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Theory of the anisotroyic ferrite wake-field accelerator. II. Higher-order modes
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The theory of the anisotropic ferrite wake-field accelerator is solved for the case of any general

angular mode m. The ferrite is driven into saturation by a static magnetic field, resulting in the per-

meability tensor having off'-diagonal elements. Expressions for the radial and angular transverse

forces are obtained. Finally, we give numerical examples showing that the transverse forces in the

anisotropic ferrite wake-field accelerator are reduced as the static saturated magnetization is in-

creased.

I. INTRODUCTION meability and can be written

In a previous paper' (referred to here as I) we solved
the theory of the anisotropic ferrite wake-field accelerator
for the azimuthally symmetric m=0 mode. In that work
it was shown that accelerating gradients of 1.5
[(MV/m)/nC) of driver beam charge are possible for real-
istic ferrite materials and that this number is comparable
to that obtained for the dielectric wake-field acce1erator.
This is important since the next generation of wake-field
acceleration experiments will have driver beam charges
of 100 nC within bunch lengths of less than 10 psec
traversing loaded waveguide structures. The response of
materials under such conditions is unknown at the
present time; thus it is necessary to have several candi-
date materials available for loading the waveguides. Un-
magnetized ferrites have been previously suggested by
Callan et a/. ; however, they conclude that the ferrite
properties needed do not correspond to those of normal
ferrites. On the other hand, in I we found that practical-
ly any magnetized ferrite will work.

In the present work we consider the case of the aniso-
tropic ferrite wake-field accelerator for the case of any
general angular mode rn. This allows us to calculate the
transverse forces arising from driver beam charges travel-
ing o6'axis through the wake-field structure, as shown in
Fig. 1. These unwanted transverse forces must be under-
stood since they lead to beam instabilities. For smaller
values of the ferrite static saturated magnetization, these
transverse forces are about the same as those for the
dielectric wake-field accelerator. But as the static sa-
turated magnetization is increased, we find that these
transverse forces are reduced in the ferrite-loaded struc-
ture. As in I, in this work we use mks units.

In I, we derived the ferrite permeability. Very brieAy,
the magnetic permeability and susceptibility tensors p
and g are defined by

B=p.H,
with

p, = 1+y„, —iK 0

0
0

Define

(4)

with e and m, being the charge and mass of the electron,

po the permeability of free space, and g the spectroscopic
splitting factor. Since g =2 for a free electron, in our case
I,= —2.21 X 10' (rad/sec)/(At/m). The ferrite reso-
nance frequency is co„=—I,H„where H, is the dc mag-
netic field which drives the ferrite into saturation. With
these definitions, the real and imaginary parts of the sus-
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where y„„and K have been divided into rea1 and imagi-
nary parts, M, is the saturated magnetization, and 1", is
the gyromagnetic ratio which is given by

I,= —g (poe/2m, ),

p =po( I+y)—:p(P„ (2)
Conducting Sur face

where I is the identity matrix and p„ is the relative per- FICs. 1. Ferrite-loaded wake-field structure.
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ceptibility tensor components become

co co„(co„—co )+co co„a cox'=
[ — (1+ )] +4

co coa[co„+(1+a )co ]~l I

[co2 —co (1+a )] +4co co„a

—co co[co„—co (1+a )]
[co„—co (1+a )] +4co co„a

2~mar~ &+lt

[co, —co (1+a )] +4co co„a

(7)

(8)

(10)

Q 5(r ro—)
p(r, g, z —vt) =

(2~) ur

im 0 —(i co/v )(z —vt)e e
m = —oo

/2v
Xe ' dco . (12)

E",(r, O, z —ut)

H", (r, O, z —ut) f eim()e —(icolv)(z —vi)

m = —oo

Fourier expansions for the longitudinal fields are taken
to be

where 0. is the damping constant. As in I, it has a small
effect on our results so we can neglect it.

In the next section, we solve for the electromagnetic
fields inside the ferrite and vacuum regions. In Sec. III
we apply the boundary conditions and solve for the
coefFicients of the homogeneous electromagnetic field
solutions. And finally, in Sec. IV we discuss the opti-
mized anisotropic ferrite wake-field accelerator found in I
but tuned to 20 Cxhz and calculate its transverse forces.

Following I, we arrive at

E,(co, r)= e4' Fpv

E",(co, r)
X Hi ( )

dco

(13)

2 2/2 2 Q)r
Z

Vy

II. FIELD SOLUTIONS

A. Vacuum hole region

XK +C I
Uy Uy

(14)

As in I we consider the case where the driver is a line
of charge having a Gaussian line distribution. But now it
is located at the position r = ro, 0= Oo =0 and is given by

—Q t)(r "0) 5(g) —(.—.)'iz',
p(r, 8,z —vt) = e

V'2w r cr,

having the Fourier expansion

H", (co, r)=G I
Ur

where I and K are the modified Bessel functions, y is
the Lorentz factor, and r & (r & ) means the 1esser
(greater) of r and ro

Solving for the transverse fields in terms of the longitu-
dinal fields and specializing to the case rp r, we obtain

l COO
mr

o, d'or,

d'or

2 2 2 Q)r
e eim 0 —(i cojv){z —ut)

pov y im
G I

Uy
e eim 0 —(i cojv )(z —ut) (16)

lVy lm
mO

CO

t coQ
z 2e4~26 U2y2

cur pI E +C I
Uy Uy Uy

e eim 0 —(i cojv )(z —ut)

cor—iPouy G I'
Vy

e eim 0 —(i co jv)(z —vt) (17)

~h
mr

2 2«ov y im i coQ

4& EpU
I E +C I2 2 2 Q)r

e eim 0 —(i cojv)(z —vt)

+iy G I'
Uy

e eim 8 —(i co/u)(z —vt) (18)

h EcoQ
~me ~OUy

4& 6'pU

+lUy2 ™G Im m
CO

2 2/2 2 Q)r

Uy Vy Uy

e eim 6) —(i cojv)(z —vt)

e eim 0 —(i a)jv)(z —vt)

(19)
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C and 6 are constants to be determined in Sec. III by
the boundary conditions.

1 Baf,
Bo

(20)

B. Ferrite region

Assuming all fields vary as e '+' ', the transverse
electromagnetic field components can be written in terms
of the longitudinal components as follows:

BE, ) BE, BH,f f f
+~' B

+

BEf, l BEf,IIf, = —uf ' +tf-
Br r BO

f PlZ f 1 mZ—
q +p ——

Br r BO

where

Pf= K(K +—c0 efP0P)(hf)

qf = i Kc02e—fp~(b, f)

r f=cop0KK (bf)

sf= i'[—p0pK +co p0(p K)e—f ](bf)

(23)

(26)

(27)
BE $ BE f BII+'

~ BO
' B.

l BHf,+".
BO

f f PP7Z f 1 mZ f mZ

Br Br

1 BIIf,
BO

(21)

(22)

t =co efp0K(b, )

u =ice(efK +co efP0P)(h )

(28)

(29)

bf=[K +co efp0(p+K)][K +c0 efp0(p —K)] . (30)

We will only require boundary conditions for E „
H „E &, and H 6). Thus, carrying out a program simi-
lar to that in I, we arrive at the following field solutions
inside the ferrite for any general mode m:

Ef, =[A,J (k, r)+B,N (k, r)+ A 2J (kzr)+8 2N (kzr)]e™~e (31)

af, =
Kcopop E k) K CO EfPO

~2 +2 [A,J (k, r)+B,N (k, r)]

-2 2

+ k2 K ~ efp'0 [ A 2J (k2r)+8 2N (k2r
p

(32)

Efe=iKco efp0K(bf) '[k&[A &J' (k&r)+8 &N' (k&r)]+kz[A zJ' (kzr)+8 2N' (kzr)]]e' e

K(K +co efp0—p)(bf) ' [A &J (k&r)+8 &N (k&r)+ A zJ (kzr)+8 zN (kzr)]e™9e

+i [pK +co p0(p K)ef ](bf)—
wp, K

-2 2

k, K co efp—0
— Ik, [A,J' (k, r)+B,N' (k, r)]]
p

p —&'+ kP K co E'fPo
p

Ikz[A zJ' (kzr)+8 zN' (kzr)]] e™e

+K(af)-' le p
p,

—K
k ) K c0 efp0 [ A )J (k)r)+8 )N (k)r))

p

—K+ k —K —co e p [A J (k r)+8 2N (kzr)] e' e
p

(33)



43 THEORY OF THE ANISOTROPIC FERRITE. . . . II. 5593

H e= —ird(e&lr +cd e&P~)(b, ) '{k,[A,J' (k, r)+B,N' (k, r)]

+kz[A zJ' (k2r)+B 2N' (k2r)]]e' e

+co e~ppK(AI) I ™[A &J (k&r)+B &N (k&r)+ A zJ (k2r)+B ~N (kyar)]e' ee
r

-2 2

+ l cdey(ky ) k ) K rd eyPp
Pz p

{k,[A,J' (k, r)+B,N' (k, r)]]

2 — 2
+ kq Ir—rd—ej pp {k2[ A~2J~(k2r)+Bm2N~(k2r)]]

p

Xe ee ~ + ~ (K2+rd2e P~)(gf) —1 ™
copop E

k )
—Ic —

Ql egpp [ A ~J (k]r)+B &N (k]r)]

+ k2 K co 6'fPo [A zJ (kyar)+B zN (kyar)] e™e (34)

where J and N are mth-order Bessel functions, A 1 A 2 B 1 and B 2 are constants to be determined by boundary
conditions, and

p —&
k1 2

—
2

K 1+ +CO pod 67 Efpppz
p p

+
2

K 1 +~'Poof
p

CO EfPPP

2

—4W CO efPPPz
K

p

III. BOUNDARY CONDITIONS

We choose the following boundary conditions:

EI,(r =b)=0,
E~, (r =a)=E,(r =a),
H~, (r =a)=H", (r =a),
E~e(r =a)=E e(r =a),
H~e(r =a)=H" e(r =a),
E~e(r =b)=0 .

(36)

(37)

(38)

(39)

(40)

Also, to match the arguments of the exponentials from the ferrite and vacuum regions we must have ~=ice/U so that
from Eq. (3S) we get

CO
k 1,2

1 Pz p —It
1 + +POE'f +EfPPPz

U p p

+ CO

2
P p —K

+Po&f
U p p

~fPoPz

2 1/2

+4 pop,
K

U p
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The boundary conditions can be cast in the form

M X =Y (43)

0

dm2

0
mY (45)

where dms

0

am2

am3

0-'m4

&m5

&m6

p, 5

p 2 5

p, 5

p4&4
ps&s
p 6 5

y 3 0

II m4 +m4 ~m4

7 m5 +m5 ~m5

(44)

The excitation frequencies are determined by the zeros of
the determinant of the matrix M . Only C is needed
for the accelerating wake field E"„and we have

detM (v; —+d,. )
(46)

detM

where in the numerator we mean to replace the
coe%cients v; by the quantities d;. Thus, for the ac-
celerating wake field, we obtain

E h
( g ) y J

' 8 —(
' I )( —t)

mz
m = —oo

detM (v; ~d; ) I
detM Uy

EQCO

477 E'pv

-~ o'/2v
Z K

COI"

UP vP
(47)

In the next section we consider numerical examples. energy of driver bunch=150 MeV (P=0.999994), (49)

IV. DISCUSSIQN AND CQNCI. USIQNS

rms length of driver bunch o.,=0.7 mm, (48)

We consider the following optimized list of parameters
for a lowest m =0 frequency pole of 20 Ghz:

inner ferrite radius a =3 mm,

outer ferrite radius b =4.2 mm,

M, =10 At/m,

H, =2.0X 10 At/m,

(50)

(51)

(52)

(53)

I I I I

I

I I I I

I
I I I I

I

I I I I

I
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I
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I
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FIG. 2. Accelerating wake field E, =p vs delay (distance)
behind the driver beam for the optimized ferrite structure: a = 3
mm, b=4.2 mm, g= 1 nC, P=0.999994, a, =0.7 mm, M, =10'
At/m H =2 X 10 At/m gf = 10'. r = rp =0.

FICi. 3. Accelerating wake field E, &
vs delay (distance)

behind the driver beam for the optimized ferrite structure: a = 3
mm, b=42 mm, Q=1 nC, f3=0.999994, o, =0.7 mm, M, = 10
At/m, H, =2X10 At/m, ef =10ep. r =rp=1.0 mm.



43 THEORY OF THE ANISOTROPIC FERRITE. . . . II. 5595

,2», t

(

I I I I

)
I I t I

)

I I I I

)

I I I I

)
I I I0,

0.1

TABLE I. Maximum m=1 mode radial force F„' '" (per test
charge e and per nC of driver charge) and the two lowest-
frequency pole contributions f, and f2 vs applied static mag-
netic field H, for M, =10' At/m (8,. =4~M, =1257 G in cgs
units), a=3 mm, b=4.2 mm, ef = 10ep, r = rp = 1 mm.

—O. 1

H, (At/m)

5X10
10'

2 X 10'
3X10
4X 10

f, (GHz)

18.08
18.08
18.08
18.08
18.08

f, (GHz)

26.10
26.10
26.10
26.10
26.11

Fh, max

[(MV/m)/nC]

0.136
0.135
0.135
0.135
0.135

—0.2 I I I I I I I I I I I I I I I I i t I I I I I I I I I I I

—100 0 100 200 300 400 500
Delay (psec)

TABLE II. Maximum m=1 mode radial force F„"I'" (per
test charge e and per nC of driver charge) and the two lowest-
frequency pole contributions f, and f2 vs saturated static mag-
netization M, for H, =2X10' At/m (H, =25 Oe in cgs units),
a=3 mm, b=4.2 mm, ef =10', r =rp=1 mm.

ef =10eo ~

p,,=1.0 .

(54)

(55)

FIG. 4. Radial force per unit electron test (witness beam)
charge F„"

&
vs delay (distance) behind the driver beam for the

optimized ferrite structure: a=3 mm, b=4.2 mm, Q= 1 nC,
P=0.999994, o, =0.7 mm, M, =10' At/m, H, =2X10' At/m,
6f = 10''p. r = rp = 1.0 mm.

M, (At/m)

104
10'

2X 10
3X10
4X10'
5 X10'
6X10'

f, (GHz)

18.90
18.08
17.74
17.74
17.91
18.17
18.38

fp (GHz)

25.51
26.10
27.05
28.34
29.97
31.95
34.25

Fh, max
r

[(MV/m)/nC]

0.140
0.135
0.117
0.0991
0.0826
0.0741
0.0667

For m =0 and 1, graphs of E", versus delay behind the
driver are shown in Figs. 2 and 3.

The Fourier transforms of the transverse forces per
unit electron test (witness beam) charge behind the driver
are related to the transforms of the longitudinal wake

TABLE III. Maximum m = 1 mode angular force F@' "(per
test charge e and per nC of driver charge) and the two lowest-
frequency pole contributions f, and f, vs applied static mag-
netic H, for M, =10' At/m (8, =4~M, =1257 G in cgs units),
a=3 mm, b=4.2 mm, ef = 10ep, r = rp = 1 mm.

0.2

0.1

I I I I

)
I I I I

)
I I I I

[
I I I I

)
l I I t

)
t I I

H, (At/m)

5X10
10

2X 10
3 X10'
4 X 10'

f, (GHz)

18.08
18.08
18.08
18.08
18.08

f, (GHz)

26.10
26.10
26.10
26.10
26.11

Fh, max

[(MV/m)/nC]

0.127
0.127
0.127
0.126
0.126

0.0

—0.1

TABLE IV. Maximum m=1 mode angular force Fo' '" (per
test charge e and per nC of driver charge) and the two lowest-
frequency pole contributions f, and fz vs saturated static mag-
netization M, for H, =2 X 10' At/m (H, =25 Oe in cgs units),
a=3 mm, b=4.2 mm, ef =10ep, r =rp=1 mm.

I t I I I I I I l I I I I I I I I I I I I I I t I I I I I—0.—100 0 100 200 300 400 500
Delay (psec)

FIG. 5. Angular force per unit electron test charge Fz, vs
delay (distance) behind the driver beam for the optimized ferrite
structure: a = 3 mm, b=4 2mm, Q =.1 nC, P=0.999 994,
o.,=0.7 mm, M, =10 At/m, H, =2X 10 At/m, ef =10ep.
r =rp=1.0 mm.

M, (At/m)

104
10'

2X10'
3 X10'
4X10'
5X10'
6X10'

f, (GHz)

18.90
18.08
17.74
17.74
17.91
18.17
18.38

fq (GHz)

25.51
26.10
27.05
28.34
29.97
31.95
34.25

Fh, max

[(MV/m)/nC]

0.130
0.127
0.105
0.0829
0.0637
0.0533
0.0451
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FIG. 6. Radial force per unit electron test charge I'„" =, vs

delay (distance) behind the driver beam for a=3 mm, b=4.2
mm, Q= 1 nC, P=0.999994, a, =0.7 mm, M, =5X10' At/m
H, =2 X 10' At/m, ef = 10', r = r p

= 1.0 mm.

. . . , I. . . , I. . . , I. . . , I. . . , l. . . ~—0.-100 0 100 200 300 400 500
Delay (psec)

FIG. 7. Angular force per unit electron test charge Fz l vs

delay (distance) behind the driver beam for a = 3 mm, b =4.2
mm, Q=1 nC, P=0.999994, o, =07 mm, M, =SX10 At/m,
H, =2 X 10' At/m, ef = 106'p r = r p

= 1.0 mm.

field by the Panofsky-Wenzel theorem:
h

lV mz
mr (56)

h IV hE, .
COf'

(57)

Graphs of the transverse forces per unit electron test
charge for the m = 1 mode are given in Figs. 4 and 5.

It is now known how to damp transverse forces at the
position of the trailing witness beam pulse behind the
driver. However, one is still confronted by the beam
breakup instabilities for the driver beam itself. To con-
sider this point, in Tables I—IV we display the numerical
evaluations of the m = 1 mode maximum transverse
forces inside the driver beam (out to 6.7 psec behind the
center of the driver and in units of [(MV/m)/nC] of
driver charge) and the two lowest-frequency pole contri-
butions versus applied static magnetic field H, and sa-
turated static magnetization M, .

We find that the transverse forces and excitation fre-
quencies are not sensitive to H, . However, we see a clear
reduction of the transverse forces as M, increases. In
Figs. 6 and 7 we show graphs of the transverse forces
versus delay behind the driver for M, = 5 X 10 . They are
to be compared with Figs. 4 and 5 where M, = 10 . Since
we found in I that the longitudinal acceleration gradient
is not very sensitive to M„ this work shows that we can
reduce transverse forces by increasing M, without de-

creasing the acceleration gradient very much. Thus, for
the anisotropic wake-field accelerator, the beam breakup
problems are not as severe as in other wake-field accelera-
tion schemes.

For comparison, the 20-GHz dielectric wake-field
structure, with optimal ed=3eo, has been investigat-
ed. There we find that the maximum radial and angular
m=1 mode forces inside the driver beam at r =ro=1
mm are 0.141 and 0.115 [(MV/m)/nC] of driver charge,
respectively, and the two lowest-frequency pole contribu-
tions are 17.08 and 29.93 6hz.

To conclude, we have solved the theory for the aniso-
tropic ferrite wake-field accelerator for any mode m.
Further, we have given some numerical examples and
compared the results to the dielectric wake-field accelera-
tor. We find that in the anisotropic ferrite wake-field ac-
celerator, the acceleration gradient is slightly less; howev-
er, the transverse forces can be reduced by increasing the
saturation magnetization so that the beam breakup prob-
lems are not as bad as that of the dielectric accelerator.

ACKNOWLEDGMENTS

The authors would like to thank W. Gai and M. Ros-
ing for many helpful discussions. This work was support-
ed by the U.S. Department of Energy under Contract
No. W-31-109-ENG-38. One of us (J.C.) would like to
thank Argonne National Laboratory's Division of Educa-
tional Programs for support.

iS. Mtingwa, preceding paper, Phys. Rev. A 43, 5581 (1991).
J. Simpson et al. (unpublished).

3C. Callan et al. (unpublished).
4W. K. H. Panofsky and W. A. Wenzel, Rev. Sci. Instrum. 27,

967 (1956).
5E. Chojnacki, J. Appl. Phys. (to be published).

M. Jones, R. Keinigs, and W. Peter, Los Alamos Report No.
LUR-89-4234 (unpublished).

M. Rosing and W. Gai, Phys. Rev. D 42, 1829 (1990).
8K. Ng, Phys. Rev. D 42, 1819 (1990).
R. Gluckstern (private communication).


