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The mechanics of the first adiabatic invariant p of nonrelativistic charged particles in time-

dependent magnetic inductions B(t) are studied by means of computer simulations and analytic

theory. Linear-ramp magnetic-induction profiles B =Bo + ( AB /At) t are utilized, as well as

hyperbolic-tangent ramps and sine half-wave ramps. The change in p that results from an induction

change 6B that occurs over a time At is quantified for all values of AB and At, as well as for all

values of the particle position. It is found that the cases fall into two categories with very different

p behavior: cases in which the change in the magnetic induction occurs over a time ht that is exact-

ly equal to an integer number of gyroperiods (textbook case) or cases in which the change in the in-

duction occurs over a time ht that is not equal to an integer number of gyroperiods (more general

case). In both categories p is an adiabatic invariant, although the conservation of p is much poorer
in the latter category. It is pointed out that, in addition to the well-known constraints on AB and

ht, there is a constraint on the particle's initial position in the magnetic field if the change in the
adiabatic invariant is to be kept small.

I. INTRODUCTION

is generally thought to be conserved to a high degree of
accuracy provided that

dB &(B (2a)

r iV'Ei «E, (2b)

where B ( T) is the magnetic induction, ui(t) is the magni-
tude of the particle's velocity perpendicular to 8,
r, (t) =2~1(eBlmc) is the particle's cyclotron period,
rs(t)=uil(eBlmc) is the particle's gyroradius, and
E (x, t ) is the induction electric field that accompanies the
time-changing magnetic induction. The quantity p is
known as the first adiabatic invariant of the particle's
motion. Nonrelativistically, p is 2/m times the orbital
magnetic moment of the particle, where m is the
particle's mass. The concept that p is an invariant for a
charged particle is generally attributed to Alfven, ' al-
though it was pointed out much earlier by Ehrenfest.
The invariance of p has come to be a fundamental con-
cept of plasma physics, ' space physics, ' and astrophy-
S1cs.

The invariance of p implies that there is a change in
the perpendicular kinetic energy —,'mv~ of the charged

For a charged particle in nonrelativistic motion in a
spatially uniform, temporally varying magnetic field, the
quantity

2
vgp—

If p is an adiabatic invariant to all orders in ~, /At, then
it is commonly expected that, for r, Ib t ~0, the change—A~/~,
in p is related to the time At by' ' Ap o- e ', where
~, is the cyclotron period of the particle.

Mathematically, p= v~ /B is shown to be an adiabatic
invariant by demonstrating that

dp
dt II) v~d 0 =0, (4)

dt co

where 0 is the azimuthal angle and where f18= f 0"d8

particle when there is a change in the magnetic induction
B. This kinetic-energy change (often referred to as beta-
tron acceleration '

) is a result of the work that is done
on the cyclotron-orbiting particle by the non-curl-free in-
duction electric field that accompanies the time-changing
magnetic induction. The aim of this report is to deter-
mine how rugged is the concept of p being an invariant.
The details of the kinetic-energy-change process are ex-
amined with the aid of test-particle computer simula-
tions, with emphasis on determining by how much p
changes in a time-changing magnetic field.

The nomenclature used to describe adiabatic invari-
ance will be the following. If Ap is the change in the
value of p that results from a change AB in the value of B
that occurs over a time At, then p is adiabatically con-
served if"' bp~0 as b, tlat, —+~. For r, jb,t~0, p is
said to be an adiabatic invariant to Xth order in ~, /At if
a constant C can be found such that'

N

/bp, f(C
At
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denotes that the integral is over exactly a full period of
the motion (for example, Eq. 11-135 of Ref. 16 or Eq.
12.64 of Ref. 17). The quantity quid& is the action in-

tegral, and as long as the action integral is over a com-
plete period of the motion, it is well known that p will be
an adiabatic invariant. "' For a charged particle per-
forming cyclotron motion, the action integral is complete
when At is exactly equal to an integer number of gyro-
periods.

In this paper, test-particle numerical simulations and
analytic theory will be used to study the behavior of
charged particles in time-varying magnetic inductions.
Cases where At is not equal to integer numbers of gyro-
periods (incomplete action integrals) are examined, as
well as cases where At is exactly equal to integer numbers
of gyroperiods (complete action integrals). The deter-
mination of the fractional change Ap/p of the first adia-
batic invariant p that results from a change in the mag-
netic induction will be emphasized. Before and after the
change, the magnetic induction is constant with time,
and it has no spatial gradients. At these times, series ex-
pressions for the first adiabatic invariant' ' p that are
Taylor expansions in the time derivatives and spatial
derivatives of the fields only have their zeroth-order term
U~/8 as nonzero. Therefore, evaluating U~/B at these
times obtains the full expansion for p.

The six primary conclusions of this study are the fol-
lowing. Conclusion (1) is that for a given p value, the
change Ap depends on 0, 68, At, and x, where 0 is the
gyrophase angle of the particle about its guiding center,
68 is the change in the magnetic induction, At is the
time over which the induction changes, and x is the posi-
tion of the particle s guiding center with respect to the lo-
cation in the system where the induction electric field
vanishes. The parameters 0 and x are defined at some
fiducial (initial) time. Thus, conclusion (1) indicates that
Ap depends on the two initial conditions 0 and x and on
the two parameters of the change AB and At. Conclusion
(2) is that there is a strong oscillation of b,p as a function
of At, with Ap being very small when At is exactly equal
to integer numbers of gyroperiods (complete action in-
tegrals) and bp, being much larger when b, t is otherwise.
Conclusion (3) is that p is an adiabatic invariant even
when At is not exactly equal to an integer number of
gyroperiods, i.e., that p is an adiabatic invariant even
when the action integrals are incomplete.

Conclusion (4) is that, for cases where At is not exactly
equal to an integer number of gyroperiods, there is a con-
dition in addition to Eqs. (2) that must be satisfied for b,p
to be small. This third condition is that

/xi ~r, ,

II. MECHANICS OF THE ADIABATIC INVARIANT
p: THE UNBALANCED WORK PICTURE

When the magnetic induction 8 changes with time, a
charged particle orbiting in that induction experiences a
change in the magnitude of its perpendicular velocity v~

because of the work done by a non-curl-free induction
electric field E. Taking the magnetic induction to be uni-
form in space and to point in the z direction, and taking
the source currents that produce B and E to point
only in the y direction, Faraday's law BE /Bx
= —( I /c)(M/Bt ), yields

1 BBE = —— x,
c Bt

(6)

where the constant of integration was taken to be zero so
that E =0 at x =0. A positively charged particle orbit-
ing in these fields is depicted in Fig. 1. On the right-hand
side of the orbit the particle gains kinetic energy owing to
the positive work that is done on it by the induction elec-
tric field, and on the left-hand side of its orbit it loses ki-
netic energy owing to the negative work done there. Be-
cause there is a shear in E, the work done on one side of
the orbit does not cancel out the work done on the other
side; hence there is a net work done on the particle dur-

Induction electric-field vectors

1 ABE xy c ht

Gyro-orbit
of positive
particle.

Ap that occurs in cases where At is exactly equal to an in-
teger number of gyroperiods is owed to the work done on
an orbit that diA'ers from a perfect circle by the following
four corrections: (a) the guiding center has an E X B
drift, (b) the gyrovelocity changes as 8 changes, (c) the
gyroradius changes as B changes, and (d) the gyrofre-
quency changes as B changes.

This paper is organized as follows. In Sec. II the
mechanics of the adiabatic invariant p are examined, and
the main reason for the failure of p conservation is dis-
cussed. Test-particle simulations that quantify the
change Ap for individual particles and for ensembles of
particles are examined in Sec. III. Analytic calculations
of the change Ap are presented in Sec. IV. The adiabatic
invariant p is examined for magnetic-induction ramps
8 (t) with diff'ering functional forms in Sec. V. Section VI
contains a discussion of the literature of p conservation.
Finally, the paper is summarized in Sec. VII.

where x is the position of the particle s guiding center rel-
ative to the location where the induction electric field
vanishes and where r is the particle's gyroradius.

Conclusion (5) is that the change b,p that occurs in
cases where At is not exactly equal to an integer number
of gyroperiods is owed to the excess work that is done
during the residual fraction of a gyroperiod after the last
completed gyroperiod. Conclusion (6) is that the change

Induction electnc
field vanishes
atx=o.

Negative wor
is done on th
side of orbit.

ositive work
is done on this
side of orbit.

FIG. 1. A sketch of a cyclotron-orbiting particle in a time-
dependent magnetic induction with the induction electric Geld
depicted. Note that the orbit's deviation from a circle is not de-
picted, nor is the EX8 drift.
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ing a gyroperiod. At the end of every gyroperiod, this
work is just the right amount to change v ~ so that p is
very nearly conserved.

The strength of the induction electric field increases
with x [as indicated by expression (6)], where x is the po-
sition of the particle. If, in Fig. 1, the particle were locat-
ed a very large distance from x =0, then the amount of
work done on the right-hand side of its orbit and the
amount of work done on the left-hand side of its orbit
would both be very large; yet, because the gradient in the
induction electric field E does not vary in space, the
difference between the two amounts would still be just
that needed to very nearly conserve p each gyroperiod.

However, p conservation is poor if the gyro-orbits are
incomplete. If, in Fig. 1, the particle starts at the top of
its orbit and the magnetic-field change occurs over 3—,

'

gyroperiods ~„ then p will be well conserved at times
t= le„ t =2~„and t=3&„but from time t =3&, to
t =3—,'~, the work on the particle by the electric field is
only positive. Hence, the work done on the particle dur-
ing the final —,

' orbit is not balanced by the work done dur-

ing another portion of the orbit. Therefore, at the end of
this 3—,

' gyro-orbits, p will not be well conserved. In gen-
eral, a change in the magnetic induction will not occur
exactly over an integer number of gyroperiods; rather the
change will end with a fraction of a gyroperiod left over.
The conservation of p is worse the further the particle is
from x =0. This is because the strength of the induction
electric field increases linearly with x away from x =0
and therefore the unbalanced work done on the particle
increases with x.

The parameters that hp depends on can be determined
by means of this unbalanced work picture. For a magnet-
ic induction B (t) that varies linearly with time, the mag-
netic induction B=Bz goes from the value Bo to the
value Bo+AB in a time At:

Bo t ~0

Ap AB ~c x
p B At r

1

2
(9)

As can be seen in expression (9), there are three physical
parameters that determine the change in p during the re-
sidual fraction of a gyroperiod: AB/B, which is the frac-
tional change in the magnetic induction; b t/~„which is
the time over which the magnetic induction changes rela-
tive to the cyclotron period; and x /r, which is the dis-
tance of the particle from the x =0 plane relative to the
particle s gyroradius. When test-particle simulations are
performed to study Ap, these three quantities will be
varied.

III. TEST-PARTICLE SIMULATIONS
OF p BREAKING

The change in the adiabatic invariant of a particle is in-
vestigated by numerically solving the non relativistic
equations of motion

dv =~K+ ~ vXB,
dt m mc

dx =V
dt

(10a)

(10b)

for that particle in the magnetic-induction B and induc-
tion electric field E as given by Eqs. (7) and (8). Equa-
tions (10a) and (10b) are solved with a simple first-order,
time-centered numerical scheme in double precision.
Typically, 1X10 to 2X10 time steps are used per gyro-
period, and the simulations are accurate to about 1 part
in 10 in determining Ap/p. The orbits for ensembles of
particles are calculated, the particles in an ensemble all
having the same mass, the same charge, the same initial
guiding-center position, and the same initial value of

~ ui ~

before the change in B, but having differing initial gyro-
phase angles 00. The initial x, y, v, and v~ values are
given by

B= Bo+ t, O~t ~At
At

B,+AB,

This spatially homogeneous, linearly time-varying mag-
netic induction has an induction electric field accompany-
ing it for 0 ~ t ~ b, t given by [from relation (6)]

1 AB x

The effect of this unbalanced fraction of a gyroperiod on

p is estimated as follows. During an unbalanced —,
' of a

gyroperiod, the magnetic induction changes by an
amount 5B = b,B ( ,' r, /b t ), where r, is the —gyroperiod
during the change in B. During this time the perpendicu-
lar velocity of a particle changes by

5ui —(e/m)E 5t =(u, (b,B/B)x ( —,'r, /bt) .

From Eq. (1), the change b,p in the adiabatic invariant p
can be written (bp/p)=2(5ui/ui) —(5B/B); using the
above expressions for 5B and 5v~, this becomes

x =x,o+r s(og )o,

y =yg, o
—

rso sin(8o),

u„= —
uio sin(go),

uy ufo cos(Oo)

(1 la)

(1 lb)

(1 lc)

(11d)

where (x,o,y,o) are the coordinates of the guiding center
at time t =0 and rso= ufo/(o o and uio are the gyroradius
and perpendicular velocity of the particles at t =0. The
gyrophase angle t9 is measured counterclockwise from the
x axis in Fig. 1. In the ensembles, the particles are equal-
ly spaced in gyrophase angle; hence ensemble averaging is
equivalent to gyrophase averaging. In this report, all of
the ensembles contain SOO particles, except for the simu-
lations of Sec. IIIC, where the ensembles contain 1SOO
particles. For each particle, the quantity 4p=pf, „,~ —po
is measured, where po is the first adiabatic invariant be-
fore the induction change and pf,„,& is its value after the
induction change. For each set (ensemble) of particle or-
bits, the following three quantities are extracted: The
gyrophase average (first moment) of by
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500

g (Ap),
j=1

{Ap.) = '
500

the standard deviation (second moment) of Ap

500
' 1/2

g [(Ap), —{Ap) j'

(12)

(13)

and the maximum of the 500 values of ~Ap~, denoted as
Ap „.For all of the results presented in this report, the
ensemble-averaged quantities are not found to change
perceptibly if the size of the ensembles are increased.

The discussion of the test-particle simulations is divid-
ed up into four subsections. In Sec. III A some properties
of particle orbits will be discussed. In Sec. III 8 measure-
ments of Ap/p and its ensemble averages will be present-
ed for cases where At does not equal integer numbers of
gyroperiods and expressions for Ap(AB, At, xo) when At
is unequal to integer numbers of gyroperiods will be
determined. Finally, in Sec. III C„orbit calculations for
ensembles of particles are performed for cases where At is
exactly equal to integer numbers of gyroperiods and ex-
pressions for Ap(AB, At, x 0) are obtained from these
simulations results.

A. Properties of the particle orbits

which can be integrated f 'dt and J 'dx, to yield
gcO

&0
x =x

gc gc0 B
14

where x,0 is the x position of the particle s guiding
center before the change in magnetic induction. This
shift is independent of the initial gyrophase angle Oo of a
particle and it is independent of p and At. The EXB
drift guiding-center shift leads to a convergence or diver-
gence of the particle orbits toward or away from the
x =0 plane depending on whether B is increasing or de-

There are three things to note in the orbit of a charged
particle in a time-changing magnetic induction. First
there is the familiar contraction or expansion of the
particle's gyro-orbit accompanied by the changes in the
gyrovelocity and gyrofrequency. Additiona11y, there is a
shift in the particle's guiding center in the EX8 direction
(x direction), where E is the induction electric field. Fi-
nally, there is a subtle shift of the guiding center in the
direction (y direction) normal to both 8 and EXB.

The major portion of the x shift of the guiding centers
is the shift that is obtained by integrating the EXB drift
velocity evaluated at the guiding center, as follows. For
the E X8 drift, the time rate of change of x, is

dx, /dt =cE~/B. With B given by expression (7) and E
given by expression (8), evaluating this expression at
x =x, gives

dx

dt

creasing with time. Another way to picture this x shift is
to say that the particles are carried by the lines of Aux
(see, for example, Sec. 5.4 of Ref. 20), which move in to-
ward or away from the x =0 plane to produce the in-
crease or decrease in B. The shift expressed by Eq. (14)
matches the x shift of the guiding centers of the
computer-simulated particles very well, although the
guiding centers in the simulation are found to move
slightly faster than this EXB drift predicts, leading to a
slight overconvergence toward x =0 or a slight over-
divergence away from x =0

The guiding-center shifts Ay that the particles obtain
in the y direction are strongly dependent on the initial
gyrophase angles OO of the particles, unlike the Ax shift.
The shift Ay has a sinusoidal dependence on 00 (with one
period per 360' of Oo) with the sinusoid centered on
Ay =—0. The gyrophase average of Ay is small, but it is
nonzero. For a positive particle, when the magnetic in-
duction increases (AB )0) the gyrophase average {Ay )
is in the direction of the local induction electric field, but
when the magnetic induction decreases (b,B (0), the
average (Ay ) is in the opposite direction to the local in-
duction electric field. In both cases the gyrophase aver-
age {Ap ) is positive; this means that the value of {Ap )
cannot be estimated by calculating the work q {E Ay)
done on the mean guiding-center position, which moves a
distance of {Ay ) in the induction electric field. For both
b,B/Bo large or small, {Ay ) /r o

~ (At/r, o)
' for

At ) 7 0 with some dependence on the phase of the gyro-
period.

In Fig. 2 the fractional change in the quantity
p = U y /B is explored as a function of the particle's initial
gyrophase angle Oo. In each panel of the figure, orbits
were calculated for 360 particles evenly spaced in O0 for
0'~O0~ 360'. The change in the adiabatic invariant Ap
of a particle caused by the change in induction AB is
strongly dependent on the initial gyrophase angle OO of
that particle. In the top panel, particles with OO—=270
gain the most energy and particles with OO——-90' lose the
most energy. This fits well with the unbalanced work pic-
ture described in Sec. II, wherein the excess work done
on a particle can be positive or negative depending on
whether it moves with or against the induction electric
Geld on the final unbalanced portion of its gyro-orbit.
Averaging the Ap values of the particles over the initial
gyrophase angles OO, it is found that this averaged quanti-
ty {Ap) is much less than a typical ~Ap~. Note also that
the Ap versus OO phase relationships are quite dift'erent

for ~xs, o~ ( ~rso than for ~xs, o~ ) r~o. This is because for
~xs, oj (rso particles in the ensemble initially lie on both
sides of the x =0 plane, and so both positively directed
and negatively directed E are sampled by the ensemble
(see, for example, Fig. 1). Accordingly, there are now
two regions on the gyrocircle where positive work can be
done, and hence there are two peaks in the Ap versus Oo

phase relations. Because of this, the details of p breaking
are different for ~xs, o~ (r~o than for ~xs, o~ ) rzo. As can
be seen in Fig. 2, the Ap versus OO phase relations are re-
versed for x0 )0 and x0 (0; this is to be expected from
the unbalanced work picture, because the sign of the in-



43 BREAKING OF THE FIRST ADIABATIC INVARIANTS OF. . . 5609

duction electric field is reversed for xo) 0 and xo&0.
Thus, for a given gyrophase position, positive work be-
comes negative work and vice versa. The Ap versus Oo

phase relations are invariant to the sign of the charged
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FIG. 2. For five diA'erent values of xp/lg0 the fractional

change in the magnetic moment p of 360 charged particles is
plotted as a function of their initial gyrophase angle.

particle and b p changes sign in the Ap versus Oo phase
relations when AB is negative instead of positive.

B. Measurements of hp for arbitrary At values

In this subsection, measurements of the change Ap in
the first adiabatic invariant p=u~/B associated with a
change in the magnetic induction B are obtained by test-
particle computer simulations. Four quantities are sepa-
rately varied in the simulations: the change AB in the
magnetic induction, the time At over which the magnetic
induction changes, the initial distance xgo of the particles
guiding centers from the location where the induction
electric field vanishes, and the initial gyrovelocity U~o of
the particles. The quantities Bo, m, and e will be held
constant for all of the simulations. Plots of the two mo-
ments (Ap) and cr(Ap) and of b,pi, „versus these four
quantities are presented, with 500 orbits being calculated
for each data point.

In Fig. 3 the gyrophase-averaged quantity (b,iM) is
plotted as a function of time during a change in B for
four difFerent values of dB/dt. Clearly, as dB/dt in-
creases, (Ap) increases. There is also a periodic depen-
dence of ( b,p) on t. On the top curve, and to a lesser ex-
tent on the second curve, the amplitude of the periodic
variation in ( b.p ) decreases with time and the period of
the variation decreases with time. The period decreasing
with time is simply caused by the fact that the gyroperiod
decreases with time as the induction increases. The am-
plitude decrease originates from the fact that U~ oscillates
at a constant amplitude while B steadily increases; hence
p, =v&/8 has a decreasing oscillation amplitude. Note
that the minima in the temporal oscillations are not fully
reso1ved.

In Fig @the th.ree quantities (91M ) /po, o (31M)/po, and
hp, „/po are plotted as functions of the magnetic-
induction-change time At for fixed values of AB, xo, and
U~o. Three things should be noticed in the graph. The
first is that there is a periodic oscillation in Ap versus At
with Ap being very small at the end of every gyroperiod.
This fits with the picture of adiabatic-invariant breaking
being owed to the unbalanced work done on the particles:
At the end of each gyroperiod, the gyro-orbits are com-
plete, the work is balanced, and p is better conserved; for
values of At that are not exactly equal to integer numbers
of gyroperiods, the work is not balanced because the
gyro-orbits are incomplete and hence p is not so well con-
served. While the magnetic induction is changing,
8 =8 o+(b 8/ht)t, the gyrophase of a particle changes
according to d8/dt =co, (t)=eB(t)/mc, which may be
integrated to obtain

0=co,ot [ 1 + ,' ( 6 8 /8 0 )( t /b t ) j +—Oo .

Accordingly, the ramp period At will correspond to the
completion of the Xth gyroperiod (9—80=%2~) when

0" I+-,~B/B. '

where X =1,2, 3, . . . is an integer and where 7.,O is the
gyroperiod before the induction change. Equation (15)
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precisely describes the At values of the minima in Fig. 4.
(Note that the depths of these minima are not resolved in
the plot. ) The second item to be noticed in Fig. 4 is that
(bp) (&o(Ap) for bt large; i.e., the spread in the bp
values for the ensemble of orbits is much greater than the
mean value of Ap. The third item to be noticed in Fig. 4
is that b pA b,B /(—Bo+b,B ) for b, t ~0. This indicates
that the kinetic energy of a particle does not remain con-
stant as the magnetic induction changes infinitely fast, as
might naively be thought. Rather, the induction electric
field during the rapid change in B gives a strong impul-

sive kick to the particles and changes their kinetic ener-
gies.

In Fig. 5, (b,p)/po is plotted as a function of the
change time At of the linear-ramp induction variation for
four sets of particles: a set with guiding centers initially
located at xgolrg =6, a set with x 0/rg =4, a set with

ggo ggo

xgolrg =2, and a set with x o/r =0, where x 0 is the
ggo gO g o

distance from the point where the guiding center of the
particles initially resides to the plane where the induction
electric field vanishes. Note that for x o increasing, the
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degree of p breaking increases. This agrees with the un-
balanced work picture wherein, because the strength of
the induction electric field increases with x, the size of
the unbalanced work increases with x, so Ap increases
with x. Examining the three sets of particles with
x o/r ) 1, it is evident that there is a periodicity to

go

( b p ), with ( b,p ) being smallest whenever b, t satisfies
condition (15). In contrast, for the ~xgo~ =0 points there
is a periodicity of —,'~, to Ap versus ht. The di6'ering

periodicities are explained with the use of Fig. 1. When
the particle's guiding center is located at ~x~o~ ) rgo, the
work done on the side of the particle's orbit farthest from
x =0 is positive and the work done on the side nearest to
x =0 is negative, and the di6'erence between these two
amounts of work is just enough to change the particle's
kinetic energy so that p is nearly conserved once per
gyroperiod. Now imagining an orbit with its gyrocenter
located at x =0 in Fig. 1, the work on the gyrating parti-
cle by the electric field is always positive. However, the
rate of doing work is greatest at x =x „and x =x
(rightmost and leftmost points) where v E is greatest and
the rate of doing work is zero at the two x =0 points (top
and bottom); the work done on the particle near the right
and left extrema of the orbit exceeds the work needed to
preserve p, and the work done near the top and bottom
of the orbit is less than the work required to preserve p.
Whenever half of an orbit is completed, the work totals
that required to nearly conserve p; hence, the double
periodicity to the x o=0 curve. This is also related to the
doubling of the periodicity in Fig. 2.

In Fig. 6 the three ensemble quantities (b,p), cr(b,p),
and b,p~,„are plotted as functions of b,B for fixed values
of x o, ui o, and ht. In the left-hand panel hB &0 (the
magnetic induction decreases in the ramp), and in the
right-hand panel b.B &0 (the induction increases in the

FICr. 5. For ensembles of 500 test particles, (hp) /pp is plot-
ted as a function of At /~, o for four values of xp/1"gp.

ramp). The curves are fairly straight, with two excep-
tions. The first irregularity occurs in the left-hand panel;
as 58~ —Bo the curves turn sharply upward. In fact,
Ap —+ ~ as AB ~—Bo. This is caused by the fact that as
hB —+ b,B, B—+0 in the—denominator of p=ui/B, while
u i does not go to zero in the numerator (see, for example,
Ref. 21). The second irregularity occurs in the right-
hand panel where the straight curves become wavy at
AB-Bo. The cause of these ripples is that when the
ramp time At is held fixed, the number of gyroperiods in
the ramp is not fixed because the induction 8 changes ap-
preciably [see expression (IS)]. This means that some of
the b p/po versus b, t /7 p structure that was seen in Fig. 5
is being introduced into Fig. 6 at high-68 values, hence
the waviness. For small AB values, the curves of Fig. 6
can be fit by straight lines. For

~
b,B( && Bo, the computer

data are very well described by ( b,p ) Qc (b,B ) and
cr(bp) (~IhB~)' for fixed x o, ui o, and ht (Note tha.t po
does not vary with 68, which allowed the Ap scahngs to
be directly extracted from the plots of b p/po).

In Fig. 7 the change Ap is plotted versus x o, the initial
distance of the guiding center from the x =0 plane, with
58, 6t, and v jo held constant. Note that holding v j o
constant holds rgo constant and po constant because Bo is
constant. As can be seen in the figure, there are two dis-
tinct regions: xgo+ rgo and xgo+ ~go In the xgo/rgo
region the curves are well described by (bp) pcx o and

1
go

cr(b.p) Qc ~xgo~ . (Note that these scalings are not limited
to hplpo being small. ) In Fig. 7, as x o~0, the bp
quantities lose their dependence on x o. The limiting
values are not computational artifacts: Increasing the ac-
curacy of the orbit calculations and increasing the num-
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ber of orbits used for the ensemble averages do not
change the limiting values. In the x~p&&r~p regime, the
scalings are (bp) ~xso, o'(bp) ~x o, and Ap~, „~xgo.
As can be seen from Fig. 7, as x Q increases, the degree of
p breaking increases. Thus, even though b,B/Bo is small,
6t /7 p is large, and the gradients in the electromagnetic
fields are weak on gyroradius spacial scales, Ap/pp can
become large if x Q/rgp becomes large.

In Fig. 8 Ap is plotted versus vip, the initial gyroveloci-
ty of the particles, with AB, At, and x Q held constant.
Clearly there are two distinct regimes: v~p ~x Q~, Q and
v~Q))x Qco, p. This is not surprising since V~Q/x Qco, p is
simply (x o/r 0)

' and since the bp versus x o/r o plots
of Fig. 7 exhibited two distinct regimes. In Fig. 8, when
v~p varies, pp also varies. In the vJQ(xgpcD Q regime
(which is xo ) r o), the curves of Fig. 8 are well described
by (&p)/p, ~v,,' and ~(ap)/p, ~u, ,'. Since po~ui'o
(for Bo fixed), these scalings can be rewritten ( b p ) ~ uio
and o ( b p ) ~ u io. The o ( b p ) scaling makes sense in
terms of the unbalanced-work picture presented in Sec.
II. In that picture the standard deviation o.(bp) is a
measure of the spread of the work done on the particles
about their guiding center. The work done on a particle
by an electric field depends on the distance that the parti-

cle moves through the field. A particle can move about
two gyroradii through the field, hence these individual
amounts of work depend linearly on the size of the gyro-
orbits. Since r o= v—io/cv, o, this yields a uio dependence
on the individual b,p values; hence cr(b,p) ~ uio. In the
v JQ ))xsocv Q regime (which is x o ((rso), the scaling s ex-
hibited in Fig. 8 are (b,p)/po~ uio and cr(bp)/p, o~ uio.
Again using the fact that pc ~ vie (for fixed Bo), these
scalings yield (Ap) o- vio and t7(bp) ~ufo. In terms of
the unbalanced-work picture, the cr(bp) scaling for
v~o ))x ocv, o makes sense as follows. The quantity o.(bp)
is a measure of the work done on an individual particle.
For a particle with its guiding center on the origin, the
strength of the induction electric field that it samples is
proportional to its gyroradius Isee Eq. (8)], and the dis-
tance that the particle moves in the electric field is also
proportional to its gyroradius, hence the work is propor-
tional to r Q, which means that it is proportional to v~p,
hence the cr(hp) ~ vio scaling. Recall from Fig. 5 that
there are periodicities of Ap versus At: If At were to be
varied, then the vyQ (xgQN portions of the curves of Fig.
8 would move up and down with period ~, keeping the
same slope, and the v~p))x Q~,Q portions of the curves
would move up and down with period —,'w, .
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The final computer-simulation graph of this subsection
is Fig. 9, which contains hp/po plotted versus ht/~, o at
peaks in the hp versus ht oscillations (see Fig. 4). The ht
values at which these peaks occur are
ht = (X —

—,
' )r,o/[1+ ,'( hB—/Bo) ]. The quantities ( hp ),

o (hp), and hp~, „are displayed for two different values
of hB/Bo. The top curves are for hB/Bo =10', and the
bottom curves are for AB /BO = 10 . Noting that po and

z,o are independent of At, the curves of Fig. 9 are well de-
scribed by (hp) cI'- ht and o(hp) ~ ht '. These scal-
ings hold for AB &Bo as well as for hB &Bo. The scal-
ings also hold for x~o& rgo, although no such data are

displayed in the figure. In the unbalanced-work picture
the o(hp) scaling makes sense as follows. The standard
deviation o(hp) is a measure of the work done on an in-
dividual particle as it moves about its guiding center, and
this work depends linearly on the induction electric field
E and on the size of the gyro-orbit. The size of the
gyro-orbit is independent of ht and E„~ht ' [see ex-
pression (8)]. Therefore the work (and so hp) is propor-
tional to ht '. This gives the cr(hp) ~ ht ' scaling.

The scaling relations obtained from Figs. 6—9 can be
combined to obtain expressions for (hp) and o.(hp) as
functions of AB, At, x o, and U~o for cases where At is not
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equal to an integer number of gyroperiods. As noted in
Sec. ?LIB, there are two distinct regimes for the Ap re-
sults: x 0) r 0 and x 0 & r o. Separate fits to the data will
be made in both regimes.

For the x~0 ~ r 0 regime, the scaling relations
combine to yield (bp) pc hB x ovzoAt and o(bp)
~ 5B x OU~Oht '. Dividing these relations by pe=v~0/

Bo, using 1 p=2~ /oc,
&&

and rgo=vto/ro, o, and introducing
the constants C, and C2 to replace the ~ signs, these be-
come

=9.160X10
Po Bo

2
+c0

At,

2

(16a)

~(~p)
r0

i
&cO

(16b)

which holds at the peaks of the hp versus At oscillations.
Expressions (16) are valid for b, t ~ 1.5r,o, b,B ~ 10 ' Bo,

and

(bp)/po=C, (bBIBo) (xylo/rgo) (r,o/&&)

tr(&p)/p&=C~(~&B~/Bo)'(~x o~/rgb)'(r, o/ht)' .

1p 3
I I I I I I II)

X "=10
rgp

I L I I I I III I

Vp

The constants C& and C2 can be determined with two
data points. Data from Fig. 9 are used:
(bp)/po=4. 4886X10 and o(Ap)/po=2. 9935X10
for AB/BO = 1.000X 10, At /r, o= 1.4286, and
xgolr o= 1. 000X10'. These yield C, -=9. 160X10 and
C2-=4. 276X10 '. Thus, for x O~r 0,
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FIG. 9. For ensembles of 500 test particles, the quantities
( 6p ) /pp cr ( 6p ) /pp and hp ~,„/pp are plotted as functions of
kt /7 o at the peaks in the hp vs At oscillations. The three sets
of points in the upper portion of the graph are for AB/8O =10'
and the three sets of points in the bottom portion of the graph
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c (bp)/p. ,=C,(i~BI/B, )'(~„/br)' .

Generating a new computer run at a maximum value of a
Ap versus At oscillation to obtain C3 and C4, the data are
( b p ) /pa= 2. 389 X 10 and o ( Ap ) /po =8. 107 X 10
for bB/Bo=2. 000X10, At/w, =O2. 723, and xgo/rzo
=0.0. These yield C3 —=4.43 X 10 and C4 =—1.10
X 10 '. Using these values yields, for xgp « r«,

22

=4.43 X 10
pp Bp At

(17a)

1

cT(bp) . i lbB rco

p B ht
(17b)

and x p r p. The validity of the expressions is not re-
stricted to small values of (b,p) /po or to small values of
cT(&p)/po.

For x&p « l'gp the scaling relations are combined
together to yield (bp) ~hB x oviob, t 2 and c7(bp)
~

l
b B

l

'x oov 2io b t '. Dividing both relations by

po v J o / Bo, using r, p
=2 it/cv 'o and rgo

=vio /co, o, and2

introducing the constants C3 and C4 to replace the
signs, these become

(&p) /pa=&3(&B IBo)'(,o/&r )'

and

expression (15). The minima in (b.p) and cr(hp) in Figs.
4 and 5 occur for At values satisfying this relation. Note,
however, that the depths of these minima are not
resolved in the two figures. Mathematically, bt being
equal to an integer number of gyroperiods corresponds to
the action intergrals of the particle motion being com-
pleted [see expression (4)]. In the unbalanced-work pic-
ture of Sec. II, there is no unbalanced work when At is
exactly equal to an integer number of gyroperiods, so
hp=0 would be predicted in that picture. To attempt to
understand the causes of the nonconservation of p and to
determine how (Ap) and cr(bp) scale with 6B/Bo,
At/~, p, and x o/r p when ht is equal to an integer num-
ber of gyroperiods, test-particle computer simulations are
run and the results are plotted in Figs. 10—13.

The Ap values of the individual particles in two ensem-
bles are shown in Fig. 10. Both sets of particles have un-
dergone ramp magnetic-induction changes with At being
exactly five gyroperiods long (%=5). In one case (top
panel) the particles had initial guiding centers located
4r 0 from the x =0 plane, and in the other case (bottom
panel) the particles' guiding center was located on the
x =0 plane. As can be seen in the figure, for x o/r o=4
the Ap values exhibit a sinusoidal dependence on the ini-
tial gyrophase angle Oo with one period per 2m of Oo and
for x p/r p=0 the Ap values exhibit a sinusoidal depen-

which holds at the peaks of the Ap versus At oscillations.
Expressions (17) are valid for bt ~ 1.5r, o, bB & 10 'Bo,
and x p«r o.

An important conclusion can be drawn at this point.
For the case where At does not equal an integer number
of gyroperiods, p is found to be an adiabatic invariant.
That is, bp~0 as b, taboo (see Sec. I). The individual
values of Ap scale with At as does the standard deviation
of the ensemble cT(hp), so by the definition given in Sec. I
[see expression (3)], p is an adiabatic invariant to first or-
der in ~,o/ht when At is not equal to an exact integer
multiple of ~, .

Note that for x o~ r o [see expressions (16)],
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and for x o «r o [see expressions (16)],

(bp) 11 o(bp)
po 3 po

(19)

0.001—

0—

N=5

—= 0.245b, B

Bo

—= 4.899b, t

CO

Relations (18) and (19) will have strong consequences for
the form of a Fokker-Planck equation that will describe
the time evolution of a distribution function f (p), as dis-
cussed in Ref. 22.

C. Measurements of hp at integer numbers of gyroperiods

As was seen in Fig. 4, the first adiabatic invariant p is
best conserved when the change in the magnetic induc-
tion occurs over an interval At that is exactly equal to an
integer number of gyroperiods. The condition that At
correspond to integer numbers of gyroperiods is given by

-O.O01 —g

-0.002—
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 90 180 270'

e,
360'

FIG. 10. For 360 test particles, hp/po is plotted as a func-
tion of 00 for ht being exactly five gyroperiods. The top panel is
for x«/r«=4 and the bottom panel is for xgo/rg0=0.
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dence with two periods per 2~ of I9o. These are the same

00 periodicities that particles exhibited when At was un-

equal to exact numbers of gyroperiods (see, for example,
Fig. 2), although the amplitude of the bp sinusoids is
much smaller when At is exactly equal to integer num-
bers of gyroperiods.

In Fig. 11, (bp) and o.(bp) are plotted as functions of
bB/Bc at the first three minima of the bp versus b, t os-
cillation with xgo/r~o fixed. The three minima corre-
spond to K =1, 2, and 3 in condition (15). In the right-
hand panel it can be seen that the scaling of o.(bp) for
each of the three minima is cr(bp)/pc~ (68/Bc), with
o.(Ap) being larger when bt is smaller (N is lower). In
the left-hand panel it can be seen that (b,p) scales as

( b p ) /po ~ (
~
b 8

~ /Bo )
' for smaller values of 58 /Bc and

as (bp)/pc~(~68~/Bc) at larger values of AB/Bc.
Thus, there appears to be one ( b,p ) scaling for weak per-
turbations and another ( b p ) scaling for strong perturba-
tions. Note that at smaller values of b,B/Bc the (b.p)
values are independent of At. The curves for the three At
values coinciding, but at larger values of bB/Bo there is
a b, t dependence to (b,p).

In Fig. 12 (bp) and o.(bp) are plotted at minima in
the Ap versus At oscillations as functions of At/~, o for
various values of b,B/Bc. The plots contain data for
X = I, 2, 3, 4, 6, 8, 9, and 12, where X is the number of

gyroperiods in 6 t. As was the case in Fig. 9, the cr(bp)
scaling is simpler than the (Ap) scaling. In the right-
hand panel of Fig. 12 it can be seen that
o(bp)/pc~(bt/r, c) ' for each value of bB/Bc. In the
left-hand panel it is found that (bp)/pc~ (ht/r, o) for
the smaller values of bB/80 and that (bp, )/pc~ (bt/
r,c) for the larger values of bB/Bc A.gain, there are
different ( b,p ) scaling relations for weak and for strong
perturbaiions.

In Fig. 13, o (b p) and ( b p ) are plotted as functions of
the initial guiding-center position x~o/rgo at the first
three minima of the hp versus At oscillation for two
values of b,B/b, t. In the right-hand panel it is seen that
o(bp) scales as o(bp)/pc(x c/rgc) for xzo&&rso and
that it scales as o(bp)/pc~(~x c~/roc)' for xso~rgo. It
is suspected that the breakpoint in these two scalings
need not always occur at x O=r o. In the left-hand panel
it is seen that (6p)/pco-(xgclr c) for x o«r c and
that (bp)/pc (xzc/rgo) for xgc/rso bigger than some
critical value that depends on the size of 68/Bc Aga.in,
the scaling of ( b p ) differs for weak and strong perturba-
tions. Now the o (Ap) scaling is also found to exhibit this
dichotomy.

For the limited parameter range that has been ex-
plored, the scalings of the Ap quantities at complete
gyroperiods (Figs. 11—13) can be summarized as follows.
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FIG. ] 1. For ensetnb]es 0f 5QQ—]500 partic]es, the statistica] quantities ( bp ) /po and cr(bp)/po are plotted as funct]»s « ~&/&o
at the first three minima of the Ap vs ht oscillations. The initial guiding-center position of the ensembles if fixed at xo/r«=4.
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actly equal to an integer number of gyroperiods differ
fundamentally from the scaling relations (16) and (17) ob-
tained for arbitrary At values. First, in the exact-integer
scalings 6B /Bo carries a different power than does
7 p/At. In the arbitrary-At scalings the powers of
68/Bp and ~,p/At are the same. Second, in the exact-
integer cases there are separate sets of scalings for strong
perturbations and for weak perturbations. This dual scal-
ing is not exhibited for arbitrary-ht cases.
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0Xo
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1010

0
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0
IV. THEORETICAL CALCULATIONS

OF THE CHANGE IN p FOR LINEAR RAMPS~ (AV)
104 =

&o
(hp) 104 =
&o

In this section, it will be seen that a theoretical analysis
of the orbits of charged particles provides information
about the causes of the changes Ap in the quantity p
when there is a time-changing magnetic induction. The
analysis of the orbits will be found to validate and im-
prove upon some of the quantitative results that were ob-
tained by means of the computer simulations. As was ex-
plained in Sec. II, the work that the induction electric
field does on a particle is responsible for the conservation
of p (see Sec. II). By performing more accurate analyses
of this work, the small changes in p can be calculated.
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Co A. Work and the change in the first adiabatic invariant

FIG. 12. For various values of 68 /Bo, the quantities
(bp)/po and rr(hp)/po are plotted as functions of At/r, o at
minima in the hp vs ht oscillation. Various values of 58/80
are used and 500—1500 particles are used to make up the ensem-
bles.

For a change in the magnetic induction from Bp to
8p+ 68, the change in the first adiabatic invariant
Ap =p —

pp is related to the work that the induction elec-
tric field does on the particle as it orbits in the time-
changing magnetic induction. Denoting po =p( t =0)
and p,„„„=p,(t =b, t), where the change in the induction
begins at time t =0 and ends at time t =dt, the fractional
change in p is conveniently expressed as

For x o))r o, the o (hp) scaling is

lABl waco xgo

Bp ht r p

o(bp) lbBl
pp Bp

(20)
2

U l final Bp

ufo Bo+ (bB/b, t )t
5p Pfinal

Pp Pp
(25)and foI x p ((I"

p lt is

~(~p) „ I~B laBl r,o

po Bo Bo At
(21) The perpendicular velocity u~ „„„=u& ( t =At) is given by

energy conservation to be v~s, &=v~o+(2/m)W where
8' is the work done on the particle. With this, relation
(25) becomes

For xgo ((rgo, the ( hp ) scaling is
p

(~p) „
Pp

Xgp
(22)

Bp 1+ ', ~-1
Bp+ ~8 ~U ~co

L

I'gp
(26)

with unknown 58/8p and At/~ p scalings. For xgp) ~"gp,

the ( hp ) scaling is dependent on the strength of the per-
turbation: it is which relates the fractional change in p to the work 8"

performed on the particle. Note that W = W(go), and so
Ap/p wiH also be a function of the particle s initial gyro-
phase angle Oo.

The work that the electric field performs on a particle
is written W' =q fE.d x, where f d x is an integration
over the path of the particle and q is the charge of the
particle. For the time-dependent magnetic induction
B=B(t)z described by Eqs. (7), the induction electric
field is only in the y direction, so W'=q fE dy Using.
expression (8) for E and writing dy =u dt, the work be-
comes

p
(ap) laBl lzBl r, o x,o

pp Bp Bp At r p

for smaller perturbations (smaller b,B /b, t and xgo values)
and it is

pp Bp Bp At r p

(24)

for larger perturbations (larger b,B /b, t and xgo values).
The scaling relations (20)—(24) obtained f'or b, t being ex-

BREAKING OF THE FIRST ADIABATIC INVARIANTS OF. . .
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q ABW= —— XU dt, (27)
vJp x p cos 67 ot +Op

ehB q ~ q
c At e o e

where x(t) and u~(t) can be obtained (in principle) by
solving the orbit equations of the particle.

B. Circular-orbit approximation

A circular orbit that has constant gyrofrequency and
that has no guiding-center drift is the simplest approxi-
mation that will yield some results for hp/po. Consistent
with the initial conditions (11), the circular orbit is de-
scribed by

+ cos co pI, +Op dl . 29
cop p e

These integrals are straightforward with the use of
sin( 3 )cos(B)= —,'sin (2A) and

sin(C) —sin(D) =2 cos[ —,'(C+D)]sin[ —,'(C —d)] .

Inserting expression (29) into relation (27) yields

UJo qx =x p+ cos cc) pt + Op
co,p e

Uy = Ugp COS Q) pf + gp
q

(28a)

(28b)

Ap AB ~co AB t

pp Bo At Bp At

2 xo q coot q m, pI;
X — cos — +Oo sin

~ rgp e 2 e 2

where Op is the initial gyrophase angle of the particle.
Expressions (28) describe circular gyromotion with no
guiding-center drifts in a uniform, time-independent mag-
netic field. Inserting expressions (28) into relation (27)
yields the work

+ cos cc) pt +200 sin —co,pt
1 q . q (30)

Note that for t =const, Ap/pp has a cosOo dependence
for xg~))r o and bp/)M~ has a cos(20~) dependence for
x o&(r o, agreeing with the behavior of Ap/po observed
in Fig. 2.
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As an aside, note that expression (30) predicts that
Ap~0 as At ~~, which means that p is an adiabatic in-
variant (to first order) in r,ojb.t.

Taking the pitch-angle average (1 /2n) f 0"dOO of ex-

pression (30) yields

(31)

xgp

rgp

2 ~ oAt
sin

2

1/2

+ —,', sin (co,ob, t)

This expression captures a behavior seen in the test-
particle simulations of Sec. III: For xgo)) r p the periodi-
city of o(bp) goes as fsin( —,'co, ob, t) f, and as x o~0 the
periodicity goes to fsin(co, obt) f. Provided that bt is not
exactly equal to an integer number gyroperiods, expres-
sion (32) is a very good fit to the test-particle-simulation
data in both the xgp »rgp regime and the xgp~0 regime.
For xgo))r o, the theoretical expression (32) differs from
the computer-simulation fits given by expression (16a) by
5.0% for b,B «80, and for x 0(&r o expression (32)
differs from the simulation fits given by expression (17a)
by 1.8%%uo. Hence, there is good agreement between the
computer-simulation results and the analytic calcula-
tions. In the limits of x~0/rgo && 1 and x~ojr~o ))1,
b pjpo can be maximized with respect to 80 to yield

Ap 2 AB ~co xgo

pp K Bo At rgp

X 1+
&o

~coAt
sin

Ap AB ~cp AB

p B A 8
L

for x o))r o,

f sin(co, obt ) f

for x p«r o .

(33a)

(33b)

A very simple derivation of the conservation of p often
used in textbooks (for example, Refs. 23—27) is to use a
circle to approximate the orbit and to calculate the work
done on the particle over exactly one full period of the or-
bit. Expression (30) for hpjpo agrees with these deriva-
tions at the close of a circular orbit: Ap/pp=O when

The standard deviation of the Ap values is obtained by
using the definition

o (bp)jp()= f
((bp)') —(bp )']' 'Ip() .

Taking the pitch-angle average of the square of expres-
sion (30) and inserting it and expression (31) into the
above expression for cr ( by ) /po and then taking t =b t
yields

cr(b.p, ) 2' + b.B b,B rco

po ~ &o &o At

t = b, t =r,o=2njco, o . However, expression (30) goes
beyond the textbook derivations since it includes cases
where the gyro-orbits are not closed during the time
when the magnetic induction changes. Expression (30)
quantifies the unbalanced-work picture of Sec. II. The
fact that expression (30) agrees with the computer simula-
tions confirms that the major part of the Ap/pp comes
from the unbalanced work around the gyro-orbit.

Note that the circular-orbit approximation did not ob-
tain the correct values for ( b,p ) /po, which were found in
the simulations to be nonzero but small (see Sec. III 8),
nor does the circular-orbit approximation obtain the
correct values for bp jpo when b.t is equal to an integral
number of gyroperiods, which were also found to be
nonzero but small (see Sec. III C).

C. Limit of h, t —+0

When the magnetic-induction change is very rapid,
charged particles are impulsively accelerated by a
strong-induction electric field during the brief change.
For magnetic-induction changes occurring over such
brief time intervals, a circular orbit is a very poor approx-
imation to the true orbit, and so the expressions for Ap
obtained in Sec. IV B should fail to describe Ap when At
is very small. The circular (unperturbed) orbit requires
fEf «(1/c) fv XBf, since electric-field accelerations were
ignored. Using expression (8) for E, the ratio of electric-
field to magnetic-Geld accelerations during the change in
8 is IEf/f (I/c) fvXB

f 7=(bBIBO)(x/ui)(1/bt).
Hence, no matter how small AB and x are, this ratio be-
comes infinite as At~0. Accordingly, the electric-field
force in the particle s equation of motion cannot be ig-
nored when calculating bpjpo as bt~0, but the
magnetic-field force can be. In fact, for b.t jr,o« —,', the
vXB force has very little eFect on the orbit, and it can
therefore be ignored. For the electromagnetic-field
geometry given by expressions (7) and (8), the work done
on a particle is given by 8' =q E dy, where E x is
evaluated along the particle's orbit. If the change in the
magnetic induction is rapid enough, then the particle will
not move appreciably in the x direction while the work is
being done, and so E will be approximately constant
during the work. This requirement can be written
b.E~/E &(1, which, with the use of Eq. (8), ean be writ-
ten Ax/xo=v At/xo «1. The maximum value of U is
U~o, with this and with r o=v~p~, p/2m, the requirement
becomes b, t/~, 0(&(1/2~)(xojrgo) If this cond.ition is
met, then E„ is approximately constant and it can be
pulled through the integration in q IE dy, and the work
expression becomes 8'=qE Ay, where Ay is the distance
that the particle moves in the y direction during the im-
pulsive acceleration. If At/~, p && —, is met, then rectilin-
ear motion can be used to calculate Ay which yields the
expression by =u~obt+(q/2m)E bt . Inserting this ex-
pression into W =qE by and using Eq. (8) for E~ yields

W'= (qjc)bBu Oxo+(q /2rnc )b.B xo, —

where xo is the initial position of the particle. Using ini-
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tial conditions (1 la) and (1 ld) for particles with the same
initial guiding center and same initial perpendicular ve-
locity, the expression for the work done by the induction
electric field on a positive particle becomes

68 1 68 588 =mu, p
— — x p+r ~ Q 1+ cosOQ

Bp 2 Bp g g g Bp

+ rgp 1+ cos Op
2 Bp

rgp p

+2 1+— cos 8 . (35)
1 58
2 8Q

Note that this expression is not limited to 58/8 p small.
The gyrophase-angle average ( I/2r7) Ip d&p of expres-

sion (35) yields

(Ap)
Pp

2' 2
1 68 &gp 1

I+(ABIBp) 8() r2p 2
(36)

In Ref. 28 a similar expression was derived for particles
moving in a cylindrically symmetric induction electric
field Et)=(1/2c)(AB /At )r; expression (36) (which is val-
id for an electric field that is antisymmetric about a plane
rather than a line) is equivalent to expression (8) of Ref.
28 in the limit of xgp))r Q and when the induction elec-
tric field is reduced by a factor of —,'. Taking the root-
mean-square gyrophase average of expression (35) and in-
serting it and expression (36) into

(7(Ap) Ipp= [((Ap)') —( Ap )']' 'pp

yields

(T(Ap) 1 AB

p() 1+AB /8() 8p

2 268
Bp

2 1/2

Xp

rgp

1 168
2 28Q

(37)

Inspecting relation (35), the value of Ap/pp is found to be
maximum for an initial gyrophase angle Op=0', yielding

AP l ~,„AB xsp x(.p AB /8()1+2 +
pp 8Q ygp r2p 1+58/Bp (38)

Where tested, the values of (Ap) lpp, o(Ap)/pp, and
Apl, „/pp are identical to the values obtained from the
test-particle simulations, hence the agreement between
the theory and the computer data is excellent. Note that

where Op is the initial gyrophase angle of a particle and
where UJQ ygpCO Q was used. Inserting this into expres-
sion (26) yields, at t =At,

ABIBp AB x p —1
pp I +68/Bp BQ y

2

relation (18) holds for expressions (36) and (37) in the lim-
it of x p)) r Q for all values of 68/Bp.

D. Exact orbits from the pumped harmonic-oscillator
equation

It is desirable to obtain exact analytic solutions to the
orbit equations for a charged particle in the time-varying
magnetic induction. With the magnetic induction B,(t)
given by expression (7) and the electric field given by ex-
pression (8), the equations of motion (10) are combined to
yield

Bx 58 1
C g CP (39)

The homogeneous equation obtained by setting the
right-hand side of this expression to zero is a Lommel
transformation of Bessel's equation. According to ex-
pression 9.1.51 of Ref. 30 and the above definition of ~,
this homogeneous equation has a solution

1/4

( I+et )'xh(t) =

a, C )/4
— (1+Et)(i) 1 ~cp 2

2

+a2C (/4
—

( 1+Et )
(2) 1 ~cp 2

2 E
(41)

where C ' " and C ' ' are either the pair of Bessel functions
J and Y or the pair of Hankel functions H'" and H' '. If
x p=0, then the exact orbit is given by expression (41)
and ai and a2 are obtained from initial conditions (1 la)
and (1 lc).

A particular solution to the inhomogeneous difIerential
equation (40) can be obtained by using the method of
variation of parameters. Taking C &/4=H &/4 and(1) — (&)

C', /'4=H&/'4, the needed Wronskian is found with the use
of expression 9.1.17 of Abramowitz and Stegun to be

1/2H(1) (
( 2) i/2H(2)

(
( 2) ] 8

~ /

Defining (t/=r /2, the particular solution is written

where cp, =eB/mc, with 8 =8 (t), and where
co,p=eBp/mc Sin. ce 8 =Bp+(AB /At)t [see Eq. (7)],
()cp, /(3t=(co, p/Bp)(ABIAt). Thus, the right-hand side
of this relation becomes —(()/()t )(cp, x ). Integrating

Ipdt with the initial values for x and () x I r)t, and noting
that there is no electric field term in (() xldt ), p, the
pumped harmonic-oscillator equation

9 x
+CO X —

CO QCO X (40)
Bt

obtained. For x p=0, Eq. (40) reduces to the un-

pumped harmonic-oscillator equation that was con-
sidered by Kulsrud. ' Changing variables from t to
r—= (co,pl@)' (I+et), where E=AB/(BpAt), the pumped
harmonic-oscillator equation becomes

(() x/()r )+r x =(cp,p/e)' xspr .
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r

im ~cpxgp 2ex (t)=
COcp

CO p co o /[2'(1+et) ]+H' ' (1+et ) f P' H", )'4(g)dg (42)

It is unlikely that the integrals in expression (42) can be
performed analytically, even if asymptotic expansions for
the H»4 functions are made and the series are integrated
term by term. Thus, the use of this exact expression is
limited.

I

forms of ramps. One form is a hyperbolic tangent and
the other is one-half period of a sine wave. The three
ramps are displayed in the top panel of Fig. 14. Within
the three ramps the time variation of the magnetic induc-
tion is

V. MAGNETIC-INDUCTION RAMPS
WITH DIFFERING FUNCTIONAL FORMS

In this section, the breaking of the first adiabatic in-
variant p by linear-ramp magnetic-induction variations is
compared with the breaking of the invariant by two other

B=B.+" 1+
2 At/2

for the linear ramp,

for — & t & (43)
At ht
2 2

Bo+ b, B

Bp

I I I I I I I I I I I I I I I I I I

I I I I
I

I I I I

I
I I I I

I

I I

h b I' t t

1.0

dB/dt

h, B/h, t

0.5

I

-1.0 -0.5 0 0.5 1.0

FIG. 14. In the top panel three diFerent ramp functions B(t) are compared, and in the bottom panel their time derivatives are
compared.
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B =Bo+ 1+sin 2.258
6B
2

for —0.696ht ~ t ~0.6966,t (44)

for the sine-wave ramp, and

B =Bo+ 1+tanh 2 507
6B
2 At

for —~ ~t~ ~

(45)

(&p)
Po

' N+1
hB ~co

Bo At
(46a)

(46b)

The linear ramp has 0 continuous derivatives, the sine-
wave ramp has one continuous derivative, and the
hyperbolic-tangent ramp has an infinite number of con-
tinuous derivatives. For AB/Bo small, as At/~, o~~
(the adiabatic limit) the expected b p values for the
hyperbolic-tangent ramp go as ' ' 4p ~ e '. Besides
checking these ramps in the asymptotic limits
(At/r, o~ ao ), the computer simulations will be used to
examine the behavior of p for all values of ht.

For ensembles of particle that have experienced
changes in the magnetic induction that take the forms of
the linear ramp, the sine-wave ramp, and the hyperbolic-

for the hyperbolic-tangent ramp. For the linear ramp be-
fore t = At /2 —and for the sine-wave ramp before
t = —0.696ht, the induction is constant at B =Bo and
after time t =Et/2 and t =0.696ht, respectively, the
linear ramp and sine-wave ramp have B =Bo+AB. For
all three ramps, the jump in magnetic induction is 6B.
%'ith the width of the linear ramp taken to be At, the
widths of the other two ramps are determined by minim-
izing the integral from t = —~ to t =+ ~ of the square
of the difFerence between the first derivatives of the ramps
compared with the first derivative of the linear ramp.
This is a least-squares fit of the first derivatives. This
minimization process yields the numerical factors of
2.257979 and 2.5074 in Eqs. (44) and (45). The first
derivatives of the ramps are plotted in the bottom panel
of Fig. 14. In addition to the mean-squared deviation of
the sine and hyperbolic-tangent curves from the linear
curve being minimized, the areas under the curves are
equal.

Some expected hp values for the three ramps are as
follows. According to Kulsrud's analysis' of the un-
pumped harmonic-oscillator equation[see Eq. (40)]
(a'x/ar')+co, x =0 (which applies only to particles with
xg0=0), the functional form of the b,p versus b, t relation
in the adiabatic limit is governed by the number of con-
tinuous derivatives that there are in the ramp function.
Kulsrud's analysis predicts o (b p)/pp Z~+ i/
(2',o)

+2 and (bp)/@0=0, where N is the number of
continuous derivatives in the ramp and where Zz+, is
the jump in the (% + 1)st derivative of co, at the discon-
tinuity. These yield

tangent ramp, the mean and standard deviation of Ap are
compared in Fig. 15. The particles in the ensembles all
have the same initial value of p and the same initial
guiding-center position, and the averages are over the ini-
tial gyrophase angle Oo. For ht/~ p~0 it is seen that
the three types of ramps produced identical values of
Ap/po and that for ht/~, o

~ 0.5 the three ramps produce
very similar bp/po values. For b, t/r, o) 0.5 the b,p/po
values are very different. A check on the peaks in the os-
cillations shows that ( 6 p, ) /po ~ (b, t /r, o) and
0(bp)/po~(ht/r, o)

' for the linear ramp (as found in
Secs. III and IV) and that (bp)/po~(bt/~, o) and
0'(b p)/po ~ (b t /r, o) for the sine-wave ramp. The
o.( b,p, ) /po scalings agree with the predictions of
Kulsrud' [see Eq. (46a)], since the linear ramp has 0 con-
tinuous derivatives and the sine-wave ramp has one con-
tinuous derivative. For the linear ramp, Kulsrud's
x o =0 analysis predicts that

o (&p)/p, ,= 1 /(8')(b&/B, )'(r„/d t )',

whereas the theory of Sec. IVB (which agrees with the
computer simulations) for x 0=0 obtains

o(bp)/pa=2' /(4~)(&&/&0)'(r, o/&&)'

[see expression (32)] at the peaks in the bp versus b, t os-
cillations. Note also that Kulsrud's analysis predicts
( b,p ) =0 for all ramps, whereas ( bp )%0 for the ramps
(see Fig. 15). For the hyperbolic-tangent ramp, the

7'(~'/~. o)
values of Fig. 15 yield ( Ap ) /po ~ e

' ' and
3 8[~'/'~ 0cr(hp/pa~ e " for larger At/r, o values. These

scalings agree fairly well with the predictions of
7 9'~'/~. oHertweck and Schluter that ( b,p ) /po ~ e

' " for
the hyperbolic-tangent ramp of expression (45).

Note in Fig. 7 that the periodicity with At of the oscil-
lation in the sine-ramp curves differs from the periodicity
with At of the linear-ramp curves, with the period of the
sine curves being -0.7~,o. The length of the sine ramp is
2(0.696)bt =1.396 t [see expression (44)]. Thus, when At
increases by 0.7~,o, the length of the ramp increases by
0.97~,o. Hence, the periodicity of the sine-ramp curves
agrees with the periodicity that is described by the
unbalanced-work picture of Sec. II, as does the periodici-
ty of the linear-ramp curves.

Note in Fig. 15 that there is no oscillation of ( b,p) or
o (hp) versus b, t for the hyperbolic-tangent ramp. This is
also the case for single particles; a particle that starts at
the same gyrophase angle Oo at the same time t = —to,
where to &)At, has no oscillation of Ap versus At. How-
ever, individual particles have Ap versus t oscillations
during the hyperbolic-tangent-ramp magnetic-induction
change, as can be seen in Fig. 16. Here, Ap/po is plotted
as a function of time for two particles, one (top panel) ex-
periencing a ramp with ht =2r, o and the other (bottom
panel) experiences a quicker ramp with bt =0.57 o. Iil

c& t+ico t
both cases, the Ap values increase as Ap ~ e '

where the value of c I depends on the ramp height AB and
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the ramp width ht. Note for the top panel that
bp(t =0)»bp(t~+ ~). In fact, the values of o(bp)
and (b,p) at time t =0 (center of the ramp) are similar to
the o ( b p) and ( hp ) values obtained for the linear ramp
(see Fig. 15 at b

tlat,

o=2); however, the bp values in the
hyperbolic-tangent ramp decrease with time after the
ramp center. Note in Fig. 16 that the rate of exponential
falloff for t )0 is slower than the rate of exponential gain
for t &0.

The b, t scalings of o(b,p) and (b,p) were obtained
from Fig. 15. Two new figures will be generated to deter-
mine the hB and x o scalings. For ensembles of particles
that have experienced hyperbolic-tangent ramps, the final
values of cr(bp) and ( hp ) are plotted as functions of the
ramp height EB in Fig. 17. In the left-hand panel the
magnetic induction decreases in the ramps (b,B &0), and
in the right-hand panel the induction increases in the
ramps (bB &0). Here, for )bBIBo~ &&1, the scalings
(hp) /po~ (b,B /Bo) and o (hp)/po ( ~5B(,/Bo)' are
clearly seen. Note the curious behavior in the right-hand
panel that for b8/Bo » 1 a maximum value of hp/po is
reached. This is very different from the behavior of parti-
cles in linear ramps (Fig. 6), where b,p increased
indefinitely as hB increased. The cr(hp) and (b,p)
values for ensembles of particles experiencing

«p) aB ' xo
pp Bo r p

2 —7.3bt/z oe (47a)

tr(Qp) ~QB~ lxsol —3.sat/~ 0= 13.4 e
Po Bo r o

(47b)

for x o/r o) 1 and

hyperbolic-tangent ramps are plotted as functions of
x olr o in Fig. 18. As can be seen, there are two regionsgo go
for the scalings: x o/r o«1 and xgolr o& 1. For
x o/r o «1, the values of (b,p) Ipo and o(b,p)/po reach
a constant value. This behavior is very similar to that ob-
served with linear ramps (see Fig. 7). For x o/r o«1,
the scalings ( b p ) Ipo ~

(xso Irido) and

g(bp)/po~(x olr o) are obtained from Fig. 18. For0 go gp
OCx olr o&1, the scalings (bp)lp, ~(x«/rso) and

g(Qp)/po~(~x o~/r o) are obtained. Putting these scal-

ings together and using one o(bp) and one (bp) data
point from Fig. 15 yields the fits to the test-particle
computer-simulation data
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Xgp
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Bp yp

p —3.86~ /r co

(48a)

(48b)

for x p/r p«1.

VI. DISCUSSION OF THE I.ITERATURE

For a charged particle in a time-changing magnetic in-
duction, Ap can be larger than would be expected from
an examination of the literature on the first adiabatic in-
variant. This unexpected largeness stems from two prop-
erties: (i) hp depends on the position of the particle and
(ii) the particle might not complete an integer number of
gyro-orbits during the magnetic-induction change. The
position dependence of Ap leads to an extra criterion that
must be satisfied in order for bp to be small [Eq. (5)]. In
textbooks (for example, Refs. 4, 7, I6, I7, 20, and 33), as
in most of the literature, it is commonly stated that p is
conserved provided that the time variation of B is slow

and that spatial gradients in the electromagnetic fields are
weak; there is typically no mention of the spatial depen-
dence of Ap, let alone that there is a restriction on the
spatial location of a particle if Ap is to be kept small. A
prominent exception to this is the work of Hertweck and
Schluter, wherein it is pointed out that Ap is larger for
particles far out from the point where the induction elec-
tric field vanishes than for particles at the point where it
vanishes.

The case where the magnetic-induction-change time At
is an exact integer number number of gyroperiods is gen-
erally the only case considered in the literature. The
probability that a time At is exactly equal to an integer
times ~, is small, therefore considering cases where the
gyro-orbits are incomplete is important. Two exceptions
to the generality are Landau and Lifshitz, ' wherein it is
mentioned that Ap can be finite if the action integrals are
incomplete, and, again Hertweck and Schluter, wherein
the case of an incomplete gyro-orbit is analyzed.
Hertweck and Schluter (whose work is repeated in Ref.
34) analyzed cases where the magnetic induction changes
very quickly (see Sec. III C for a comparison of their re-
sults to the present results) and cases where the magnetic
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FIG. 17. For test particles that have passed through hyperbolic-tangent ramps with fixed ht values and with x~o values fixed, the
ensemble quantities (hp) /po and o (hp}/po are plotted as functions of the change in B across the ramp. The left-hand panel is for B
decreasing across the ramps, and the right-hand panel is for B increasing across the ramps.
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I I I I I II( I I I I 11 tt injected into the Earth's magnetosphere by nuclear explo-
sions, for electrons and ions injected into the Earth' s
magnetosphere by magnetic storms, ' and for electrons
and ions absorbed by moons in the magnetospheres of Ju-
piter and Saturn. ' For magnetospheric particles, the
dominant causes of the change in p are Coulomb scatter-
ing of atmospheric gases and resonant interactions with
electromagnetic plasma waves. Because the amplitudes
of plasma waves in the magnetospheres are not well
known, the observed time scales for the evolutions of
magnetospheric particle distributions are used to infer
the time dependences of the magnetospheric fields, rather
than the particle data being used as a test of theoretical
predictions for the breaking of p.
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induction changes with time with a hyperbolic-tangent
function (see Sec. V for a discussion of those results).

Besides the present work, the authors are aware of only
two other studies that have used numerical simulations to
investigate the breaking of adiabatic invariants in time-
dependent systems, although there have been several
computational studies to determine hp for particles or-
biting in time-stationary magnetic fields. The two
studies for time-dependent systems are those of Hertweck
and Schluter (for hyperbolic-tangent functions) and of
Howard ' (for Gaussian functions). The numerical work
of Hertweck and Schluter has pertinence to the present
work and was discussed in Sec. V, where favorable com-
parisons with theory for the particular time dependences
were made.

For laboratory devices with time-stationary magnetic
fields, data exist on the behavior of charged particles that
can be compared with theoretical predictions for hp
values for these time-stationary fields. ' One experi-
ment studied the behavior of mirroring particles in the
presence of an imposed, time-dependent electrostatic
field. However, no published data for particles in time-
dependent magnetic fields have been found. Data per-
tinent to the breaking of p do exist for electrons and ions

FIG. 18. For hyperbolic-tangent ramps with fixed values of
68 and b, t, the quantities (Ap) /po and o(b,p)/po are plotted
as functions of the initial position x«of the ensemble guiding
centers.

Test-particle computer simulations and analytic theory
were used to investigate the first adiabatic invariant p for
charged particles moving in spatially uniform, temporally
varying magnetic fields. The fractional change Ap/pz
that resulted from a change in the magnetic induction
was examined, and expressions for the statistical quanti-
ties (Ap) /po and o'(Ap)/po were obtained as functions
of the magnetic-induction parameters and the initial con-
ditions of the particles.

A picture for the quantity Ap based upon the unbal-
anced work done by the induction electric field on parti-
cles undergoing cyclotron motion was presented. Agree-
ment was found between the computer-simulation data
and the analytic calculations. This agreement confirmed
some physical pictures upon which the breaking of p is
explained.

Large oscillations in b,p/pz versus b.t (the time over
which the magnetic induction changes) were seen. These
oscillations stem from fundamental differences between
cases when At is exactly equal to integer numbers of
gyroperiods (complete action integrals) and when b, t is
not exactly equal to integer numbers of gyroperiods (in-
complete action integrals). The quantity p=ut/B was
found to be an adiabatic invariant even when the action
integrals were incomplete. The statistical quantities
(Ap)/p~ and tr(bp)/po are found to follow simple scal-
ing relations with bB/Bo, b,

tlat,

o, and xsolrso These.
scaling relations were found to hold even for 68/80 not
small and At/~, o not big. Thus„ the scalings hold even
outside of the adiabatic limit of parameter space. A new
criterion for keeping Ap small was presented, this cri-
terion limiting the magnitude of x o/rso.

The behavior of the first adiabatic invariant was exam-
ined for magnetic fields that underwent changes in
strength through three different types of temporal func-
tions. For changes that occur over brief time intervals,
the resulting changes Ap are insensitive to the functional
form that describes the change in B. For changes that
occur very slowly, the resulting changes Ap are very sen-
sitive to the functional form of B (t).
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