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Classical mnemonic approach for obtaining hydrogenic expectation values of r
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A recent paper by Drake and Swainson [Phys. Rev. A 42, 1123 (1990)] presents a recursion rela-
tion that generates a set of coefficients needed to obtain general closed-form expressions for hydro-
genic expectation values for r . By combining this recursion relation with an earlier semiclassical
formulation of this calculation [J. Phys. B 14, 1373 (1981)), it is shown that the correct expectation
values can also be obtained by a simple substitution of prescribed angular momentum operators into
the classical Kepler formula, which provides a transparent connection to the correspondence limit.
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This integration can be performed in closed form to ob-
tain

(r') =a'(b/a)'+'P2 (a/b ) . (2)

Here I'& is the Legendre polynomial of order
A. =!s+3/2~ —1/2, where A, has been constructed so that
both positive and negative powers are described by a
Legendre polynomial of positive index (A, =s + 1 for
s ~ —1, A, = —s —2 for s ~ —2). (Notice that this is an
unusual application of the Legendre polynomial with an
argument greater than unity. ) For a semiclassical sys-
tem with semimajor axis a =n /Z and a semiminor-to-

A recent paper by Drake and Swainson' presents a
general method for obtaining a closed-form symbolic ex-
pression for the hydrogenic expectation value of any
power of the radial coordinate r . This formulation was
made possible by their derivation of a recursion relation
which permits a crucial set of coefficients to be sequen-
tially generated. It is interesting to note that the need for
these same coefficients occurred earlier in the context of a
semiclassical formulation of this problem. In the formu-
lation of Ref. 2, it was shown that the exact quantum-
mechanical expression can be obtained directly from the
corresponding classical formula by a simple mnemonic,
provided these coefficients are known. By combining the
recursion formula of Ref. 1 with the semiclassical formu-
lation of Ref. 2, the correct quantum-mechanical expres-
sions can now be obtained from the classical formula by a
simple substitutional prescription for the angular
momentum operators. This method of embedding the
quantum-mechanical dependences directly into the classi-
cal formulation offers some conceptual advantages; for
example, by providing a smooth transition between the
predictions of quantum-mechanical and classical
Hamilton- Jacobi perturbation theories.

The average value for a power of the radial coordinate
r for a classical planetary Kepler orbit of semimajor axis
a and semiminor axis b can be written as an integral over
the angular coordinate 6

( s) s(b I )2s+3

k +'=(2l+q+1)t/(2l —q)!2 q+' (4)

q

k, = g ( —1) +"C2 „(l+r)!/(1 r)! . —

The closed-form quantum-mechanical expression for
(r') can thus be obtained for arbitrary s by substituting
Eqs. (4) and (5) into Eq. (3), provided the coefficients
C& „are known. However, no general formula for
specifying this quantity was available at the time of Ref.
2, and a table of specific numerical values for C&, for
k ~ 6 (obtained by comparison with Ref. 6) was presented.
The paper by Drake and Swainson' contains this needed
relationship, in the form of a recursion relation for the
quantity they denote as d', ', which is related to C& „by

( 1)q+rC d(2, +2)
A, , q, r q, r (6)

With this correspondence, Ref. 1 completes the
specification of these quantities by the use of the recur-
sion formula [Eq. (7) of Ref. 1]

semimajor axis ratio b la =k In, this can be written as
[Eq. (10) of Ref. 2]

(r') =(n /Z)'(n/k, )
' '[(k, ln) P2(n/k, )] . (3)

Here the quantity k is associated with the angular
momentum, and has been factored into two contribu-
tions: k, leads to even powers; k, leads to odd or non-
contributing powers [n '(n Ik, )

' ' reduces to
n k, '+ for s ~ —2 and to n ' for s ~ —1]. In the clas-
sical and semiclassical cases these two quantities are
equal: in the semiclassical case k, =k, =I + —,', where —,

' is

the contribution from the Maslov index.
To obtain the quantum-mechanical result, Eq. (2) was

compared in Ref. 2 with the explicit formulas presented
by Bockasten. This comparison revealed that, with the
exception of these angular momentum operators, all fac-
tors agree exactly in the classical and quantum-
mechanical expressions. For these operators, the com-
parison indicated that different substitutions should be
made for the odd and even powers, which were shown
[Eqs. (17) and (18) of Ref. 2] to be given by
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TABLE I. The coefficients Cp q
' of Eq. (5), tabulated for 7(A, ~ 10. Values for A, 6 are tabulated in

Ref. 2.
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0
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22/3
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0

1

5
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1
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332/15

0
1
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576/7
1
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1

13/2
0

1

21
144/5

1

15
84
0

1
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1

34/3

(A, +2)
q, r

1

A, (2A, —2q —1)

X((A,—2q)(2A, —1)d' „+"

+2q(A. —1)Id' ', „

+fr(r+1)—A. (A, —2)/4]d' ', „I),
and the starting values

dQQ=1 dQQ=1

These formulas reproduce the values listed in the table in
Ref. 2 for A, ~6, and those results are supplemented for
7 A. +10 in Table I. By combining these values for
Cz „with Eqs. (3)—(5) above, the exact expressions for
(r ) can be obtained.

The use of these three equations is equivalent to the use
of Eqs. (2)—(5) in Ref. 1, but explicit expressions for all
powers in the range —16 P(13 have already been
presented there, and need not be duplicated. However,
the identity of the Legendre functions and the role of the
angular momentum operators in its arguments is not irn-
mediately apparent from the purely quantum-mechanical
formulation, and some insights can be gained from com-
paring the semiclassical equations presented here with

the explicit expressions in Ref. 1.
In this formulation, the extension from the classical to

the quantum-mechanical case is achieved when the
Legendre polynomial is replaced by a Legendre function,
in which the order of successive terms in the series be-
comes a factorial relationship rather than one of succes-
sive multiplication. In the classical case, Hamilton-
Jacobi theory treats a perturbation proportional to (r~)
by formally differentiating this quantity with respect to
the angular momentum to obtain the advance of the per-
ihelion. Since the Legendre-polynomial formulation of
Eq. (3) has well-defined differential properties, and it is
the polynomial representation of the angular momentum
that characterizes the classical limit, this formulation
provides an overlap wherein classical insights might be
transferred to quantum-mechanical calculations. This is
particularly applicable to studies of core polarization
effects in high n and I Rydberg states of complex atoms,
since the use of the core polarization model has already
introduced a classical element into the description.
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