduced density operator, which is given by

J(q, g, t;q', g', 0)=f f2)q(t)2)g(t)exp(iS, +S2), (47)

where the actions were calculated along the classical
paths of S1.

Now, the reduced density operator can be written as
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1
p(q, g, t ) = f dq'd g'exp(iS„, +S2„)po(q', g', 0),

t

(50)

and all we need is to calculate the function f(t). This is
done by normalizing p(q, g, t ) and assuming that
po(q', g', 0) is itself normalized. So, the reduced density
operator takes its final form

p(q, g, t)= f dq'dg'exp(iS ,i+iSz, )ipo(q', g', 0) .
At

g, (x ) =exp(ikx )exp
(x+a )

20

$2(x ) =exp( i—kx )exp
(x —a)

20

and the initial state of the system by

lij(x ) =g, (x ) + Pz(x ) .

(52)

(53)

(54)

(51)

The above equation is our desired result. This gives
the quantum dynamics of the electron taking into ac-
count the radiation damping. In this framework we can
find the time evolution for any particular po(q', g', 0).
This allows us to investigate the efFects of the coupling to
the radiation field on the quantum behavior of the elec-
tron. We will do this in a particular case, namely, the
time evolution of p in a prototype interference experi-
ment.

IV. APPLICATION TO THE
INTERFERENCE PROBLEM

We consider a simple one-dimensional problem which
contains the essential physical information we need in or-
der to analyze more complex situations.

Suppose we have, at t =0, two wave packets of width
o., centered at x =a and x = —a, and propagating against
each other with average momenta —Ak and Ak, respec-
tively. We represent them by

Thus the initial density operator for this system takes
the form

po(x, y, 0) =pi(x, y, 0) +pz(x, y, 0) +p;„,(x,y, 0), (55)

where the first and the second terms describe the in-
dependent propagation of each wave packet, while the
last one describes the interference due to the initial over-
lap of the packets. Since we are interested in the interfer-
ence process, we retain only this last term.

In the case where the electron is not coupled to any
bath we can predict that the two wave packets will coin-
cide at the origin and then they will move far apart with
their widths spreading. The interference term is sma11 in
the beginning, reaches its maximum when the centers
coincide, and becomes small again after the crossing.

In order to know what happens when we take into ac-
count the coupling to the radiation field we have to insert
p(0) into the reduced density operator in Eq. (51). We as-
sume that a ))o. in order to neglect the initial overlap of
the wave packets. The normalized initial reduced density
operator is then

p;„,(q, (,0)=C exp(2ikq)exp — (q +g /4+a(+a ) +C exp( 2ikq—)exp — (q +g /4 —a/+a )
1 2 2 2 1

(56)

with the normalization constant

C= 1

2o &Yr
The relevant information in p;„,(t ) is in its diagonal terms (/=0). Performing all the integrations we find

(57)

2~7r
p;„,(q, /=0, t ) =p;„,(q, t ) = expo. t

[q+a(t)] [q —a(t)]
exp

2o (t) 2o (t)
r

mqB(t ) AH(t ) 2 2 aXcos exp2A'ta(t ) A~a(t )
(58)

where

a(t)=a — t,Ak

m
(59)

m20-2 ~m
2 2

a(t)= + + H(t),
4o. 4A t

n f;(ai) 6 singlet 2 0 27 slncotH(t ) = dpi 2 cosset — +3+ (1—coscot ) + f f~(co)d~ 1+ (1 cosset )+2 — —1
0 cot co t 0 cot

(60)

(61)

(62)
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and

kB(t)= +
2

(63)

When A, =O, expression (58) has the general form of an
interference term, namely,

p;„,(q, t ) =2+p, (q, t )Qpz(q, t )cosf (q, t ), (64)

where the function cosf(q, t) describes the interference
fringes.

According to Eqs. (58) and (59) the wave packets fol-
low the free particle classical paths, with the velocities

(65)

Furthermore, there is a spreading of the wave packets as
expected.

The new remarkable fact is in the last exponential,

D(t) =exp AH(t) 2 q a
ficta( t ) g ~

(66)

which resembles the form already obtained in the in-
terference term of wave packets in the case of Brownian
motion. The quantities o. , k, and a depend only on the
preparation procedure and we shall analyze D(t ) for real-
istic values of these parameters in what follows.

Let us consider, for instance, electrons with energies of
the order of some electronvolts. In this case the wave
vector k is of the order of 10' m ' and the de Broglie
wavelength of the particle is about 10 ' A. This leads us
to consider the initial width o. as 1 A and so, the factor
(o k ) is very close to one. On the other hand the initial
separation of the wave packets can be taken as the intera-
tomic spacing in a solid which means that 2a=-few
angstroms, and that (a/cr) would be at most of the or-
der of 10 . We can also estimate the cutoff frequency 0
as 10' sec

Taking all these values into account and remembering
that ~=6.2X10 sec we can finally study the behavior
of D(t) in the limits of interest. We found that for tem-
peratures below 10 K we can safely use the zero temper-
ature limit and H(t )/a(t ) tends to a constant for times of
the order of 10 "sec. Since the wave packets take much
longer than that to overlap we shall only be interested in
the long time behavior of D(t ).

Carefully analyzing the integrals involved in the ex-
ponent of D(t ) we found that for long times

type experiment takes place only during the initial
preparation of the packets and afterward there is no
emission of radiation at all. However, the coupling to the
field introduces not only dissipation but also a fluctuating
force to the electron motion. Here, only the fluctuations
can be responsible for the existence of D(t ).

A similar effect has also been shown to exist in the ex-
ample of quantum Brownian motion when A, ~O and
T~ ~, but in such a way that A, T~constant (see Ref. 8
for details). This situation can be shown to be equivalent
to an undamped particle acted on by an external stochas-
tic force without temperature.

V. CONCLUSIONS

Using the system-plus-reservoir approach we were able
to describe the quantum dynamics of a nonrelativistic
charged particle taking into account the coupling to its
own radiation field in the low-frequency limit. The ap-
proach (within the appropriated limits) provides the ex-
pected classical limit of the problem, namely, the
Abraham-Lorentz equation of motion. We also showed
that this problem is another example that can be treated
within the scheme of coordinate-coordinate coupling
with the appropriate choice of the spectral function J(co).
Moreover, the counterterm for the renormalization of the
potential spontaneously appears in the present example,
whereas the mass renormalization has the usual meaning
as in quantum electrodynamics.

The resulting generalized Feynman-Vernon approach
can clearly be applied to the charged-particle —radiation-
field system in many circumstances. Obviously a very in-
teresting example to be studied is the quantum dynamics
of the charged particle in the presence of an external
force f(t ) such that df Idt is not zero.

In the specific application to the interference problem,
we conclude that the incoherent modes of the elec-
tromagnetic radiation would tend to destroy the interfer-
ence fringes depending on the way the two initial wave
packets are prepared. However, for specific values of the
quantities involved in more realistic problems we found
that this possible correction is negligible.
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D(t)-=exp —[10 (a/cr) ] (67)
APPENDIX: THE CLASSICAL EQUATION OF MOTION

which is not much smaller than one. This only tells us
that although there should be a tendency for the interfer-
ence term to be destroyed by the coupling to the elec-
tromagnetic field, the latter is not sufficiently effective in
so doing.

Although the specific numerical values of the physical
quantities involved in the problem do not allow for the
destruction of interference, there still remains the ques-
tion about the origin of D(t ).

The emission of radiation that happens in our proto-

The composite system electron-plus-radiation field is
described by a Hamiltonian that depends on the variables
of the electron and the field. Clearly, the classical behav-
ior is found by writing down the Hamiltonian equations
of motion for this Hamiltonian [Eq. (6)]. However, these
equations are coupled through the variables of the field
and we must eliminate them in order to obtain the classi-
cal equation of motion for the electron only.

First, the Hamilton equations of motion are
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and

mq = —Vo(q ) —g a„qk
k

(A 1) for high temperatures (ks T ))A'co). In the case focused
here, J(co) is given by (20).

The remaining term in Eq. (A3) is

qk= —Ckq2 2 (A2)
with

'[R(s)q(s)], (A8)

Now performing the Laplace transform of the equa-
tions above, we can eliminate the variables qk and then
take the inverse transform of the equation for q. We find

2

R(s)= g a +c k
(A9)

sqk(0) +qk(0)
mq = —Vo(q )+X ' g ak

s +c k

akq(s)+ 2+ 2I 2 (A3)

3—
(

2mrA
3~

2m&A 2+ 3+ 2m' +0 1
s +m7.$ +

Employing the spectral function J(co), this gives

(A10)
where X ' means the inverse transform. The first sum
inside the square brackets gives

r

for Q)) 1, the two last terms are negligible in this equa-
tion and the inverse transform then gives

akqk(0)F(t)= g a„q„(0)cosckt+ sinckt
k ck

(A4)
32mrA

(
2mrQ ..

3~
(Al 1)

(F(t)) =0

and the correlation is

(A5)

In order to calculate average values in an ensemble of
identically prepared systems, we assume that the reser-
voir is in thermodynamical equilibrium at t =0 and
remember that the theorem of equipartition of energy is
valid in the classical limit. Thus, it is straightforward to
find that the average of F(t ) is

m*=m+hm, (A12)

The effect of the first term above is to renormalize the
external potential Vo(q). However, as the counterterm'
exactly cancels it, the bare potential is unaffected. If we
assume a specific model for the charge distribution of the
electron, we can easily see this.

The second term in (Al 1) is an electromagnetic contri-
bution to the bare electron mass. This gives rise to a re-
norrnalized electron mass

2k' T ~ J(to)(F(t)F(t') ) = l c so(cot t')d co—.
7T 0 CO

(A6) where

2m ~QAm= (A13)
This last equation agrees with the expression given by the
fluctuation-dissipation theorem,

(F(t )F(t') )

%coJ(co)coth cosco(t t')dto, —
0 2k~ T (A7)

But, in this case, taking into account the numerical
values, we can conclude that Am ((1 and thus we have
essentially m *-=m.

Finally, the last term in (All) is the well-known radia-
tion damping and the resulting classical equation of
motion is just the Abraham-Lorentz equation (21).
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