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Hysteresis of synchronous-asynchronous regimes in a system of two coupled oscillators
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Nonisochronism of one oscillator in a system of two coupled nonlinear oscillators leads to an
overlap of synchronous and asynchronous regimes. In some cases, two-frequency oscillations may
completely destroy synchronization. We derive conditions for the emergence of these competitive
two-frequency oscillations and for the destruction of the synchronous regime, which occurs due to
the merging of stable and unstable fixed points in phase space. Analysis is done by reducing the
averaged coupled oscillator equations to the general nonlinear pendulum equation. Boundaries of
each regime derived in this way are in good agreement with those obtained numerically.

I. INTRODUCTION

A system of two coupled oscillators is one of the classi-
cal models used for studies of multimodal oscillatory sys-
tems. It describes a wide range of processes that take
place in biological, chemical, and physical systems. ' In
recent years, considerable progress has been made in un-
derstanding the dynamics of two-mode systems. In par-
ticular, several studies have identified nonoscillatory,
one-frequency and two-frequency regimes in two identi-
cal weakly coupled, weakly nonlinear oscillators. ' For
two oscillators with different characteristics, the width of
the synchronization region has been obtained analytical-
ly. Experimentally, coupled nonisochronous oscillators
show hysteresis between one- and two-frequency osciHa-
tions. This competition between different oscillator re-
gimes can substantially change the dynamical behavior of
the system and may even destroy the entire synchronous
regime of the two oscillators. Analogous behavior is re-
ported for two scalar-coupled, identical oscillators, which
exhibit bistability between phase-locked and phase-drift
solutions.

In this paper we present a theoretical description of
these competition effects for the system of two different
weakly nonlinear oscillators with direct coupling, includ-
ing the dependence of oscillation frequencies upon their
amplitudes (nonisochronism). We provide an analytical
determination of the conditions and region of existence
for competition between synchronous and asynchronous
oscillations, by reducing the equations describing such
systems to the general nonlinear pendulum equation.
This allows certain conclusions about oscillation regimes
to be made using a relatively simple mathematical model.

II. DETERMINATION OF THE REGION
OF COMPETITION

We consider two linearly coupled oscillators with reac-
tive nonlinearity described in the usual way by the follow-
ing general equations:

x i p iF i (x i )x i +co i G i (x i )x i
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Here I'
j 2 and 6& 2 are polynomials of the form

F, (x, )=1—v, x, , i=1,2

G (x;)=1—5X;, i =1,2 .
(2)

where co=(co, +co2)/2 and a, b, gati„and P2 are slowly
varying functions of time. Using these solutions, we ap-
ply the averaging method introduced by Krylov and Bo-
goliubov ' for weakly nonlinear systems. After first-
order averaging, this method yields

dQ =(a, —y, a )a+kb sing,
d7

db =(nb ebb )b —k—a sing,

(4a)

2= —b, +Pa icb +k ———— cositt,
a b

(4c)

where a, b are oscillation amplitudes for the two osci11a-
tors,

P&, 2 &i 2&ah E
2'

g is the phase diff'erence p2
—pi, k denotes a coefficient of

resonant interaction between the two oscillators,
6—=co, —co& is the detuning of the two partial frequencies,
~ is the "slow" time, and coefficients a„ab characterize
the linear and y„yb nonlinear dissipative features of the
oscillators. The coefficients P and ic represent noniso-
chronic features of the oscillators and are dependent
upon the parameters 5, 2 and p, 2 of Eqs. (1) and (2).

The equilibrium points a =ao, b =bo, P= Po of system

This approach is also valid for arbitrary differentiable
F, (x; ) and G;(x;).

If the two oscillators are weakly nonlinear and weakly
coupled, and the difference in their partial frequencies is
small compared with either frequency, solutions of Eqs.
(1) may be written in the form

x, (t) =a(t)cos[cot+iti, (t)],
x2(t)= b(t)c os[ cot +p (2t)],
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(4) are situated along the resonance curves
2
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where

ao= [a.+[a'. 4y—.bo(yt, bo a—b)]'"] .2= 1
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(5b)

d 2= —6—~b
d7-

Linearizing Eqs. (4) in the neighborhood of the resonant
value of the amplitude ho=& —b. /t~, with amplitude ao
from Eq. (5b), yields

d6, =(a, —y, a o)a o+( a, —3y, ao )5, +kbosin1(t,

(8a)

Qp

Qp
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p

In general, for any parameter region where condition
(6) is valid, the evolution of the phase diff'erence may be
determined from the approximate equation
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FIG. 1. The resonance curve for system (4) with parameter
values a, =3.5; at, =1, y, =1, yt, =1, k=1, P=O, and ~=50.
The solid line shows stable node-focus fixed points, the dotted
line shows saddle-node fixed points, and the dashed line shows
saddle-focus fixed points.

Equations (1) and (4) present the general problem of
two linearly coupled nonisochronous oscillators. The
remainder of the paper will deal with the case when only
one of the two oscillators is substantially nonisochronous
(13=0, t~) 0), since this is the case for which synchronous
and asynchronous oscillations compete.

A typical resonance curve (with P=O, ~) 0) is shown
in Fig. 1 in the plane of bo and 6 (equilibrium amplitude
versus detuning). Stable fixed points of the focus type are
situated along the solid part of the curve, unstable fixed
points of the saddle-node type are indicated by dots, and
unstable saddle-focus points are shown as a dashed line.
The parabola 5= —~b p is sandwiched between the stable
segment of the resonance curve and the nearby branch of
saddle-node fixed points. Because these branches are so
close together along the stable portion, Eq. (5a) implies
that, for each equilibrium point,

2
'

2 1/2
bp kap

b abo—
~

)—) —1 —(at, —
yt, bo)

Qp '

p

d6~
y bbo )bo+(at, 3y b

—bo )6b —kaosing,

(8b)

(8c)

where 5,:—a —ap, 6b ——b —bp.
This system of equations (8) has two equilibrium

points:

+(ab ybbo
—)bo ]/[(a. —3y.ao )ao],

bp
5b =0, g =me+( —1) arcsin (ab ybb—o)

apk

One of these roots, A, , =e, —3y, ap, corresponds to that
eigenvector in the phase space of Eq. (8) that is directed
along the 5, axis. This eigenvector is common for both
fixed points. The two other eigenvectors lie perpendicu-
lar to the 5, axis in the phase plane ($,5b) and are gen-
erally m dependent [See Eq. (9)]. If A, , (0, then the first
eigenvector provides phase-space compression into the
phase plane ($,5b ) in the neighborhood of the equilibri-
um state a =ap and b = bp ~ Stability of the motion in this
phase plane is discussed below.

Differentiating Eq. (7) by time r using Eqs. (8) yields

d5b= —2abo
d d7.

2~bo(ab yb—bo )+2aaobok—sing

+
d

(a~ 3y~b )odt(t z

a nonlinear physical pendulum equation of the general
form

d2 d

d7 dr
+v +(sing=y, (12)

where the dissipation is characterized by

m =0, 1

repeated along the g axis with period 2'. Stability of
these points is determined by the roots A, ; of the following
eigenvalue equation:

(a, —3y, ao —A, )[A, —(at, —3ybbo)A, —2trkt2obocosf ]

=0 . (10)
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v 3Xbbo c g,2

the rotating moment is

y = 2—lobo(ab y—bbo ),

only the first term in the expansion, Eq. (16) yields

b,2 Xsinx+vb sin —=y —/sin(x+g ) .0

Combining this result with Eqs. (17) and (18) yields

(19)

g= —21~aobok .

Its phase plane (ttj, ij'j) is equivalent to the phase plane
(1(,5b) of system (8). In its phase plane, Eq. (12) has
stable focus fixed points I'; and saddle fixed points S;,
which are all located on the g axis, evenly spaced with
period 2m. If y is su%ciently small, separatrix C2, enter-
ing S;, passes above separatrix C„which exits the previ-
ous saddle point S; &

and enters I';, the stable fixed point
between S;, and S, . In this case, from any initial condi-
tion, the system arrives at the stable steady state. At a
higher value of y =y„C& and C2 merge to form a
periodic curve connecting the saddle points. For y )y„
only trajectories originating below this curve are attract-
ed to the steady state. Initial conditions above the curve
Aow to the phase rotating solution, which is equivalent to
a limit cycle in the phase space of Eq. (8).

An approximate condition for the emergence and ex-
istence of this limit cycle can be determined using a
Fourier expansion technique, as previously applied to
similar equations. This approach is useful for equations
such as (12) of the general form

(13)

or, equivalently,

GATV (20)

for the existence of the limit cycle. '
We should stress that after the separatrices have

formed a loop and the limit cycle appears, the stability of
the focus fixed point has not changed and, for some inter-
vals of the parameters in the phase plane, both a stable
fixed point and a stable limit cycle coexist. However,
when the magnitude of the fraction y /g reaches one,
stable and unstable fixed points merge and disappear.
After such a crisis in the phase space, only rotational
motion remains, indicating that the initial system is asyn-
chronous.

Comparison of the results for the stability of the equi-
librium states of system (4) [using assumption (6)] shows
good agreement with the results of numerical studies of
system (4). Indeed, in the parameter interval where equi-
librium condition (6) makes sense, system (4) possesses a
pair of fixed points (one of them is stable) with very near-
by values for their stationary amplitudes (see Fig. 1).
Each of the fixed points has one negative eigenvalue. The
two other eigenvalues for the stable point are complex
conjugates (focus) and, for the unstable point, real and of
different sign (saddle). At a certain parameter point, both
equilibrium points merge and disappear.

Such a qualitative confirmation of the results of the
theoretical analysis leads us to expect good quantitative

+vP+R (go+x ) =y,dx
(14)

where R(P)=R(/+2~), go is a saddle fixed point, and
x =g —itjo. The fixed-point structure of Eq. (12) de-
scribed above is characteristic of equations of this form,
and, since the merged separatrices form a 2'-periodic
curve, this function g(x) can be expanded on the interval
0(x &2m as

g(x) = g b„sin
2

(15)

Substituting Eq. (15) into Eq. (14) yields

nxg A„sin =y —R(go+x),
n =1

(16) -l50 -75
DETUNING

N kbkA„=vb„+ g (b„+k+b„k —bk „) (17)

with b, =0 ifi ~0ori )X.
Equation (16) yields

R p+x sin dx
0 2

(18)

which, when combined with Eq. (17), gives the
coefficients b, . From Eq. (12), sin1t&&=y/g, and, retaining

FIG. 2. The bifurcation portrait for system (4) obtained nu-
merically, for parameter values cxb = 1, y, = 1, y b

= 1, k = 1,
/3=0, and s =50. The region of synchronous oscillation
(hatched area) and the region where one- and two-frequency re-
gimes compete (double hatched area) are illustrated. The dot-
dashed lines show boundaries of the hysteresis region predicted
analytically. S denotes synchronous oscillations, a stable fixed
point in the phase space of system (4), and T, ~ denotes asyn-
chronous oscillations, two-dimensional tori in the phase space
of system (4). The arrows indicate the boundaries of the hys-
teresis region.
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agreement as well. In particular, condition (20) should
define the region in the parameter space where, in the ini-
tial system, stable synchronous oscillations compete with
pulsations. The collapsing of stable and unstable equilib-
rium states by exiting the region

(21)

defines the boundary between synchronous and asynchro-
nous motion of the two oscillators.

Figure 2 shows the bifurcation portrait of system (4) in
the parameter plane (b„tx, ) obtained numerically. The
region where synchronous oscillations exist is hatched.
When moving out of this region by decreasing

~
b, ~, pulsa-

tions emerge gradually as a result of Hopf bifurcation.
Increasing b,

~
leads to a sudden (hard) excitation of

beats. When returning back to the synchronization re-
gion by decreasing

~
b, , the disappearance of these beats

shows hysteresis. This corresponds to the final dimension
of the limit cycle losing stability when condition (20) is
not satisfied. The hysteresis region of one- and two-
frequency oscillations, where synchronous and asynchro-
nous regimes compete, is marked by double hatching.

Curves corresponding to the analytically determined
boundaries of the hysteresis region, condition (20) and
condition (21), are drawn as a dot-dashed line. The latter
demonstrates very good agreement with the numerical re-
sults. Furthermore, our numerical experiments indicate
that the hysteresis of the different oscillation regimes de-
scribed above is a robust phenomenon, persisting even
when factors such as nonisochronism of both oscillators
(P&0) and influence of nonresonant mechanisms of the
interactions between the oscillators are included.

To summarize, we have demonstrated that the com-
petition between synchronous and asynchronous motion
in a system of two coupled oscillators may be caused by
the existence in phase space of two neighboring fixed
points, one of which is unstable. Changes of system pa-
rameters can lead to closure of separatrices and to the ap-
pearance of a limit cycle, which coexists with a stable
fixed point.
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