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Electromagnetic emission due to nonlinear forces
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A theory of emission of electromagnetic radiation in a plasma with Langmuir turbulence through
the plasma-maser interaction owing to a dissipative nonlinear force is presented. The nonlinear
force that arises as a result of the resonant interaction between electrons and modulated fields is
shown to drive the instability. The growth rate of the electromagnetic emission is obtained, and the
results are discussed.

I. INTRODUCTION

The plasma-maser effect, which is a recently discovered
mode-coupling process in plasma turbulence, and is basi-
cally an energy up-conversion process, ' has shown con-
siderable potential as a radiation mechanism in several
space and laboratory plasma radiation observations.
Simultaneously, it has also been subjected to careful scru-
tiny regarding its validity and probable limitations as an
energy up-conversion process in plasma turbulence.
The energy down-conversion from a high-frequency reso-
nant mode to a low-frequency nonresonant mode through
the plasma-maser interaction has also been investigat-
ed 10, 11

The plasma-maser efFect coexists with the Landau or
cyclotron damping and is effective without electron popu-
lation inversion. As has been demonstrated, ' the
plasma-maser process can be best understood in terms of
a high-frequency nonlinear force. This nonlinear force
arises as a result of the resonant interaction between elec-
trons and modulated fields caused by coupling between
the turbulence fields and a test high-frequency field. This
high-frequency nonlinear force accelerates or decelerates
the electrons and the accelerated electrons can then emit
electrostatic or electromagnetic radiation. It is well
known that in the parametric interaction, a low-
frequency nonlinear force (ponderomotive force) is pro-
duced by coupling between a high-frequency pump wave
and a low-frequency wave to make the low-frequency
wave unstable. However, in the plasma-maser interac-
tion, a nonlinear high-frequency force is produced and it
makes the high-frequency wave unstable. Further, the
low-frequency turbulence wave acts as the pump wave in
this mechanism.

In the present paper we study the emission of an elec-
tromagnetic wave caused by the nonlinear force discussed
above in a plasma with Langmuir turbulence. The Lang-
muir turbulence is excited by a weak electron beam drift-
ing through a background plasma of Maxwellian elec-
trons and ions. ' Further, the system is assumed open
with particle source and sink. The plasma-maser effect is

shown to be quite effective in an open system. ' In Sec. II
we calculate the nonlinear force arising from the resonant
interaction between electron and modulated fields caused
by coupling between Langmuir turbulence fields and a
test electromagnetic-wave field. In Sec. III this nonlinear
force is used in the high-frequency electron equation of
motion to obtain a high-frequency electromagnetic insta-
bility. The growth rate of electromagnetic instability is
obtained in Sec. IV. Finally, Sec. V contains the discus-
sion and the conclusion.

II. CALCULATION OF THE NONLINEAR FORCE

We consider a homogeneous plasma in the presence of
an enhanced Langmuir-wave stationary turbulence
caused by an electron beam drifting through the plasma
with a velocity v0. The basic equations governing the in-
teraction of Langmuir turbulence with a test electromag-
netic wave are the Vlasov-Maxwell equations.

E+ . f, (r v, t)=0, (I)
Pl C Bv

1 BVXE= ——
C Bt

4 1 BE
C CBt

J= —e f vf, (r, v, t)dv,

where f, (r, v, t) is the electron distribution function and
the other notations are standard.

The total fields and the electron distribution function
can be written as

E=eE&+p5Eh +pe5EIh

B=p68h +pe6BIh

f, =fo, +&fi, +&'f~, +1 &fh+1 &ofth+1 &'~f .

In the above, fo, is the space- and time-averaged part of
the electron distribution function, and f&, and f2, are
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the Auctuating parts. e is a small parameter representing
the strength of the turbulence field EI. p6EI, and p6BI,
are the electric and magnetic fields of the test high-
frequency electromagnetic wave, and @5fh is the corre-
sponding perturbed-electron distribution function. 6E&&

and 5Bth are the modulation fields, and 5fth and bf are
the corresponding perturbed-electron distribution func-
tions. We assume that p &&e.

To the order pe we obtain from Eq. (1),

hf(K, Q)=
i(Ev, —0) (10)

where K and 0 are the wave vector and the frequency,
respectively, of the high-frequency electromagnetic per-
turbation with K=(O, O, K).

The nonlinear force can be defined as the rate of
momentum change, and is given by

8
Bt fmvAf dv= —t mvbf(K, Q)exp[i(K. r —Qt)]dv

Bt

=f F(K, Q)exp[i(K r .Q—t)]dv.

mdiv

0, —Kv,

+ 5EI~+
v X 6BIp

Writing the right-hand side of the above equation as F,
we get

In the above we have used Eq. (10) for bf(K, Q). The
Fourier component of the dissipative high-frequency non-
linear force acting on unit volume of electrons is, there-
fore, given by

+v bf =F,8 8
Bt Br

mnoA
FNh (K,0)= f F(K,O)v d v .0—Kv,

(12)

which gives
With F=F(K,Q)exp[i(K r —fit)], we obtain the follow-
ing substitution for F(K,0) in Eq. (12):

FNh(K, n)=en, y f E, (k, ~) 5f„(K k, n ~)—a
0—Kv, Bv

+ 5Eth(K —k, Q —co)+—vX5Bth(K —k, Q —co f„(k,co) vdv .
1 a

(13)

Here k and co are the wave vector and the frequency of the Langmuir wave with k =(0,0, k).
Substituting the values of 5fth(K —k, 0—co), 5Eth(K —k, Q —cu), and 5Bth(K —k,Q —tu), and taking the average, we

finally obtain the x component of the nonlinear dissipative force as

FNhx (K~ + ) FNhx 1( K~ + ) +FNhx2( (14)

where

e
FNh i(K 0)= 871 0

m

2

5Eh(K, Q)

X g ~E, (k, co)
~ v,' 0—Ku, Bu, (0—co) —(E —k)u,

I3 1 Ev, g Kv
X ' 1— +

Bv, 0—Ev, A BU„O, Bv,
Oe

Kv, Ev+
Bv 0 Bv,

1 a
co+ kU +EO Bv

foe "
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r 2

FNh„2(K, Q)=enpn 5Eh(K n)
m

X g l EI (k, co ) l

k, ct)

X u
1 1'" n K—u, au, (n —~)—(K —k)u,

(K —k)v, g (K —k)u„1— +0—co Bu 0—co Bv, Oe

(K —k)u,1— 0 co

(K —k)u,+ . fp, dv
Bv, n —co Bu, co —kv, +iO Bu,

co, (n —co)

R(K —k, n —co)[(n —co) —C (K —k) ]
r

X Vf 1 1 Ku,1—' (n —co) —(K —k)u, Bu, n —Ku, n
Ku

au.
+ n au,

f"
Kv,1—
Q

V~ ()+BU„O Bv fp, dv . (16)—co+ku, +iO Bu,

In the above equations,
r

R(K, Q)=1+ f u„ 1 — + fp, dv,4~e 0 1 Ku, g Kv„

and we have taken

f„(k,co) = e a
EI(k, co) fp,Pl Bv,

[ —i(co ku, +—iO)] .

Taking only the second term in the right-hand side of Eq. (15) as the first term does not contribute to the growth
and/or damping of the electromagnetic wave through the plasma-maser interaction for which the condition is co =kv,
[other resonance conditions, viz. , n =Kv, and n+co = (K+k )u, are not satisfied], we get

'2

FNh, i(K, Q) = enpn ——5Eh(K, Q)
711

X glEI(k, co)l v,' n —Ku, Bu, (n co) (K —k—)u, —
T

Kv, g Ku„ a
1 — ' + "

fp, dv.0 Bu 0 Bu, —co+kv, +iO Bu,

We take the electron distribution function as
3/2 3/2

fp, (v) =(1—5)
2W Tb

exp( mu /2Th)+5-
277 T exp[ —m(u„+u )/2T]exp[ —m(v, —up) /2T], (18)

where Tb and T are the temperatures of the background and the beam plasma, respectively, and 6 ((1 is the ratio of the
number densities of the beam and background plasma. We then obtain from Eq. (17)

FNhx1(+~n) ifh15Eh(+~n) ~

where

(19)

fhi=—
2

5+ lE, (k, co)
l

m (cojk —
up )

lklT
exp[ —m(co/k —up) /2T] . (20)

Similarly, we obtain from Eq. (16),'

FNh„2(K, Q) =if„25Eh(K, Q),
where

(21)



5558 K. K. SARMA, S. N. SARMA, M. NAMBU, AND T. HADA 43

'2 2

f„2=—eno —5+ ~E/(k, co)
~

m
/, (Q —co) KC

1/2

ik/T
(co/k —v )exp[ —m(co/k —v ) /2T] . (22)

Thus we can write

F/v„„(K,Q)=i(f /, +f/, 2)5E„(K,Q), (23)

where fh, and f/, 2 are given by Eqs. (20) and (22), respec-
tively.

III. DISPERSION RELATION
OF THE ELECTROMAGNETIC WAVE

Maxwell equations governing the high-frequency elec-
tromagnetic perturbations can be written as

Equation (31) very clearly shows that the nonlinear
growth and/or damping of the test electromagnetic wave
solely arises from the high-frequency nonlinear force
term.

We have already taken

F~/, (K, Q) =if/, 5E/, (K, Q) .

We therefore get

F/vh (K,Q)=if„5E„(K,Q) .

This gives

TX5EI, = —— 5Bq,1

C 9t
(24) fh =fhi+fh2 . (32)

V X58~ = JI, +— 5EI, .
4m. 1 8
C CBt

From these equations we then obtain

(Q —C K )5E/, (K,Q)= 4~i QJ/, (—K, Q) .

(25)

(26)

Bvh
m"p

g
= «o5EI, +F~I, .

Bt

By Fourier analyzing, we get

—iQmnov/, = —eno5E/, (K,Q)+if/, 5E/, (K,Q),

(27)

where we have replaced F/v/, (K, Q) by if/, 5E/, (K, Q).
Then we get

Q
(ifh —«0)5Eh(K, Q) .

pin pQ
(28)

Taking J/, (K,Q)= enov/, and substitu—ting v/, from Eq.
(28), we obtain from (26)

Q2 C2~2 2
~pe (29)

This is the dispersion relation of the electromagnetic
wave with the nonlinear force term represented by the
right-hand side of the equation.

IV.' GROWTH RATE OF THE ELECTROMAGNETIC
INSTABILITY

To obtain the growth rate of the electromagnetic insta-
bility, we now put Q =Q+ iy, where Q and y are, respec-
tively, the real frequency and the growth rae of the elec-
tromagnetic wave. Then Eq. (29) gives

Q=(co +C I/ )'
COp~

2&8

mQ

(30)

(31)

The linearized high-frequency electron equation of
motion can be written, with the nonlinear high-frequency
force term as

Substituting the values of fh, and f/, 2, we finally obtain
the growth rate of the electromagnetic wave as

t

1/25
y=

2 0
4

K peCc)

iE/(k, o/)
i

co —kvo

4~np T kv,
J

Xexp[ —m(co/k —vo) /2T] .

(33)

where v, is the electron thermal velocity.

V. DISCUSSION AND CONCLUSION

Equation (33) gives the growth rate of the electromag-
netic wave in the presence of a stationary Langmuir tur-
bulence through the plasma-maser interaction. The ex-
pression for the growth rate contains two parts: the first
part corresponds to the direct coupling contribution and
the second part corresponds to polarization contribution
as shown in detail in Ref. 14. Further, the results we ob-
tain from the nonlinear force consideration agree fully
with those obtained from the standard formulation (Ref.
14).

Equation (33) shows that the growth of the electromag-
netic wave occurs in a plasma with stationary Langmuir
turbulence for the condition Q/IC (0 under the condi-
tion of Langmuir wave growth, viz. , cu/k &vp. This
means that a test electromagnetic wave with Q/E & 0 ex-
periences growth, while with 0/E & 0, it experiences
damping in the presence of stationary Langmuir tur-
bulence.

The essential feature of this nonlinear force formula-
tion is that the high-frequency nonlinear force is explicit-
ly calculated and is shown to be responsible for driving
the high-frequency instability. Also, the physical picture
of the plasma-maser interaction becomes more apparent
with the nonlinear force consideration.

In the earlier works on the plasma-maser effect
through the high-frequency nonlinear force (Ref. 1 and
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subsequent works), the definition of the nonlinear force
was not complete. A factor was missing in its expression.
In our present work, we have removed this anomaly and
the nonlinear force has been calculated correctly to show
finally that this method gives identical results with those
obtained from the standard formulation (Ref. 1).

The plasma-maser effect is a recently discovered ele-
mentary process in plasma turbulence. This manuscript
clarifies the physical mechanism of the plasma maser
based on nonlinear force. The plasma-maser effect is one
of the three mode-mode coupling processes in plasmas,
viz. , the three-wave interaction, the nonlinear Landau in-
teraction, and the plasma-maser interaction. These be-
long to the lowest-order mode-coupling process and po-
tentially give the same order of magnitude contribution
for the growth rate. However, unfortunately, most of the
previous authors consider the plasma-maser interaction
between resonant ion-sound and nonresonant Langmuir
waves. They consider the growth rate of the Langmuir
wave through the resonant interaction between electrons
and ion-sound waves. Unfortunately, the resonant in-
teraction between electrons and ion-sound waves is very
weak because co/k &(v, . Here co, k, and v, are frequen-
cy, the wave number of ion-sound waves, and electron
thermal velocity. Thus, the growth rate of the Langmuir
wave is small.

On the other hand, we consider the plasma-maser in-
teraction between the resonant Langmuir wave and the
nonresonant electromagnetic mode. Because the reso-
nant interaction between the electrons and the Langmuir
wave is very strong, the growth rate of the electromag-
netic mode is large as is shown in Eq. (33). Now, we
compare the growth rate [Eq. (33)] with the other two
processes. According to the parameters estimated in Ref.
14, we take colk = 10v„vo = 1 1v„and k = ~K

~

= 1/10k, .
Then, the growth of the electromagnetic mode occurs for
0/K (0. Equation (33) reduces to

(34)

with

~ =5IE, I'/4~n. T,
8 =5iE, i2/4~no T(k2/K ik i)(u, /C)

(35)

(36)

On the other hand, according to Eq. (4.79) in Ref. 12, the
growth rate due to the resonant three-wave interaction is

p /& =
I Ei I 4~no T(u, /C ) (37)

and the growth rate from the nonlinear scattering is
given by Eq. (4.81),

y/0= ~Ei~ /4vrnoT(k/k, ) (38)

~E, (k, co)) /4rrnoT(hk kD .

Here Ak and A,D are the width of the spectrum and the
Debye length, respectively. Finally, we comment on the
difference between the plasma-maser effect and the reso-
nance broadening due to stochastic forces acting on the
linear trajectory of the resonant electrons. ' Based on a
diagrammatic approach, it is shown that the plasma
maser and resonance broadening correspond to the vertex
correction and the propagator correction, respectively. '

It is clear that the growth rate of the electromagnetic
mode through the polarization term [Eq. (36)] is dom-
inant over the three-wave contribution [Eq. (37)] if beam
density 5)K~k~/k, =10 . Furthermore, the plasma-
maser contribution due to the direct coupling term [Eq.
(35)] is larger than that of the nonlinear scattering [Eq.
(38)] if 5)(k/k, ) =10 . Accordingly, we can con-
clude that the plasma-maser interaction between the reso-
nant Langmuir wave and the nonresonant electromagnet-
ic mode considered here is by no means negligibly small
in a real beam-plasma system.

This paper is a straightforward perturbation calcula-
tion of the nonlinear emission of electromagnetic waves
from a plasma with Langmuir turbulence driven by a
weak beam. Accordingly, the Langmuir turbulence ener-

gy density as a fraction of the thermal plasma energy
must satisfy
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