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Extinction of sound by spherical scatterers in a viscous fluid
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The extinction of sound waves in a viscous fluid due to scattering from viscous fluid and solid
elastic spheres is investigated. Exact expressions for scattered and transmitted fields caused by an
incident-plane compressional wave of unit amplitude are calculated analytically with both compres-
sional and shear modes supported in the viscous fluid and solid elastic media. Furthermore, it is
shown that by boundary coupling, incident compressional acoustic waves generate compressional
and shear waves in the scattered and transmitted fields. The general expressions for scattering and
extinction cross sections are given, and for the special cases of vanishing viscosity, agreement with
well-known solutions is obtained. In the Rayleigh-wave range for small scatterers, simple expres-
sions for the cross sections are obtained, and for lossy scattering, absorption phenomena are shown
to dominate scattering phenomena in this range. Finally, the extinction coefficient for a dilute cloud
of scatterers is derived and the extinction eft'ects due to viscosity are discussed.

I. INTRODUCTION

The scattering of sound waves by spherical obstacles
dates to the works of Rayleigh' and Lamb, who con-
sidered fixed and movable rigid scatterers, respectively,
while the exact solutions for the scattering of plane
acoustic waves from inviscid Auid and elastic spheres in
inviscid Auids have been found more recently. The in-
clusion of viscosity in the Auid model was made by
Sewell, who considered the small scatterer to be rigid,
and Herzfeld, who added the elasticity of the small
scatterer. Viscosity greatly complicates the analysis be-
cause the Auid medium can then support shear as well as
compressional modes, both of which must be accounted
for in satisfying the boundary conditions on the scatterer.
Other authors have considered models accounting for
thermal losses ' and more complicated boundary or
scatterer models. " ' In the present work, the scattering
of plane acoustic waves from a spherical obstacle in a
viscous Auid is investigated with the method of Herzfeld
(normally referred to as Mie scattering after Mie' who is
credited with the solution for the corresponding elec-
tromagnetic problem), but no restriction is placed on the
size of the scatterer, which can be a Auid or a solid
sphere. In Sec. II a general solution of the vector
difFerential equation in terms of scalar generating func-
tions is derived. Expansion of incident-plane longitudinal
waves is given, and proper boundary conditions for the
problem are discussed. Scattering of sound waves by a
fluid sphere is analyzed in Sec. III. Important scattering
quantities such as intensity, differential, and total cross
sections of the scattered field are obtained. Limiting
cases for vanishing viscosity q are derived and agreement
with known pure acoustic solutions is established. Final-
ly, the extinction coefficient for a cloud of viscous Auid
scatterers in a viscous Auid is derived. Section IV then
contains similar discussions to those of Sec. III, but for
solid scatterers. In Sec. V, we give the approximate solu-

tions for the range of Rayleigh scattering and discuss the
results.

II. FLUID MODEL

We assume the Auid medium in which the scatterer is
embedded extends to infinity, and both the medium sur-
rounding the scatterer as well as the Auid sphere are de-
scribed by the same set of equations. We shall assign sub-
scripts 1 and 2 to the parameters of the media outside
and inside the scatterer. Following Herzfeld, we write
the equation of motion for harmonic time variation e
in the viscous Auid as

E
(V +K )v — 1 — V(V.v)=0 .

k

Here v is the perturbation in the fluid velocity due to the
acoustic field and K =m/CI and k =cu/c& are the
viscous-Auid propagation constants for shear and
compressional modes with

C~ = i cog Ip, ci.= (1/tc —2i cog)—Ip
defining the shear and compressional wave propagation
velocities, respectively. In these expressions p, 1/~, g are
the density, compressibility, and the coefficient viscosity
of the Auid.

Compressional and shear waves can be immediately
separated by representing v =v&+ vz, of which the form-
er satisfies VXvc=o and the latter satisfies V-v~=0.
The separation of the two waves in this linear representa-
tion indicates that shear and compressional waves propa-
gate independently. However, this is no longer true for
higher approximations where it is expected that the two
types of modes are coupled.

In order to obtain the acoustic solution, the divergence
of both sides of Eq. (1) is taken, so that

(V +k )V.vc =0 .
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A. Expansion of vector plane waveConsidering that V.vc = ere is determined from (3), a par-
ticular solution (compressional wave solution) vc of Eq.
(1) is

—1
vc V~c

k

A more complete solution of Eq. (2) is obtained by adding
the complementary solution (shear-wave solution) vs of
equations

(V +K )v~=0, V v&=0 .

The divergenceless nature of the vector vs is ensured by
writing a solution in the form V X V Xass where ~s
satisfies

ik
1
r cosO

v„' =e ' cosO,

In order to study the scattering and attenuation due to
scattering with the method of Herzfeld and Mie, an ex-
pansion of the incident wave in terms of the spherica1
wave functions must be given. We take a rectangular sys-
tem of coordinates with the origin at the center of the
sphere with the z direction as the direction of propaga-
tion of the incident wave. For an incident-plane
compressional wave of unit amplitude the directions of
displacement and propagation are both the z direction.

(5) ik1 zThe spherical components of the incident wave v=ze
are therefore

(V +K )m's=0,

a is a constant vector, and in spherical coordinates the
position vector can be substituted for a. Therefore, the
shear-wave solution can be represented by

ik&rcosO .
U =e ' sinO,

Uy =0

We may rewrite these in terms of the potential
lk

&
rcosO

m' =ike ' as
1

v =—7 XV'Xrm
K S

We are now able to write the components of the veloci-
ty vector in terms of scalar generating functions ~c,mrs.

Vr =Vr +U„

1 8 1
r —1 (r~c)+

~
l(l +1)(r~s),

(kr) ~r Kr

Ur=
1 (roc),1 1

r Br

1 1 (re'c ),
k, r

1 8 (re'c ),
k, r sinO ~P

(12)

Up=Up +UgC S

1 1 0(r~c)+ (r~s)
(kr) Kr Br BO

Up=Up +UpC S

a a,
(kr)2 sinO BP Kr sinO Br BP

The stress components can be found from

which agree with (11).
Using Bauer's formula,

GO z((kr)e'""'" = g i'(21+1) P, (cosO),
(kr)

one can write

r~c= g i'+'(Pl+1)zi(k, r)PI(cosO),
1=0

(13)

(14)

and

o.„„= 7'-v+2' U, ,
COK Br

Uo 1

r r (3O

where zI(kr) is a spherical radial function for a solid
sphere, and for the incident wave will be the Ricatti-
Bessel function.

B. Boundary conditions

a, 1 1V' v= (r u„)+ . (sinOue)+ . u& .
r Br " rsinO BO r sinO 8

The solutions of the scalar wave equation in spherical
coordinates are known, ' one can write

rmc=z&(kr) Y& (8,$), rue =zI(Kr)YI (8,$), (10)

where z&(x)=&marx/2ZI+, &2(x) is the spherical radial
function corresponding to the half-order cylindrical
Bessel JI +,&2(x) or Hankel HI'+, &2 (x ) functions.
Y& ( 8, P ) is the tesseral surface harmonic defined
as Y&~ 8,$)=(ai cosmP+bi sinmg)Pi (cosO) Here.
P&' '(cosO) is the associated Legendre function.

l (2) ] ( I ) $(1)
~rr ~rr + rr

f(2) (1) ~(&)
rO re +Ore

t(2) ;(1) s(l)
The third o'„& =o'„& +o'„& is redundant and will be
dropped. The boundary conditions for velocities are

Conditions that hold at a surface separating two Quid
media are easily derivable. At such a surface the require-
ment that the two media remain in contact leads to the
conclusion that the velocities must be continuous across
the boundary, and the equilibrium of an arbitrary volume
which encloses portions of both media leads to the con-
tinuity of stress across the spherical surface.

The boundary conditions for stresses then wi11 be writ-
ten as
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(2) ,.(1) (1) E(2 -
s (16)

&(2) ;(1) 5(1)
where the third U& =U& +U& is also redundant and
will be dropped.

III. SCATTERING BY A VISCOUS-FLUID SPHERE

%"hen a purely compressional plane wave of unit am-
plitude and with wave number k, is incident on the sur-
face of the spherical viscous-Quid scatterer, scattered as
well as transmitted longitudinal and vertical shear modes
will be generated. (Although k, is actually complex and
will give a damped plane wave, for many real fluids the
imaginary part of this compressional wave number will
be small enough that we can neglect it in order to consid-
er the propagation of a plane acoustic wave of unit ampli-
tude, neglecting the small damping. ) We set the follow-
ing expressions for scalar potentials of incident, scattered,
and transmitted waves:

I

+

+
+ ~

re'c = g i'+'(2l + l)g&(k, r)PI(cos8),
1=0

oo gf '

rmz= g i '(Pl+1) f g&(k&r)P&(cos8),
1=0 gf

+

+

++
I

I

oo gf
rm'c = g i '+'(2l + 1) f 1(»&(kyar )PI(cos8), (17)

1=0
2 I

oo 'gf
rmz= g i'+'(2l+1) f (I(IC, r)PI(cos8),

1=0
1 1 1

Qo gf
rvrz= g i'+'(2l+1) f P&(Kzr)PI(cos8),

1=0
1 2 1

where the Ricatti-Bessel and Ricatti-Hankel functions
are defined as

QI(x)=uxor/2 Ji+&n(x)» k(x)=Vx~/2 HI'+I t2(x)

with J&+&&2(x) and H&+'», (x) the half-order cylindrical
Bessel and Hankel functions. The five quantities A0 —A4
are the unknown model coefficients to be determined.

Using the boundary conditions (15) and (16), and the
expressions in Eqs. (8) and (9), four sets of equations will
be set in order. By using the identities

sin8 ( ) + . (.)= 1(1+1)( ), —1 8 . 8 1

sin8 88 88 sin8 gp2

(18)

for ( ~ ) any of the rein these four . equations can be writ-
ten in a matrix form (see the right-hand column of this
page)

»
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In these equations, it is understood that after differentiation r must be substituted by the boundary radius r =a.
After necessary manipulations we find

gf=0
'92 —1 [I(I+1)—2]

kzaj l(kza) Kza1/ll(Kza) —l(l+1)
jl(kza } Cl(Kza)

klahl(kla) Klagl(Kla) —I(l+1)
hl(k, a) g, (K,a )

+—'(K a) —1
2

'92
z

kzaj l(kza } Kzal/J'1(Kza) K,a gi(K, a) k, ahl'(k la )

~'

pz k, ahi(k, a) K, ag'1(K1a) —I(I+1)
p, h (k, a) gl(K, a)

'2
p2 k2aJI(k2a } p2 kla l(kla }+—,'(K, a ) I Il +1) 1—
p, j,(k, a ) p, h, (k, a )

Kza g'1(Kza )

$1(Kza )

pz K, ag'1(K, a)
P1

Kza 1/il(Kza ) kza j l(kza )+2 —2l (I +1)

jl(k, a )gf=
hl(k, a }

2
'92 —1 [I (I +1)—2j

kzaj l(kza) Kzal/t'1(Kza) —I (I +1)
jl(kza ) 1/ll(Kza )

k 1ajl'(k 1
a ) Klag'1(K1a ) —I(I+1)

jl(k, a) g, (K,a)

+—'(K ) —1
7l

kzaj l(kza ) Kza7/ll(Kza ) —I(I+1)
j,(kza ) gl(Kza )

K, ag'1(Kla ) k, aj,'(k, a )+2 . 2l(l +—1)
, K, a jl(k, a )

pz k, aj l(k, a ) K, apl(K1a ) kzaj l(k2a }—I(l +1) +2
p, J,(k, a) g, (K,a) $1(Kza ) j,(k,a)

+ —,'(K, a) I(I+1) 1—
P&

2

2l(1+ 1)—

kzaj l(kza ) pz k 1 aj l(k 1 a )

jl(kza) Pl jl(k1 }

Kza g'1(Kza)

$1(Kza )

pz K,a/i(K, a)
(20b)

gl(k, a) k, ahl'(k, a)
J,(k,a) h, (k, a)

k, aj ', (k, a)
J,(k, a)

kza g'l(Kza ) pz K1a gl(K1a )
X —(E', a )

4 '
1/1(Kza ) p1 gl(K, a )

+—'(K a) —11

K, j,(k, a) k, aj l(kla)gf=
k, hl(K, a) jl(k, a )

K, apl'(K, a ) Kzagi(Kza ) K1 bl(aKla } K2aof(Kza }—I(l+1) + —2
gl(K, a ) g((Kza ) gl(K, a) yl(Kza)

k, ahi(k, a )

h, (k, a)

(20c)

pi

'92 Pz Pz
4 Pz

+—'(K a) —12
'92

1

kzaj l(kza ) K a /zl(K1lza ) —I (I + 1)
jl(kza} 1/ll«za }

pz Kza 1/l(K2a } k2aj l(k2a }+2 —2I (I +1)
p, gl(Kza ) j,(kza)

2

+ —1 [I(l +1)—2j
'92 kzaj l(kza ) Kza pl(Kza ) —I (I + 1)j,(k, a ) $,(kza )

(20d)
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r

K~ j,(k, a ) k, aj/(k, a )gf—
k, j&(Kza ) j&(k, a )

k, ahl'( k, a )

h((k, a)

X . —(K,a) 1 — + —,'(K, a) —1
1 4 P2 2

'92 K2ag'I(K2a )
E (I + 1)—2+ —1

QI(K2a )

K,a/((K, a ) —2
g, (K,a) (20e)

Now, we are able to define the scalar scattering poten-
tial functions by using the modal coefIicients. The scat-
tered and transmitted field components with known po-
tentials re&, rmz and r~&,r~z can easily be obtained
from the above equations. Note that the C and S modes
are coupled through and at the boundary, even though
they propagate independently. The boundary plays the
role of a conversion mechanism: the energy of the in-
cident compressional modes is converted to both scat-
tered shear and compressional modes. Upon the
reAection of the incident compressional wave on the
sphere C and S waves are generated in the scattered field.
Therefore, scattered energy will be propagated in terms
of C and S waves.

We also note that ho is the expression which describes
the natural oscillations of a viscous Quid sphere imbedded
in an infinitely extended viscous Quid medium of different
material properties. In the absence of the incident wave,
the right-hand column matrix of (19) disappears, and the
left-hand side represents a homogeneous equation for sca-
lar potentials. For all nonzero values of the amplitude
parameters, the determinant must vanish. Therefore, a
coupled equation for compressional and shear types of os-
cillations can be obtained. In the case of the oscillation
problem, this coupled equation indicates that energy can
be converted from compressional waves to the shear
waves and vice versa. Oscillations are of purely dilata-
tional type only when I =0, which is expected since I =0
is the only mode where no transverse wave types exist.
For l&0 oscillations are coupled, and b, o =0 is the gen-
eral expression which describes coupled oscillations of
compressional and shear wave modes.

If 5, =0 or Af3=0 while ho is nonzero the amplitudes
of the corresponding scattered C or S waves will be zero,
respectively. This indicates that for certain discrete sets
of frequencies, either scattered C or scattered S waves
vanish. Hence there are also certain discrete sets of fre-
quencies for which the transmitted C or S waves vanish.
Moreover, whenever the frequency of the incident wave
approaches a characteristic frequency which makes Ao it-
self vanish, resonant phenomena will occur. However,
the incident frequency is real and the characteristic fre-
quencies are in general comp1ex, so that in reality Afo can
be reduced to a minimum value but never quite to zero,
so that the maximum amplitudes at resonance will be
finite, not infinite.

correctly by the radial component of the energy Aux vec-
tor which may be decomposed into compressional and
shear parts as

7 =a'vc+a'v'.
J EJ E EJ E

Significant quantities are intensities, differential cross sec-
tions, and total cross sections of the scattered field. In-
tensities for each mode represent the radiation per unit

solid angle, and they are defined as the time-averaged ra-

dial component of the far-field energy Aux vector:

co p) /2I„„= 3 g (2I+1) [PI(cosH)]
(k, r) ( —o gf

co p, /2 k, " b, 3
3 3 fl2

I„„= 3 g (21+1)
(k, r)

X P, (cos9) (21)

co p&/2
inc )r

f 2
1 g (2l + 1) & [Pi(cos8) ]

(k r) ( 0 Ao

1

(k, r)

00 ~f 2

g (21+1)
/=1 ~o

where I„„,I„„,and I;„,represent the intensities of the
scattered C-type waves, S-type waves, and the intensity of
the incident C wave which is propagating in the z direc-
tion. It is noted that the scattered waves are independent
of the polarization angle.

Dividing the intensity of the scattered wave by the in-

tensity of the incident wave, we obtain the differential
scattering cross sections of the compressional and shear
waves:

A. Scattering cross sections

The total Aow of scattered acoustic energy in the radial
direction through a closed surface may be represented

X Pi (cos8)8
2
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Integrating these expressions over a spherical surface
with radius r, we obtain the total scattering cross sections

f 2

a„„= g (2l+1)
(k~r) (=0 60

3 (23)
QO

(2l + 1)l (l + 1)
1=1

s 4~1 ~1
scat

(k, r)

We note that there is no I=0 mode in the shear wave
scattering cross section indicating that l =1 is the lowest
mode which both shear and compressional waves radiate
in the scattered field. Other important quantities are the
extinction and absorption cross section. By a known pro-
cedure, ' they can be obtained:

4~r
f

o-,„,= g (2l+1)W
(k, r)', , ~o

(24)

and by definition o',b,
=o,„,—(o „„+o „„).Because the

absorption cross section is zero for lossless scattering the
extinction cross section is then equal to the sum of the
compressional and shear scattering cross sections. There-
fore, by knowing 50 —A4 we are able to calculate the

~ f f
desired scattering quantities.

B. Scattering of an ordinary acoustic wave

from an ordinary acoustic sphere

~0=
k~a jI'(k2a )

j,(k~a )

pz k, ah('(k, a)

p, h, (k, a)
(25)

j I (k, a ) k2ajl'(kpa )gf=
h((k, a ) j((k2a )

p, k, aj,'(k, a)
j((k, a )

which are precisely the coefficients for the scattering
problem of acoustic waves from a Quid bubble.

The consistency of the present formulation can be easi-
ly checked by comparing the limit where the viscosity of
both media vanishes with the known results of classical
acoustic theory. If the shear modulus g is set to zero
everywhere, the solutions become those of the scattering
of (inviscid) acoustic waves from an inviscid fluid sphere,
and the problem is no longer a viscous Auid problem.
The characteristic coefficients of the scattered wave now
reduce to 63=0 and

considered to scatter independently, the energy removed
from the incident wave by N scatterers is merely N times
the energy removed by one. '

The plane-wave extinction coefficient cx is defined as
the energy decay coefficient as the wave passes through
the medium. We can then write the energy as

E(z) =Eoe (26)

so that 1/ct gives the distance traveled by the sound be-
fore its intensity is diminished in the ratio 1/e. The ex-
tinction coefficient is simply related to the extinction
cross section by

3 c ~ext
0!

4 & ma2
' (27)

where c,a are the volume concentration and common ra-
dius of the scatterers. This formula along with (24) and
(20) allow the extinction of sound by a cloud of viscous
Quid spheres in a viscous Quid to be determined.

IV. SCATTERING BY A SOLID ELASTIC SPHERE

where p is the density of the elastic medium and A, ,p are
the Lame parameters. As in (17) we set the following ex-

pressions for the scalar potentials of the incident, scat-
tered, and transmitted fields:

rir'c= g i'+'(2l+1)pl(k, r)PI(cosH),
1=0

rvrc= g i'+'(2l +1)
1=0

risc= g i' '(2l+1)
1=0

rm&= g i +'(2l+1)
1=0

ge
1

gl(k, r )Pi(cosH),

y, (k, r)P, (cosH),
60

g, (K, r )P, (cosH),

oo A4
rvrz= g i'+'(2l +1) g&(Kzr)P&(cosH),

1=0 0

If the spherical scatterer is a solid elastic sphere the
formulation of the previous section can still be applied
since (1) holds for the elastic medium if we define shear
and compressional wave propagation velocities as

C, =p/p, c, =(A, +2@)/p,

C. Extinction coefticient for cloud of' scatterers

The extinction cross section derived for a single sphere
represents the fraction of the incident energy which is re-
moved from the plane wave by both scattering and ab-
sorption phenomena. This single-sphere result, however,
can be applied directly to the consideration of the extinc-
tion of an incident plane wave as it passes through a
cloud of many spheres. As long as the spheres are identi-
cal in composition, randomly distributed, and their
volume concentration is small enough that they can be

l k2 lP2V.V+2 U„,
CO co BI"

lP2 9 ] ] (3
Ug Ug+ U„

cu Br r r Bg

(30)

We can then write the four boundary condition equa-
tions in a matrix form similar to (19):

where 60—64 are five unknown modal coefficients to be
determined for the elastic scatterer in a viscous Quid.

Boundary conditions remain as in (15) and (16), but with
the stress components in the elastic sphere given from
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—1

2T

2
K1 l (l + 1+2
k1 k r'

4 28„+
k r (k, r)

, (1—raz)
1

(k1r)

1

(k1r)z

28„

(k1r)z

2
&Pz 1 K2 l (1+1)+2
cog1 2r kz kzr (kzr)

lpz 4 28„

kzr (kzr)
1

, (1 —ra„)
(k, r)'

1

(k,r)'

1(l + 1) 2

2l (l +1)
3 2K1T K}r r

l (l (I + 1)
K, r'
a.

K, r

IPz 1(l+1) 2

Kzr r

'P 21 (l + 1)
~'g1 Kzr Kzr r

l (l + 1)
K, r'

cl,

Kzr

(rue)

(res)

'2
1 K1

2r k,

1

(k, r)'

l(l +1)+2
k zr' (k1r )2

4 28„
k r' (k, r)

1
(1—rd, )

(k1r)z

(rvr'c) . (31)

The solution is then given by
2

1Pp —1 [1(1+1)—2]
k~aj I(k~a ) K~a]t//(K~a) —1(l+1)

j/(k~a ) y/(K~a )

k, ah, '(k, a) K]ag'](K]a) —l(l+1)
h/(k, a ) g/(K]a )

kpaj I(kpa )

j (k/z )a

kpaj I(kpa ) Kpa]t//(Kpa }—1 l (l +1)—
g]'/1] j/(k~a ) P/(K~a )

pg k]ahi(k]a ) K]a/I(K]g ) —l(l+1
p, h/(k, a ) g/(K]a )

2
Pz pp k]ahi(k]a)+ ](K]a) l(l +1) 1—
P1. p, h/(k, a )

—2l(l +1)

—2l (1+1)

(32a)

K]ag/(K]a) k, ahi(k ]a)+2
(K/] )a h, (k, a)

K~aq/(K~a ) k~aj I(k~a )+2
g/(K~a ) j,(k,a)

K~a]l//(K~a ) p~ K]ag/(K]a )

q/(K, a ) p, g/(K]a)

J/(k]a )

h, (k, a)

2

—1 [1(l +1)—2]
k~aj I(k~a ) K~a iP/(K~a ) k, aj /(k, a) K]ag'/(K]a)—1(l + 1) —l(l +1)

j/(k~a ) g/(K~a ) j/(k, a ) g/(K] a )

+ —,'(k, a )
k~aJ I(k~a ) K&ag/(K&a ) —l(l +1)j /(k~a ) ]l//(K2a )

K]ag/(K]a ) k, aj/'(k, a )+2 . —2l(l +1)

p& k]aJ /(k]a) K,ag/(K]a) —l(l+1)
p, J (k, a) g/(K]a)

K~a q/(K~a ) k~aj I(k~a )+2
g/(K~a ) j /(k~a )

—2l (l + 1)

+ —,'(K, a ) 1(l + 1) 1—
Pi

2 k, aj ', (k,a)
j/(k~a )

pp k]aj/(k]a)
p, J/(k

K&a/1(K&a ) pz K]ag/(K]a )

e/(K2a ) pl 0/(K]a )

j/(k/g ) k, ah, '(k, a )
ge

j/(kza ) h/(k, a)
k, aj /(k, a)
j,(k, a)

(32b)

K~atPI(Kza ) p~ K]ak«]a)
k«]a)

lPp+ —,'(K]a ) —1
CO'g i

K]ag/(K]a ) Kpg/I)K/a ) K]ay/(K] a ) K~a i/J/(K~a )—l (l +1) + —2(K 1/a ) 0/ (K2 a ) g/(K]a ) q/(K, g )
(32c)



EXTINCTION OF SOUND BY SPHERICAL SCATTERERS IN A. . .
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k, h, (K,a) g, (k, g)
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T

lP2
X —(K,a)

4

I 2+—,'(K, g ) —1
CO'g )

P2 ' P2

P& Pi

k aj,'(k a) K ag', (K a)
1(—1+1)j l(kza ) gl(Kza )

A4=—

pz Kzal/lI(Kza ) kzaj l(kza )
+2

pl Pl(Kza ) jl(kza )

lP2 kzaj,'(kza) Kza l(Kza)+ —1 [1(l+ 1)—2] . —1(l + 1)
Cg)Yf ) jl(kza ) t/ll(Kza )

—21(1+1)

Kz jl(k, a) k, aj l(k, a) k, ahi'(k, g)
K, jl(Kza) jl(k, a) hl(k, a)

1 4 P2 2 &P2 Kza ft (Kza )
X —(Kia) 1 — + ,'(K, a) ——1 l(1+1)—2+ —1

4 pi co'g ) gl(Kza )

K, a/I(K, a ) —2
gi(K, a )

(32d)

(32e)

Expressions obtained in the previous section for inten-
sities and cross sections remain valid, but with the
correct expressions for Ao —A4 inserted. We write the
cross sections for clarity

and by definition o,b, =o,„, (o„—„+cr„„),and again we
see that by knowing Ao —A4 we are able to calculate the
scattering quantities.

DC ge 2

o„„= 2 g (21+1)
(k, r) i=o ge

k, ge
o~„= g (21+1)1(1+1)

(kir) 5o
and

ge
(21+ 1)%

(kir)' l=o ~o,

(33)

(34)

Scattering of ordinary acoustic waves
from an elastic sphere

If we set the shear modulus g& equal to zero in the
medium surrounding the sphere, no shear waves will be
present in the scattered field and our results reduce to
those of the scattering of ordinary acoustic waves from
an elastic sphere. In this case 63=0 and

r

pi kzgj l(kzg ) Kza i''i(Kzg) kzgj l(kza )

k, ahl'(k, a ) kzaj l(kza ) KzaillI(Kza )+
hl(k, g ) j,(k,a ) g, (K )za

—1 (1 +1) [2—1(1+1)]

Kza,'(Kza ) kzaj,'(kza )+—,'(Kza ) +2 . —21(1+1)+—,'(Kza )
A(kza)

(35)

jl(k, a )

h, (k, a)
pi kzaj l(kza) Kzag'l(Kza) kzaj/(kza )

pz Jl 2a jl(kza

k, ajl(k, a)+
j,(k, a)

kzaj l(kza) Kzaitli(Kza )
1(l +1) [2—1(l +—1)]

g, kza, Kza

Kza l(Kza) kzaj l(kza)+ —,'(Kza ) +2 —21(1+1)+—,'(Kza )
P, (Kza ) j,(kza)
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With these, the expressions given above for longitudinal intensities and cross sections are valid and agree with those of
Ref. 4.

V. LIMITING CASES AND DISCUSSIQN

The Rayleigh-range scattering cross sections are given in a simple form here, since when the scattering is small the
radial functions are replaced by the corresponding small-argument approximations and higher powers of the size pa-
rameters can be neglected. The general expressions for the extinction cross sections still hold, but now only the first
three terms in the summation need to be retained. We write, for either small Auid or small solid scatterers,

4 3

cr,'„,=~a g (2l + 1)%
(k, a)', =, 50

(i =f,e), (36)

where for the Quid scatterer we have in the Rayleigh limit

gf
= —,'(k, a )' 1—

~o ~=0

—,'(K, /k, )

1 — [1——3(K~/kq) ]

[i+(k,a) ],

gf
f~o

= —,'(k, a ) 1—P2

pj

(k, a)l+ (37)

gf
= —,(k, a )

~o

(1—g, /g, )(k) IK) )'

—,'+(v]2/q, —1)[1+—,'(K, /k, ) ]

(k, a)l+
45

and for small elastic scatterer

~0 ~=O

=—'(k, a ) 1—
3

—,'(K, /k, )

lP2
[1—

—,'(K~/k~) ]
CO'l7

[i+(k,a) ],

ge
1 = —,'(k, a ) 1—P2

p&

(k, a)l+ (38)

ge
1

e~0 1=2

(1 —i p2/cog, )( k, IK, )=—,'(k, a) —,'+ (i p2/cog, —1 )[1+—,
' (K, Ik, ) ]

(k, a)
45

It is clear from these expressions that the extinction cross sections are directly proportional to the size parameter of the
scatterer when loss is present, and are proportional to the fourth power for loss scattering.

We can also consider the scattering cross sections in the Rayleigh limit. Normalizing the scattering cross sections by
the geometric cross section of the scatterer ~a we write

(39)

For a small viscous Quid scatterer in a viscous Auid we find

QI „=—,'(k, a )
(K, /k, )

[(K~ Ik2) —4 ]q2/q, +—',

K1 1—1 + —1+2
3 k,

P2

p&

+40 2+ 3
1

'92~'9&

2[3(K, /k, ) +2]g, /q, + [9(K, /k, ) —4]

Setting the viscosities g„g2 of both media to zero this reduces to

Q/, „=4(k, a )

2
pi k~

1 +3
(1+2p~/p, )

(40)

which agrees with the famous result of Rayleigh. '

For a small elastic scatterer in a viscous Quid we find
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Q;„,= 4(k, a )" p2

pi

2

K)+40 2+ 3
1

t P2/co'tl t

2[3(Kt /k2) +2](i@2/cog, )+ [9(K, /k~ ) —4]

2

Setting the viscosity q& of the Auid to zero gives
2(X, /k, )

«z/kz)'pt/pi

pt p2

2+p, /p

Q' = 4(k, a)

which agrees with Truell's well-known solution. '

We see that in each of these the scattering cross section
is proportional to the fourth power of the size parameter.
Hence for small scatterers the extinction cross section is
much larger than the scattering cross section which indi-
cates that absorption dominates over scattering for small
scatterers in viscous Auids.

We have formulated scattering of plane monochromat-
ic acoustic waves from viscous Auid and solid elastic
spheres in a viscous Auid, and related the results to well-
known limiting cases. Some useful conclusions can be
drawn from these results.

(i) It is seen that incident waves excite certain modes in
the scattered field. For an incident wave that is purely
compressional two types of modes —compressional and
shear —are excited in the scattered field. For l =0 which
is the purely dilatational mode, only compressional
modes are excited and / =1 is the lowest coupled mode
which radiates in the scattered field. Excitation of shear
modes is due to boundary coupling which results from
the continuity condition of the Auid displacement of the
boundary. This is a required condition since otherwise
the two media would separate.

(ii) Independently of the imposed incident wave the
solution of the present problem allows the study of the
natural oscillations of the viscous Auid and solid elastic
spheres in a viscous Auid. It can be seen that ho=0 and

ho=0 give the natural frequencies of oscillation of the
viscous Auid or solid elastic sphere in the viscous Auid,
for oscillations of the compressional and shear modes
considered here. A second class of shear modes would
also be present in a complete study of the natural oscilla-
tions of the Auid or elastic sphere in a viscous Auid, but
are not discussed in this scattering problem since they are
not coupled to the incident sound wave. In our simple
model the osci11ations are found to be uncoupled and
purely dilatational only for zero modes, while for all oth-
er modes comp ressional and shear oscillations are
present.

(iii) The general expressions derived here for viscous
Auids reduce directly to well-known results when the
viscosity coefficients are set to zero. With qj =F2=0 in
the Auid-Auid case we recover Anderson's solution and
with g&=0 in the Auid-elastic case we recover Faran's
solution.

(iv) In the small sphere approximations the l =0, 1,2
modes for the scattering cross sections are proportional
to the fourth power of the size parameter (product of
wave number and sphere radius) which is characteristic
of Rayleigh scattering. For lossy scattering, these three
modes of the extinction cross section are proportional to
the first power of the size parameter. All higher modes
are negligible in the small sphere limit and it is seen that
absorption phenomena dominate scattering phenomena
for scattering from small spheres when loss is present.
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