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Theory of the anisotropic ferrite wake-field accelerator. I. Azimuthally symmetric case
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The theory of the anisotropic ferrite wake-field accelerator is solved, wherein the ferrite is driven
into saturation by a static magnetic field, resulting in a permeability tensor having off-diagonal ele-
ments. We show that it is possible to obtain a maximum accelerating gradient of 1.5 MV/[m (nC
driver beam charge}] for a driver beam of 0.7-mm rms bunch length. This compares favorably with
wake-field accelerators based upon other types of structures.

I. INTRODUCTION

It is clear that in the near future, a new technology will
be needed for building high-energy accelerators. If one
considers the case of linear electron accelerators, the
most powerful of its kind in existence today is located at
the Stanford Linear Accelerator Center (SLAC). In the
SLAC machine, electrons are accelerated up to 50 GeV
over a distance of 2 miles, thus yielding accelerating gra-
dients of about 15 MV/rn. If one ever hopes to build TeV
electron colliders, certainly it would be advantageous to
have in place some technology yielding in excess of 100
MV/m.

One such method which has received considerable at-
tention is called wake-field acceleration. In this scheme,
an intense bunch of electrons called the driver beam
traverses some medium or structure, giving up part of its
energy to the electromagnetic field in its wake. Subse-
quently, a second dilute bunch of electrons called the wit-
ness beam travels through the same medium or structure,
and is thus accelerated by the driver's electromagnetic
wake field.

The most promising medium to be considered in
wake-field acceleration studies was that of a dense plasma
which could yield accelerating gradients in excess of 1

GV/m. First proposed by Feinberg, ' it was subsequent-
ly studied by Bolotovsky, and in recent times it has
gained renewed interest due to the work of Dawson and
collaborators. The experimental verification of plasma
wake-field acceleration for modest acceleration gradients
was provided by Simpson, Rosenzweig, and collabora-
tors. Similar experiments are presently under considera-
tion to be done in the near future by Amatuni and co-
workers.

Simpson et a/. have recently pointed out that a
variety of technical problems associated with plasma
wake-field acceleration may provide difficult to overcome
in trying to build practical accelerators based upon this
technique. Nonlinearities in the plasma are poorly un-
derstood, although the problem has begun to be explored
both theoretically and experimentally. " But perhaps
the most difficult problem has to do with transverse
forces in the plasma wake field which make it difficult to
control the trajectory of particles within the witness pulse

as a result of their alignment errors.
As for structures, Figueroa et a/. have theoretically

and experimentally studied wake-field acceleration in
pillbox cavities. ' Here again transverse forces are a ma-
jor problem, leading to beam instabilities even within the
driver bunch.

More recently, wake-field acceleration using a metal
tube lined with a dielectric material has been proposed. '

In this scheme the transverse forces are not quite so bad
as they are in the plasma and pillbox cavities, but they
still present a problem. ' ' The experimental
verification of this technique has been provided recent-
ly. ' A good summary of much of the early work
relevant to wake-field acceleration in dielectric loaded
structures can be found in Ref. 19.

In the present work we explore another structure, a
metal tube lined with some ferrite material with a static
magnetic field applied along the longitudinal direction
which drives the ferrite into saturation. For that reason
it is called the anisotropic ferrite wake-field accelerator.
Throughout the discussions we use the mks system of
units. Previous work on wake fields in magnetized
ferrite-lined tubes has been carried out by Nasonov and
Shenderovitch, Grishaev et aI., and Zakutin et a/. in the
context of the self-acceleration of electron bunches.
Other early work relevant to this scheme is summarized
in Ref. 19. The present theoretical discussion describes
the application of magnetized ferrites to the present gen-
eration of wake-field experiments. The situation for un-
magnetized ferrites in these experiments has been dis-
cussed by Callan et al. However, in their scheme the
relative permeability p, —50 and the dielectric constant
e„—1.5, which as they point out are not the parameter
values of normal ferrites. For the case of magnetized fer-
rites, in the regime in which we operate, the magnitudes
of the components of the relative permeability tensor are
of order unity and the dielectric constant is about ten so
that almost any normal ferrite material should suffice.

The next phase of the wake-field acceleration experi-
ments will have driver beam charges of about 100 nC
within bunch lengths of less than 10 psec traversing load-
ed wave guide structures. Thus the physics of such
schemes will be pushed into an entirely new regime. No
one knows for sure what materials science problems will
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be posed by such applications. For that reason it is
necessary to have a variety of candidates for the loading
material to be used, magnetized ferrites being one such
additional possibility.

In the next section we derive the electromagnetic fields
inside the ferrite. In Sec. III we solve for the electrornag-
netic fields inside the vacuum hole. In Sec. IV we apply
the boundary conditions and solve for the coefficients of
the homogeneous electromagnetic field solutions. Final-
ly, in Sec. V we offer some numerical calculations and
concluding remarks.

M, =O, (10)

where ~„=—I,H, is the ferrite resonance frequency. In
matrix form, Eqs. (8)—(10) become

M„
M

M,

iK
0

0' H„
0 H

H,

i~r, M, r,M, (r,H, —i~a)M= H+ H, (9)
(co„+icoa ) —co (co„+i coa ) co—

II. FIELD SOLUTIONS INSIDE THE FERRITE If we define

A. The permeability tensor

Using the Gilbert form of the dynamical equation
governing the magnetization vector, we can write

lg

K =K' —iK",
co = —I,M, ,

(12)

(13)

(14)

=1-,(MXH)+ MX
dt M dt

where g and K have been divided into real and imaginary
parts, then we can write

where M is the magnetization vector with magnitude M,
H is the magnetic field, a is the damping parameter, and
I, is the gyromagnetic ratio given by

co co„(co,—cd )+co co„a coX'= . 2[co„—co (1+a )) +4co co„a2
(15)

H=H, k+H, t(t) —D M,
M=M, k+M, f(t),

(2)

(3)

where the subscripts s and rf refer to the static and oscil-
latory parts of the fields, k is the unit vector along the
longitudinal direction, and the tensor D is the demagneti-
zation factor which can be neglected throughout our dis-
cussions since it is automatically included when we im-
pose boundary conditions on the fields. In Cartesian
coordinates we have

I,= —g (poe/2m, )

with e and m, being the charge and the mass of the elec-
tron, po the permeability of free space, and g the spectro-
scopic splitting factor. Since g=2 for a free electron, in
our case I,= —2. 21 X 10 (rad/sec)/(At/m). We have
included non==. u damping in the theory for complete-
ness; numerical analyses show that it has little effect on
the results.

Next, we can write

Ktt

co coa[co„+(1+a )co )

[co„—co (1+a )] +4co co„a

co~ co [cd„co ( 1 +a ) ]

[co„—co (1+a )] +4co co„a

2cOmCOrQ) Cx

[co„—co (1+a )] +4co co„a
(18)

XIr XQQ Xxx Xyy

+r0 +xy +Or +yx

(19)

(20)

From the susceptibility tensor g defined by Eq. (11),
the permeability tensor p is

p, =po(I+g) =putt„ (21)

In our application of a ferrite-lined metallic tube, it is
convenient to use cylindrical coordinates and it is
straightforward to show

H„(t)=(H„i+H j+H, k)e'"',

M,t(t)=(M i+M j+M,k)e' '

(4)

(5)

with

B=@.H, (22)

where co is the angular frequency. %'e make the assump-
tion that

where I is the identity matrix and p„ is the relative per-
meability and can be written

IH, &l «H, ,

IM„I«M, .

To obtain the magnetic susceptibility of the ferrite, we
substitute the expressions for H and M in Eqs. (2)—(5)
into Eq. (1) and obtain

p= 1+g,„
iK
0

p
0

0

—iK 0

(23)

r,M, (r,H, —i~a) i~r, M,

(co„+icoa) co (co„+icoa) co— —
Now that we have the permeability tensor inside the fer-
rite medium, let us next solve Maxwell's equations inside
the ferrite.
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aofvxHf= (25)

B. Solutions to Maxwell's equations

Consider a metallic tube lined with a ferrite material as
shown in Fig. 1. The ferrite is contained in the region
a ~r ~b, where r is the radial coordinate. Maxwell's
equations inside the ferrite are given by

asfVXEf=-
Bt

those transverse components in terms of the derivatives
of Ef and Hf. One gets

aEf
~

aEf aHf l ref
Ef =pi ' +qj— ' +a~ ' +s~— ', (36)

Br r BO Br r BO

BEf ) BEf oaf l oaf
E = —

q +p — —s + r —,(37)
Br r BO Br r BO

aEf
&

~Ef aHf
~

aHf
H~= t + u — +p +q —,(38)

Br r aO ar I aO

v.Df=o,
V.Bf=O,

with the constitutive equations

(26)

(27}
where

aEf l OEf aHf l oaf
H = —u +t ——q~ +p —,(39)

Br r BO Br r BO

Df=~ Ef,f
Bf=pys, Hf .

(28)

(29)

gEf' +KE~= —imp (PH iKH }-
r BO

(30)

Assuming all oscillatory fields vary as e '+'"', then
the curl equations in cylindrical coordinates for the
time-dependent fields become

p = —ir(ir +ai @~pe)(b, )

qi= —i~~'eqp~(bf) ',
r i=copDKtr (b~)

s = Lco[popK +ci) po(p K )Ey](+')
=co 6 poK(6 )

u~=iai(@I' +co &tpop)(+~)

(40)

(41)

(42)

(43)

(44)

(45)

aEf
BO

a(rEI)
r Br

l aHf
+KHf =icos Ef,

gO 0 f r

aHf
KH —l coE' Er g f 0

l copy@ H

aEf
i Q)po(iK—H„+pH 9),r

(31)

(33)

[IC + ClJ 6fpo( @+K ) ][ir +~ +fp'O(p K ) ] (46)

V' aE~+aEf +bH~=O,

V'2 aHi+ cd +dEI=0,
where

(47)

(48)

Upon substituting these expressions for the transverse
fields back into Eqs. (32) and (35), one gets

8( rH~g )

r Br

oIIf —l coEfE (35)

~2 +2
a =K +CO &flap (49)

Since Eqs. (30), (31), (33), and (34) do not contain deriva-
tives of the transverse field components, we can solve for

KCOPOPz +b= (50)

Conducting Surface
C = (K + co EypoP ) (51)

KK Ct) &f
(52)

Fer rite

'0/i tness
Beam

Driver
Beam

Conducting Surface

r=O

It is important to note that if either E, or H, is equal
to zero, then all oscillatory fields vanish. Therefore'there
are no pure TE or TM modes. This is due to the anisot-
ropy of the dc magnetized ferrite medium. Thus, if one
were to turn off H„ then the o6'-diagonal components of
the permeability tensor would be zero and one would re-
trieve the usual TE and TM modes propagating through
the structure.

In order to solve Eqs. (47) and (48), we introduce func-
tions F& and F2 and parameters g& and g2 such that

FIG. 1. Ferrite-loaded wake-field structure. E, =FR+F2 ) (53)
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H, =g 1F1 +g2F2, (54) k1 —a2
k2 —a2

Hz F1+ F2
b

Upon substituting Eqs. (53) and (54) into Eqs. (47) and
(48) we arrive at

where

1=—[ —a (F, +F2)+k,F, +k2F2],
b

(68)

V„eF, +(a +bg, )F, +V„eF2+(a +bg2)F2 =0,

g, V„eF, +(d +cg, )FI+g2V„eF2+(d +cg2)F2 =0 .

(56)

1+ +~ p gf +co cfpop
p p

If it is possible to determine g, and g2 such that

a+bg, =k, , a+bg2=k2,
d +cgi =g, k, ~ d +cg2 =g2k2

then

V„0F,+k,F, +V„eF2+k2F2=0,

g, (V„eF,+k,F, )+g2(V„eF2+k2F2) =0 .

(59)

(60)

(61)

co E'fpop~ 4K ~ efPOPz
K

p

+— K 1 — +co poof
p' —K2

p p

2 1/2

(69)

But since g, Wg2 then it follows that

V„eF, +k,F, =0,

V„eF2+k2F2 =0,
where

k, —a
g1=

1

(63)

(64)

QF1 1 BF1+— +k1F1 =0,
r2 r Br

(70)

and similarly for F2. The solutions inside the ferrite be-
come

Now that we know how to write all electromagnetic
field components in terms of the functions F, and F2, we
next solve Eqs. (62) and (63) for an azimuthally sym-
metric geometry. This should give the major contribu-
tion to the wake-field acceleration. Assuming no 0
dependence, Eqs. (62) and (63) become

Also,

k —a2
2

k —c2
2

(65) F, (r) = A, J0(k, r)+B,N0(k, r),

F2(r) = A2Jp(k2r)+B2Np(k2r),

(k', ,—a)(k', , c)=bd—
so that

(a +c)+[(a +c) —4(ac bd)]'~—
1,2 2

Finally, we have Eq. (53) together with

(67)

where Jo and Xo are the zeroth-order Bessel functions of
the first and second kinds, respectively.

To derive the longitudinal accelerating field behind the
driver electron bunch, we will only need expressions for
Ef, Hf, Efe, and H~z. Using Eqs. (37), (39), (53), (54), (71),
and (72), we arrive at

Ef =
I A I Jp(k, r)+ A2J0(k2r)+B, N0(k&r)+B2N0(k2r)]e

p
KcopOpz +

2 2

k (
—K —

Cp efpp [ A (Jp(klr)+BINp(klr)]
p

+ k2 K rp efP'0 f A 2JO(k2r)+B2NO(k2 ) 1 (74)
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Ee =i Kto efIloK(bf ) 'Ik& [ A
& Jo(k, r)+B,No(k, r)]+k2[A2Jo(k2r)+B2No(k2r)]]e

+ [poPK +co po(tl K )E'f ](4 )

KP'OPz +
2 +2

k', —K' —m2e P," [k, [ W, J,'(k, r)+B,N,'(k, r) ]]

—K+ k2 K 6) E'fop [k2[ ~2Jo(k2r)+B2No(k2")]] (75)

H~& ———i'(efK +to efpoIl)(b, ) '[k, [A,Jo(k, r)+B,No(k, r)]+k2[A2Jo(k2r)+B2No(k2r))]e

i coefp(hf)+
~2 +2

k i K co E'fPO [k& [ A
&
Jo(k

&
r)+B&No(k&r)]]

2 +2+ k2 K Q) Qfpp
p

[k2[A2Jo(k2r)+B2No(k2r)]] e (76)

We now have expressions for the field solutions inside the
ferrite medium. The constants A„B,, A2, and B2 will
be determined later by the boundary conditions. In the
next section we proceed to solve for the fields inside the
vacuum hole.

J(z —vt, r) =pv=(0, 0,pu), (85)

where Q is the charge in the driver electron bunch, cr, is
the rms bunch length, and v =13c is the speed of the
driver, with c =1/poco.

Expanding F.," and p in harmonics

III. FIELD SOLUTIONS
INSIDE THE VACUUM HOLE

Inside the vacuum hole, Maxwell's equations become

E, (z —vt, r)= f e ' ""' "'E, (to, r)dto,

p(z ut, r) =—f" e '"'""' ""p(to, r)dto,

we get

(87)

VXE"=—aB"
at

aDVx 8'=J+
at

(77)

(78)

(88)

and Eq. (83) becomes

Q 5(r) ~'a,'nv'—
p(to, r) = — e

4~2

V Eh
Cp

V.B"=0,
with the constitutive equations

(79)

(80)

1 a ar
r ar ar

2

(1 —13 ) E,"(co,r)

f (to) (89)
(2~)3/2e u2)z2 rg

Dh ~ Eh
0

8"=p H

having the solution
(81)

(82)

We follow a procedure similar to that in Sec. II, al-
though it is simpler in this case. We first solve for the
longitudinal components E, and H, which satisfy

+CI (1—P )'i
0 (90)

1

C2 at2

Eh

II,h

aJ,
+Pp

(83)

where y is the Lorentz contraction factor and Ip and Kp
are the zeroth-order modified Bessel functions. Similarly,
for H, we obtain

Q 5(r) —(z —vr)'na2
p(z —ut, r) =- e(2~)'" ro (84)

We consider the case where the driver is a line of charge
having a Gaussian line distribution. So we have

H,"(to, r) =GIo (1—P )'i

where the constants C and G will be determined in the
next section by the boundary conditions.

Following the procedure outlined in Sec. III, but spe-
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cialized to the vacuum, we obtain for the transverse fields EIe(r =a)=Ee(r =a), (105)

iv@2 BE 'Pov 7
co Br cor BO

2 BE, ipv y BH,"

~r Be ~ Br

(92)

(93)

HIe(r =a) =He(r =a),

EIe(r =b)=0 .

(106)

(107)

l Eov P BE iv y BH
H,"= '+

cur BO ~ Br
(94)

Also, to match the arguments of the exponentials from
the ferrite and vacuum regions we must have a =ice/v so
that from Eq. (69) we get

h —l eOU2y2 BEh;Uy2 Bah
ah, = '+

cu Br cur BO
(95)

Using Eqs. (90)—(95) and assuming no 0 dependence for
the fields we finally obtain

CO

1,2
pz p —K

l + —— +poe~ +&ypop,
U P p

—)~Q) —co o. /2v

4 2~ v2y2 U

2
+ CO

2 U2

pz p —E
1 +pocy

p p

+CI (1 —P )'0

E„"(rv,r)=iy e
l cv

4m@v y'

C0 IT /2U Cur2 2 2

v
1 —P )

Eypopz

2 t 1/2

+4 pop,
K

U p

(108)
Mr+cI' "

(1 —P')'"

Ee(cu, r)= iPouyGI—0 (1 —P )'

Equations (102)—(107) can be written in the form

MX= Y,
(98)

where

(109)

Hh(ru r)=GI (1 P2)1/2

H„(ro, r)=iyGIO (1—
/3 )'

Q) —c0 0 /2v
He(rv, r)=ieovy 2 2 2e4'' E'pv

(99)

(100)

pl ~1 r1
+2 P2 ~2 y2 +2

a3 p3 53 y3 0 A3

~4 p4 &4 y4 o ~4

~s ps &s rs &s

~6 P6 &6 r6 0 0

(110)

XE' (1—/3')'"

+CI' ""
(1—P')'" (101)

In the next section we apply the boundary conditions to
solve for the unknown constants in the field expressions.

0
B1

0

d2

0
B ' 02

C d5

IV. BOUNDARY CONDITIONS

Since we have to determine six constants: 31, B&, 32,
B2, C, and 6, we must impose six boundary conditions.
We choose

detM(v;~d;)
detM

(112)

To find the accelerating field E," inside the vacuum
hole, we need the constant C. Using Cramer's rule for
solving simultaneous linear equations we find

EI(r =b)=0,
EI(r =a)=E,"(r =a),
HI(r =a)=H,"(r =a),

(102)

(103)

(104)

where in the numerator we mean to replace the
coefFicients v, by the quantities d, . Thus, for the ac-
celerating wake field, we obtain
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detM(v;~d;)
E h( r ) e

—(i'/v)(z —vt) ~r
( 1 P2)1/2 tQ~

oo detM p
U 477 Epv

K (1—P )' dro.0

(113)

detM(v;~d, )
Eh( Ui r) J

—(itv/v)(z —vt)

oo detM

XI (1—P )' des . (114)p

The coefficient C and the expression for E, (z ut, r—)
can be evaluated on the computer by summing the resi-
dues of the poles in the frequency complex plane. The re-
sults for a variety of ferrite parameter values are dis-
cussed in the next section.

V. DISCUSSION AND CONCLUSIONS

As an example of an anisotropic ferrite wake-field ac-
celerator, we consider the following per 1 nC of driver
charge:

rms length of driver bunch cr, =0.7 mm, (115)

energy of driver bunch = 150 MeV (P=0.999 994),

(116)

inner ferrite radius a = 3 mm . (117)

These parameter values have been considered for the next
series of wake-field experiments at the Ar gonne

Since the second term can be neglected relative to the
first, we have finally

Wakefield Accelerator (AWA). Since smaller values of
the inner ferrite radius a lead to higher accelerating gra-
dients, we take a as small as possible, provided the driver
electron bunch does not scrape the ferrite tube. We also
take the damping parameter 0.=0 and p, = 1.0.

In Tables I—IV we display numerical evaluations of
Eq. (114) for E,"' '" (in [(MV/m)/nC] of driver charge)
and the two lowest-frequency pole contributions versus
ferrite thickness ~=b —a, applied static magnetic field
H„saturated static magnetization M„and ferrite dielec-
tric constant ef. We draw the following conclusions.

(a) The ferrite thickness r is optimized at -0.5 mm.
However, to make machining of the ferrite easier,
perhaps one could take ~-1.0 mm without much loss of
maximum acceleration gradient.

(b) The ferrite excitation frequencies f, and f2 and

E,"' '" are relatively insensitive to the applied static mag-
netic field H, and the saturated static magnetization M, .
However, this does not mean that one can set 0, =M, =0
and obtain the same gradients. On the contrary, all of
the theory discussed in this paper is only valid for a sa-
turated ferrite [cf. Eqs. (6) and (7)], so there is no
H, =M, =O limit of the formulation. Once driven into
saturation, the relative independence of E,"' '", f i, and

f2 on H, and M, is an asset in that any normal ferrite
material should sufBce, as opposed to the situation for the
unmagnetized ferrite wake-field accelerator discussed in
Ref. 26. In that reference, the authors point out that nor-
mal unsaturated ferrites will not work.

(c) The optimal value of the ferrite relative dielectric
constant is between 2 and 3. However, most normal fer-
rites have dielectric constants between 10 and 20. Thus
the optimal realistic value is 10.

To test these ideas in the AWA [cf. Eqs. (115)—(117)],
we propose the following optimized anisotropic ferrite
wake-field accelerator:

TABLE I. Maximum acceleration gradient E, ' " and two
lowest-frequency pole contributions f, and fz vs ferrite thick-
ness w for H, =2 X 10 At/m (H, =25 Oe in cgs units),

M, =3X10' At/rn (B,=4aM, =3770 G in cgs units), a=3 mm,

~f =10~,.

TABLE II. Maximum acceleration gradient E,"' '" and two
lowest-frequency pole contributions f, and f2 vs applied static
magnetic field H, for M, =10 At/m, a=3 mm, b=4 rnm,

ef = 10eo.

~ (rnm) f t (GHz) fz (GHz)

Eh, max
Z

[(MV/m)/nC] H, (At/m) f, (GHz) f, (GHz)

Eh, max
2

[(MV/m)/nC]

0.1

0.2
0.5
1.0
2.0

118.6
77.67
41.64
25.33
15.46

123.4
67.40
36.91

0.731
1.41
1.54
1.31
0.868

5 X10'
10'

2X10
3X10
4X10'

23.49
23.49
23.49
23.49
23.50

66.62
66.62
66.62
66.62
66.62

1.47
1.48
1.50
1.51
1.51
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TABLE III. Maximum acceleration gradient E,"' '" and two
lowest-frequency pole contributions f, and f2 vs saturated stat-
ic magnetization M, for H, =2 X 10 At/m, a=3 mm, b=4 mm,
E'f = 106'p.

I I I I

(

I I I f

i

I I I I

)

I I I I

i

I I I I

i

I I I I2

M, (At/m)

104
10'

2X10'
3 X 10'
4X10'
5 X10'

f, (GHz)

23.23
23.49
24.24
25.33
26.48
27.34

f, (GHz)

66.52
66.62
66.91
67.40
68.06
68.87

Eh, max
Z

[(MV/m)/nC]

1.46
1.50
1.51
1.31
1.33
1.32

0

b=4 mm,

M, =10 At/m,

H, =2.0X10 At/m .

(118)

(119)

(120)

I I I I I I I I I I I I I I L I I I I i I I 1 I I—2—100 0 100 200 300 400 500
Delay (psec)

b=4 mm, (121)

The optimized value of M, corresponds to a saturated
magnetic induction in cgs units of B,=4~M, =1257 G,
so that it corresponds to realistic ferrite materials.

A graph of E," versus delay behind the driver is shown
in Fig. 2. The maximum accelerating gradient is —1.5
[(MV/m)/nC] of driver charge. The most important pole
contributions in the frequency spectrum are 23.5 and 66.6
GHz, while the ferrite resonance frequency is at 70.4
MHz. We have studied damping and found that it has a
negligible effect on the above numbers. Finally, the fer-
rite relative permeability tensors have components [cf.
Eq. (23)] p, -l and K-0.15 at f&.

We can compare the anisotropic ferrite wake-field ac-
celerator with the dielectric wake-field accelerator. '

Considering the same case given in Eqs. (115)—(117), we
can optimize in the parameters b and ed, where the sub-
script d corresponds to the dielectric material. The op-
timal values are

FIG. 2. Accelerating wake field E," vs delay (distance) behind
the driver beam for the optimized case: a=3 mm, b=4 mm,
Q= 1 nC, P=0.999994, o, =0.7 mm, a=0, M, =10 At/m,
H, =2X10 At/m, ef =10&p.

where Eh attains a maximum value of -2 [(MV/m)/nC]
of driver charge. This accelerating gradient is compara-
ble to (although somewhat higher) than that of the aniso-
tropic ferrite wake-field accelerator, due mainly to the
smallness of ed. But since ferrites and dielectrics give
comparable results, the final choice of which material to
use will have to be made after further experimental work.

To conclude, we have derived the theory of the aniso-
tropic ferrite wake-field accelerator for the case of azimu-
thal symmetry and have obtained accelerating gradients
of 1.5 [(MV/m)/nC] for realistic ferrite materials and ac-
celerator parameters. By increasing the charge in the
driver pulse we should be able to attain accelerating gra-
dients of 100 MV/m. We encourage more work along
these lines.

2Ep ~ Fy 3Ep, (122)

Ef /Ep

1.2
2.0
3.0
4.0

10.0
15.0
20.0

f i (GHz)

90.79
48.95
39.18
34.46
23.49
19.72
17.38

f, (GHz)

167.6
123.3
104.0
66.62
55.42
48.59

Eh, max

[(MV/m)/nC]

1.28
2.06
2.02
1.87
1.50
1.24
1.03

TABLE IV. Maximum acceleration gradient E,"' '" and two
lowest-frequency pole contributions f, and f2 vs ferrite dielec-
tric constant ef for H, =2X10 At/m, M, =10' At/m, a=3
mm, b=4 mm.
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