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The motion of a relativistic test electron in a free-electron laser can be altered significantly by the

equilibrium self-field effects produced by the beam space charge and current and by the transverse

spatial inhomogeneities in a realizable magnetic wiggler field. In a field configuration consisting of
an ideal (constant-amplitude) helical-wiggler field and a uniform axial-guide field, it is shown in a
model that the inclusion of self-field effects destroys the integrability of the particle equations of
motion. Consequently, the group-I orbits and the group-II orbits become chaotic at sufficiently

high beam density. An analytical estimate of the threshold value of the self-field parameter

copb /e k for the onset of chaos is obtained and found to be in good agreement with computer
simulations. In addition, the effects of transverse spatial gradients in a realizable helical-wiggler

field with three-dimensional spatial variations are investigated in the absence of an axial-guide field,

but including self-field effects. For a thin electron beam (k rb «1) and small wiggler field ampli-

tude (a « y&), it is shown that the motion is regular and confined radially provided

e, & yba /(1+a ). However, because of the intrinsic nonintegrability of the motion, the regular re-

gion in phase space diminishes in size as the wiggler amplitude is increased. The threshold value of
the wiggler amplitude for the onset of chaos is estimated analytically and confirmed by computer
simulations for the special case where self-field effects are negligibly small. Moreover, it is shown

that the particle motion becomes chaotic on a time scale comparable with the beam transit time

through a few wiggler periods.

I. INTRODUCTION

Hamiltonian chaos' has been an active area of
research in physics and applied sciences. The classic
work of Kol'mogorov, Arnol'd, and Moser (KAM) shows
that the generic phase space of integrable classical Hamil-
tonian systems, subject to small perturbations, contains
three types of orbits: stable periodic orbits, stable quasi-
periodic orbits (KAM tori), and chaotic orbits. Unlike
three-dimensional, nonintegrable Hamiltonian systems in
which different chaotic regions are isolated by the KAM
tori, higher-dimensional, nonintegrable Hamiltonian sys-
tems exhibit Arnol'd diffusion behavior, so that chaotic
orbits can reach almost everywhere in phase space. As
the perturbation increases in strength, the KAM tori des-
tablize and become discrete fractal sets. In wave-particle
interactions, the breakdown of the last global KAM torus
results in stochastic acceleration of particles. An exam-
ple of such a phenomenon is the stochastic ion heating by
a single electrostatic wave in a magnetized plasma. '

The purpose of this paper is to investigate chaotic be-
havior in particle orbits in free-electron lasers (FEL's).
In a free-electron laser, use is made of the unstable in-
teraction of a relativistic electron beam with a transverse
wiggler magnetic field to generate coherent electromag-
netic waves. An important parameter characterizing
FEL operation is the small-signal gain (growth rate). Ac-
cording to linear theory, ' the gain increases as the beam
density and the strength of the wiggler field are increased.
However, in the high-current (high-density) regime and
the intense wiggler field (strong-pump) regime, the elec-
tron orbits can be modified significantly by the equilibri-

um self-fields of the electron beam and the transverse spa-
tial gradients in the applied wiggler field. This raises im-
portant questions regarding beam transport and the via-
bility of the free-electron laser interaction process in
these regimes.

In the high-current (high-density) regime, the self-
electric and self-magnetic fields" of a non-neutral elec-
tron beam are important, and an axial-guide field' ' is
often used to provide transverse confinement of the beam
electrons. The original one-dimensional calculation by
Friedland' deals with an integrable system in which the
particle orbits are solvable analytically. This treatment
neglects self-field effects and the radial dependence of the
wiggler field, and yields two classes of stable orbits which
are referred to as group-I orbits and group-II orbits. '

Because the ideal (constant-amplitude) helical-wiggler
field 8' '(z)= 8[e,cos(k z)+e —sin(k z)] with
a =eB Imc k =const does not satisfy (exactly) the
steady-state vacuum Maxwell equation V XB (x)=0, Di-
ament' and others' ' considered a physically realiz-
able helical-wiggler field B„(x) with three-dimensional
spatial variations and found that (helical) steady-state or-
bits with guiding center on the axis of the wiggler helix
exist for sufficiently small a . In contrast to the high-
current (high-density) regime, an intense (realizable)
wiggler field provides a betatron focusing force so that, in
the absence of a uniform axial-guide field, the electron
beam can be confined radially in a helical-wiggler field
configuration. '

Earlier investigations of chaos in free-electron lasers
have focused on chaotic behavior in particle orbits in-
duced by sideband and radiation fields. Riyopoulos and
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Tang have analyzed sideband-induced chaos in the elec-
tron motion in the field configuration consisting of an
ideal helical-wiggler field, the electromagnetic signal
wave field, and the sideband wave field. Because the side-
band instability ' is associated with the electrons
trapped in the ponderomotive potential, sideband-
induced chaos is not likely to affect the free-electron laser
interaction until saturation of the signal wave occurs.
Chen and Schmidt have shown that the electromagnetic
signal wave can also cause chaotic electron motion in the
combined helical-wiggler and axial-guide field
configuration. Such chaotic behavior occurs on the time
scale of the order of many synchrotron periods of an elec-
tron trapped in the pondermotive potential. Like
sideband-induced chaos, this effect could be important in
free-electron laser oscillators in the nonlinear regime.
Recently, Billardon has observed evidence of chaotic
behavior in the radiation field in a modulated storage-
ring FEL.

This paper examines the motion of a relativistic test
electron in a helical-wiggler free-electron laser in the ab-
sence of electromagnetic signal wave. Of particular in-
terest are the effects of transverse gradients in the beam-
produced self-fields and the realizable helical-wiggler field
on the dynamics of the test electron. To analyze the self-
field effects of an intense electron beam, we consider the
particle motion in the combined field configuration con-
sisting of an ideal (constant-amplitude) helical-wiggler
field B'„'(z), a uniform axial-guide field Bo=Boe„and the
self-electric and self-magnetic fields produced by the
space charge and current of the electron beam. In the
model, the electron beam is assumed to have uniform
charge and axial current densities up to radius rb. By
generating Poincare surface-of-section maps, ' it is
shown that the inclusion of self-field effects destroys the
integrability of the motion, and consequently part of
phase space becomes chaotic. In particular, the group-I
orbits and the group-II orbits become fully chaotic if the
self-fields are sufficiently large (which requires sufficiently
high beam density). Analysis of the self-field-induced res-
onances shows that such chaotic behavior originates from
the coupling between the guide-field-induced betatron os-
cillations and the helical motion, modified by the radial
gradient of the self-fields. An analytical estimate of the
threshold value of the self-field parameter e, =co b/c k
for the onset of chaos is obtained and found to be in good
agreement with computer simulations. In addition, the
characteristic time scale for self-field-induced changes in
the particle orbits is shown to be of the order of the time
required for a beam electron to transit a few wiggler

I

B'"'(x)=Boe,+B (x)

periods.
In order to analyze the effects of transverse spatial gra-

dients in a realizable wiggler, we consider particle motion
in the field configuration consisting of a realizable (three-
dimensional spatial variations) helical-wiggler field and
the self-fields of a tenuous electron beam. Because the
beam density is low, the particle orbits can be confined
radially by the (small) axial component of the helical-
wiggler field. A condition for radial confinement of the
particle orbits is derived analytically for a thin electron
beam (k r& « 1 ) and small wiggler amplitude
(a /y„«1). To demonstrate the existence of chaos, the
Poincare surface-of-section method is used again to ex-
amine the phase-space structure in the vicinity of helical
orbits with guiding center on the axis of the wiggler helix.
In the limit where self-field effects are negligibly small, it
is found that the onset of chaos for electron orbits with
guiding center on the axis of the wiggler helix occurs
whenever the dimensionless parameter 6=a /
[2(yi, —1 —a )]' exceeds the critical value
6,(0)=0.28, which corresponds to the maximum al-
lowed wiggler amplitude a' -=0.37(yi, —1)'~ for the ex-
istence of helical, steady-state orbits for given electron
energy yb. Furthermore, it is shown that the onset of
chaos for off-axis electron orbits occurs at some values of
6 less than b, (0). This suggests that there is an upper
bound on the wiggler field strength for FEL operation.

The organization of this paper is as follows. In Sec. II,
a general formulation of the dynamical problem is given
in canonical variables. In Sec. III, self-field effects on
particle orbits are examined in the applied field
configuration consisting of a uniform axial guide field and
an ideal helical-wiggler-field. Chaotic behavior is demon-
strated by generating Poincare surface-of-section plots,
and an analytical estimate of the threshold value of the
self-field parameter is given for the onset of chaos. In
Sec. IV, the particle orbits are examined in a realizable
helical-wiggler field in the absence of an axial-guide field,
but including self-field effects. After deriving an analyti-
cal condition for radial confinement of the particle orbits,
computer simulations are used to show that the motion is
intrinsically nonintegrable and can be chaotic. The con-
dition for onset of chaos is calculated.

II. THEORETICAL MQDKI. AND ASSUMPTIC)NS

We consider a relativistic, cylindrical electron beam
with radius rb propagating in the z direction through the
externally applied magnetic field configuration

=Boe, —8 [[Io(k r)cos(k z)+I2(k r)c s(okz —28)]e

+ [Io(k r)sin(k„z )
—I2(k r)sin(k z —28)]e —2Ii(k r )sin(k z —8)e, ] .

Here, Boe, is the uniform axial-guide field, and B„(x)is
the realizable helical-wiggler field with amplitude
B =const and wiggler wavelength A, =2~/k =const.
In Eq. (1), I„(x) is the modified Bessel functions of the

I

first kind of order n, r =(x +y )'~ is the radial distance
from the axis of the helix, and (r, 0) are cylindrical polar
coordinates with x = r cos9 and y =r sinO (Fig. 1). It is
readily shown that the wiggler field defined by Eq. (1)
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and uniform axial current density J,b(r)= —nb(r)ep, bc
over the radial cross section of the electron beam. Here,—e is the electron charge, c is the speed of light in vacuo,
and V,b ——/3, bc =const is the average axial velocity of the
electron beam. It is readily shown from the steady-state
Maxwell equations that the beam space charge and
current generate the self-electric and self-magnetic
fields"

and

E, =— 2ICOpb (xe„+ye )
2e

(3)

2

mcus

b/3 b8, = (ye, —xe~),
2e

(4)

in the beam interior (0(r (rb ). In Eqs. (3) and (4), m is
the electron rest mass, and co~b=(4~nbe /m )'~ is the
nonrelativistic plasma frequency of the beam electrons.

It is the primary purpose of this paper to examine the
motion of an individual test electron in the combined ap-
plied field configuration and self-fields described by Eqs.
(1), (3), and (4). In this regard, it is convenient to
represent the equilibrium fields as

E'(x) = —V4, (x) (5)

satisfies the vacuum Maxwell equation VXB (x)=0. '

In addition, the electron beam is assumed to have uni-
form density

nb =const, 0& r (rb
nb(r)= '0

H=[(cP+e A) +m c ]'~ —eC&, =@me e@—, . (10)

In Eq. (10), P is the canonical momentum,
@=[1+(p/mc) ]' is the relativistic mass factor,
p=p+e A/c is the mechanical momentum, the electro-
static potential N, (x) is defined in Eq. (7), and the vector
potential A(x) is defined in Eqs. (8) and (9). Because H is
independent of time, the Hamiltonian is a constant of the
motion, i.e.,

H(x, y, z, P„P,P, )=ymc —e@,=const,

which corresponds to the conservation of total energy (ki-
netic plus potential energy) of the test electron.

For notational convenience, in the subsequent analysis
we introduce the dimensionless potentials A(x) and 4„
and Hamiltonian H defined by

where V X(Boxe ) =Boe„VX[/3b+, (x)e, ]=8'(x), and
the vector potential for the helical-wiggler field is defined
by

mc a2

A (x)= t [ID(k r)cos(k z)
e

I2—( k„r )cos( k z —28) ]e,
+[ID(k r)sin(k z)

+I2(k r)sin(k z —29)]e j .

In Eq. (9), a =eB /mc k is the usual dimensionless
measure of the wiggler field amplitude.

The equations of motion for a test electron within the
beam (0( r ( rb ) can be derived from the Hamiltonian

and

B'"'(x)+B'(x)=V X A(x), (6)

e A(x) eC, (x) HA=, 4,(x)=, H= —. (12)
PlC PPl C IC

In addition, the notation

lpga cab
2

4, (x)= (x +y )
4e

(7)

eBo eB
2

and a
IC k~ mc k

(13)

is the electrostatic potential for 0(r (rb. In Eq. (6), the
total vector potential A(x) can be expressed as

A=Boxe + A ( )x+P, 4b, ( )ex, ,

is introduced, where ao is a dimensionless measure of the
axial-guide field (Bo), and a is a dimensionless measure
of the wiggler field amplitude (B„). Because the electric
and magnetic self-fields E'(x) and 8'(x) are proportional
to cozb =4vrnbe /m in the beam interior (0(r (rb ), it is
also useful to introduce the dimensionless parameter

B '()(') = Bpez + B~(x)
CO b

2I 2
W

(14)

I

I

ng

Density

nP~( r )

which is a measure of the strength of the equilibrium
self-fields. Combining Eqs. (12)—(14) with Eqs. (7), (8),
and (10) then gives

H=[(P/mc+ A) +1]' —4, , (15)

where

FIG. 1. Schematic of relativistic electron beam and coordi-
nate system. Here, nr„r&, and V,& are the density, radius, and
average axial velocity of the electron beam, Boe, is the axial-
guide field, and 8 (I) is the transverse wiggler field.

and

4, (x) =
—,'e, k„(x +y )

A(x)=aok xe + A (x)+/3, bk, (x)e, .

(16)

(17)
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(19)

A'„'= [[(k x +3k y )cos(k z)

In Eq. (17), A (x)=e A (x)/mc is the dimensionless
vector potential for the helical-wiggler field, and A (x)
is defined in Eq. (9). In Secs. III and IV, it is assumed
that k rb & 1. Therefore, expanding A„(x) correct to or-
der a k~ r, we obtain (for r & rb )

A (x)= A' '(x)+ A' '(x)+O(a k r ) . (18)

In Eq. (18), A' ' is the leading-order vector potential for
an idea/ helical wiggler, i.e.,

A'„'=a [e,cos(k z)+e~sin(k z)] .

Moreover, A' ' represents the correction to Eq. (19) of
order a k r defined by

=y,b(1+a„)'~, it can be shown that the condition for
radial confinement of the electron orbits is given by [Eq.
(58)]

ybe, (1 P,—b ) (a (22)

III. PARTICLE ORBITS
IN COMBINED AXIAL-GUIDE FIELD

AND IDEAL HELICAL-WIGGLER FIELD

Here, e, =a~ b/c k and a =eB /mc k—:co, /ck
and the inequality in Eq. (22) can be expressed in the
equivalent form ybai~b(1 —p,'b) &~,' . In Eq. (22), yb,
/3, b, and a are related by 1 —P»=(1+a )/yb. For
specified beam density nb, note from Eq. (22) that
sufficiently large wiggler amplitude a is required for
confinement of the electron orbits.

—2k„xy sin(k z)]e

+[(k y +3k x )sin(k z)
—2k xy cos(k z)]e j . (20) ap) a (23)

We first examine the motion of an individual test elec-
tron for the case where Bo&0 and the axial-guide field is
suSciently strong that

2y.be, (1 /3.b) &a—o, (21)

From Eqs. (15)—(17), it is clear that there is a large re-
gion of the parameter space (ao, a, e, ) in which the
motion of an individual test electron can be investigated.
The remainder of this paper focuses on the fo11owing two
cases: (a) in Sec. III, electron motion is investigated for a
thin (k„rb &(1) electron beam propagating parallel to a
strong axial-guide field (Bo&0 and ao) a ); (b) in Sec.
IV, electron motion is investigated for a beam propaga-
ting through zero axial-guide field (B0=0 and a0=0) and
a strong-focusing wiggler field (a %0 and k rb &1, but
not necessarily k rb &(1).

In case (a) (Sec. III), the assumption k„rb &(1 corre-
sponds to

~

A' '~ &(
~

A' '~ [compare Eqs. (19) and (20)].
Therefore, we approximate the vector potential for the
wiggler field by the ideal value A = A ' '

=a [e cos(k z)+e sin(k„z)]. Because ao) a is as-
sumed, the axial magnetic field Boe, plays an important
role in providing radial confinement of the electron orbits
in the presence of the (defocusing) space-charge field
E'(x). Indeed, for the special case where a =0, an elec-
tron with axial velocity v, —= V,b =P,bc and small trans-
verse momentum (p„+p )' « y,bmc is radially
confined provided"

For a thin electron beam with k r& «1, it follows from
Eqs. (15)—(20) that the Hamiltonian H=H/mc can be
approximated by (for r & rb )

A(k x, k y, k z, P Imc, P~/mc, P, /mc)

=[(P/mc+ A) +1]1 2 ~le k2(x2+y2) (24)

where

A(x)=aok xeno+a [e cos(k z)+e sin(k z)]

+ ,'P be, k (x—+y)e, . (25)

A. Hamiltonian in guiding-center variables

As stated in Sec. II, because H does not depend explic-
itly on time t, the total energy H=@—e, k (x +y )l4 is
a constant of the motion. In order to find an additional
constant of the motion and calculate the resonances, it is
useful to perform the canonical transformation to the
new variables (P, i/j, k z', k P&lmc, k P&lmc, P, Imc)

ned by25

Note in Eq. (25) that A (x) has been approximated by
A'„'(x)=a [e cos(k„z)+csin(k z)] for an ideal
helical-wiggler field.

where y,b =(1—p,b) ', e, =co b/c k, and
ao=eBolmc k =—co„/ck . Equation (21) is equivalent
to the familiar inequality 2y,bco~b(1

—p, b ) (co„,required
for radial confinement of a non-neutral electron beam by
an axial-guide field Bpc, .

By contrast, in case (b) (Sec. IV), the axial-guide field is
zero (Bo =0 and a0=0), and the defocusing space-charge
force associated with E'(x) is counteracted by the (focus-
ing) magnetic force associated with the second-order vec-
tor potential A' ' for the wiggler field defined in Eq. (20).
For an electron with axial velocity u, —= V,b=p,bc, per-
pendicular momentum (p +p )'~ =-mca, and total
mechanical energy y=-yb =[(1+a )/(1 —P,b)]'~

1/2k P~

ap mc
sin(P+k z')

1 /2
k P~

ao mc
sin(i/ —k„z')

1/2k P~ cos(P+k z'),
a p p7lc

1/2
k P~

cos(i/ —k z'),
ap fpzc

(26)

(27)
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k z=k z', (28)

P
mc

k.P= 2a,
mc

1/2

cos(P+k z'), (29)

P kP~
2ap

mc mc

' 1/2

cos(Q —k z'), (30)

P, P,
mc mc

k P~ k P~+
mc mc

(31)

where ap=eBp/mc kw. It is shown later in Sec. IIIB
I

k P~ k.P~ P, .
P~=, P~=, P, .=

mc mc mc
(32)

Some straightforward algebra then shows that the Hamil-
tonian H =0 /mc in the new variables can be expressed
as

[see Eqs. (39)—(41)] that k~r, =(2k P&/apmc)'~ and
k rg =(2k P&/apmc)' are the normalized gyroradius
and guiding-center radius, respectively, of the steady-
state orbits. In Eqs. (26)—(31), we introduce the dimen-
sionless variables

H(P, P, P&, P&, P, =const)=[2aoP&+2a (2 apP&)' cosP+(P, P&+—P&+P,bC, ) +a +1]' —f&, =const. (33)

Here, a =eB /mc k„, and the normalized self-field po-
tential N, =eN, /mc is defined by

4, = [P~+P~ 2(P~P~—)' sin(P+g)] .
2ap

(34)

Because H in Eq. (33) does not depend explicitly on z', it
follows that P, .=const. Also, note that the analysis
presented in this section is restricted to the case of
nonzero axial-guide field Boe, . [The canonical transfor-
mation in Eqs. (26) —(31) becomes singular in the limit
ao =eBp/mc k ~0.]

B. Integrable limit (e, =0)

In the limit where self-field eAects are negligibly small
(e, =0 and 4&, =0), the Hamiltonian in Eq. (33) reduces to

Ho((b, P~, P~, P, . ) = [2 aPo~ +2a„(2apP~)' cosg

+(P, Pp+P], )—

strength of the axial-guide field ap for the case a =0.2
and yp=3. 0. Here, the solid (dashed) curves represent
stable (unstable) orbits, and the dotted line represents the
magnetoresonance condition p,p=ap ~ The stable orbit
with p,p) ap is known as the group-I orbit, whereas the
stable orbit with p, p &ap is known as the group-II orbit.
It is clear from Fig. 2 that the group-I orbit exists for ap
in the range 0 & a p & a p' and merges with the unstable or-
bit at ap =a p' =—2. 1. In general, the value of a p for the
merging of the group-I orbit and the unstable orbit de-
pends on yo and a . Substituting P =Pp, g =gp+/3 pr,
k z:k zp +P pr Py =Pyp and P& =8& into Eqs.
(26)—(28), it is readily shown that the steady-state trajec-
tories can be expressed in Cartesian coordinates as

+a.'+1]'"=—y, . (35)

Equation (35) possesses three constants of the motion,
A. A.

namely, P&, P, , and yp. The motion is integrable and has
been analyzed by several authors. ' ' ' ' It is readily
shown from Eq. (35) that the steady-state orbits
(d P/dr=0 and dP&/dr =0 with r=ck t ) are given by

o o
a. E

O
N

cCL

2.0

cosPp =+1, (36) I.O

(2aoP~o) =+ )0
p, o

—ap
(37)

2
aw

p2p &+ , +&=XO2
V.o —ao)'

(38)

where p,p=P Pyp+Py is the normalized axial
mechanical momentum. Substituting Eqs. (36) and (37)
into Eq. (35) yields

r

O.O
O. O I.O 2.0

eBp
Oo =

mC kw

3.0 4.0

which determines the values of P,p=p, p/mc in terms of
the parameters a, ap, and yo. Equation (38) is a fourth-
order algebraic equation for p, p, which has at most four
real roots. Figure 2 shows the dependence of p, p on the

FIG. 2. Plot of the integrable steady-state orbits calculated
from Eq. (16) for e, =0, go=3.0, and a =0.2. The solid
(dashed) curves correspond to the stable (unstable) orbits, and
the dotted straight line designates the magnetoresonance condi-
tion p, =ao.
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k„x(r)=+(2P&p/ap)' sin[k„z(r)]
—(2P& /a p )

' cost/p,

k y (r) = + (2P&o /ap )' cos[k z(r) ]

+(2P~/ao)'~ sini/p,

k z(~)=k zo+/3, pr,

(39)

(40)

(41)

for cosI/Lp=+1. Here, P,p—:P,p/yp, and r=ck t is the
normalized time variable. Equations (39)—(41) describe
helical trajectories with normalized gyroradius
k„r, = (2P&o/a p

)' and guiding-center radius

k„rg =(2P~/ao)'~ .
Figure 3 shows the typical phase-space structure for

the two cases 0&ao (ao' and ao &ao'. Here, the elliptic
(hyperbolic) fixed points correspond to the stable (unsta-
ble) steady-state orbits. The group-I orbit has greater ax-
ial momentum than the group-II orbit in Fig. 3(a),
whereas only the group-II orbit is allowed in Fig. 3(b). In
free-electron laser operation, the electron beam is injected
typically into the group-I orbit or the group-II orbit.

An orbit which deviates slightly from the stable
(grouP-I or grouP-II) orbit, i.e., ~5$~ =

~L/L
—

Pp~ ((1 and

~ 5P& )

=
~ P& P&p

—
)
((1, exhibits harmonic, guide-field-

induced betatron oscillations. It is straightforward to
show from the equations of motion for P and P& that the
frequency of the guide-field-induced oscillations is given

25

3.0

"~= ck
Ip o aol 1—

VO

3 1/2
+0 PtO

a~ PO
(42)

2.0

~ »» » e ~ ~ I' ~ ~ ~ ~ ~ ~ I' r ~ \ ~
»»» ~» ~ ~» e

~ r ~
r ~

P
~ »r ~ ~ ~r ~

~ ' ~, »e
1»» a»»~ ~

»

/

I'
~ )', 1, I i+

(~
~ » I I

J
S

~
L ~ ~

1

~' r
»I 'L L ~ 'IL

~ r ~ r
L

~ ~ ~~ ~ ~ ~

~
'

~
~ . ,5.0 —-'

~ ~
~'

~ 4 ~

~ ~ ~ ~

J ~ ~ ~ ~ ~
~ ~ ~

~
~ ~

'L
~ ~

'\ g ' ~

»

p (r)=ptocos(/3 o)r +5potc os(a oddly o)

p~ (7.) =ptosin( p, p7. ) +5p,psin(a o7./yo ),
(43)

(44)

p, (r)=p, 5p, (p, /p—, )cos[(ap/yo /3 p)r], (45)

where P,p=a P,o/(P, o
—ap) is the normalized trans-

verse mechanical momentum. Substituting 5$(r)=5$pcos( coper) and 5P&(r ) =5P&p sin(contr!7 ) into Eqs.
(26) —(31), and approximating Eq. (42) by
iota-=~P, p

—ap~/yp for ~P,p/P, p~ ((a /ap, it is readily
shown that the normalized mechanical momentum of an
orbit adjacent to the stable, steady-state orbit can be ap-
proximated by'
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~ ~
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o~ = 0.2
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where p, =p„/mc, p~=p~/mc, and p, =p, /mc. Here,
5Ptp= (P p ap )5Pyp /a is the amPlitude of the betatron
oscillation, and ~5P, p( (( ~P,p~ is assumed.

C. Chaotic motion (e, AO)
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For e, &0, the self-field contribution tIL, AO in Eq. (33)
invalidates the constancy of I'&. The motion described by
the Hamiltonian in Eq. (33) occurs in the three-
dimensional phase space (P, g, P&), because P& is deter-
mined from H=const. The time scale T, for self-field-
induced changes in the particle orbit can be estimated
from the rate of change of the phase P+t/ in the electro-
static potential CL, defined in Eq. (34). For an electron
with P =Pp and —P, =P,p=/3, sy b, because
d(P+ g) ldr =dt/I/dr =OH/B—P& =P, /y+ 0(e, ) =/3, b or-
d(P+g)ldt —=k Vb, the time required for the phase
P+ i/ to advance by 2' is given by

a 0 = O.0 & a~~"

27T N

k. V, V,
(46)

' (b)

0.0
0

&w =o.2
I I I I I I I I I I I I I I I I I

2 7r

FIG. 3. Contour plots in the integrable phase plane lP,p, )

calculated from Eq. (35) for e, =0, y0=3.0, and a =0.2. The
two cases correspond to (a) ao =2.0 & a o" =-2. 1 and (b)
ao =4.0) ao"~

Equation (46) is the characteristic time scale for the elec-
tron to experience self-field-induced modifications as the
electron undergoes the helical motion described by Eqs.
(39)—(41). In Eq. (46), A, =2'/k is the wiggler period.

For e, k rI, (&1, in the vicinity of the group-I orbits or
the group-II orbits, the particle motion occurs on a torus
as illustrated in Fig. 4. In Fig. 4, the circular, dashed line
represents the orbit (L/Lo Pyp) the toroidal angle represents
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tt/(r); the poloidal angle a(~) represents the phase of the
betatron oscillations 5P =P —

Pp
=5$pcosa(r), and

5Py =Py Pyp =5Pypsina( r ); and P,b and co are the
normalized angular velocities of the two angles g and a,
respectively. Clearly, an approximate resonance condi-
tion is

nco13p+1P b
=0 (47)

where l and n are integers. A detailed resonance analysis
has been carried out. For example, for l = 1, it is found
that the resonance condition and the resonance width w„
are given by

Imp ~ p I

n
Xb

ao
1

aw S'zo

3 1/2
Pzp

Tb

2ap
n =0,+1,+2, . . . , (48)

and
1/2

' '
IJ„(5P,)l (P»P»)'"

ao

ybr, rslb IJ.(5&P) I=4.
f zbrblA

(49)

Here, w„ is the width of the separatrix of the resonance
of order n projected along the P, axis. [For example, for
a pendulum described by the Hamiltonian
H(O, P~)=P&/2 —2 cos8, the separatrix width is given
by tp =43 '/ .] In Eqs. (48) and (49), rb, Ib, and ybmc
are the radius, current, and energy of the electron beam;
I~

=mc /e —= 17 kA is the Alfven current; and
r, =(2P»/k.'ap)1/2 and yg=(2P»/kzap)1/2 are the
gyroradius and guiding-center radius, respectively. Fig-
ure 5 shows plots of the resonance curves (the solid
curves) corresponding to the solutions to Eq. (48) for
e, =0.64, yb =go=3.0, a =0.2, and n = —1, —2, and

—3. The dashed curves in Fig. 5 are the integrable
steady-state orbits calculated from Eq. (38). When the
resonance curves of order n intersect integrable, stable,
steady-state orbits, islands of order n are expected to ap-
pear in the vicinity of the steady-state orbits in phase
space.

In order to demonstrate that the particle motion is
indeed chaotic, Poincare surface-of-section maps have
been generated by numerically integrating the equations
of motion derived from the Hamiltonian in Eq. (33). Fig-
ure 6 shows nonintegrable surface-of-section plots for
H =3.0, a =0.2, and the two cases (a)
0 & ap =2.0 & ap'=-2. 1 and e, =0.16, and (b)
ao=4. 0& ao' and e, =0.64. The integrable limits corre-
sponding to Figs. 6(a) and 6(b) are shown in Figs. 3(a) and
3(b), respectively, for the case e, =0. In Fig. 6, the initial
condition for I'& is fixed at the value
k rg =(2P»/ap)' =0.25, whereas the initial condition
for p, is allowed to vary. Chaotic orbits are evident in
Fig. 6. We also find that it takes (typically) only a few
iterations for a chaotic orbit to spread throughout the
chaotic region. Because the characteristic time for an
iteration of the Poincare map is approximately
T, =A, /Vb [Eq. (46)], it follows that chaotic orbits can
fill out the chaotic region once the beam passes through a
few wiggler periods. The second-order island appearing
near the group-II orbit in Fig. 6(b) occurs near the inter-
section between the n = —2 resonance curve and the
group-II orbit at ao=4. 0 in Fig. 5. Note that the self-
fields are not intense enough [e, =0.16 in Fig. 6(a), and
e, =0.64 in Fig. 6(b)] to cause high-degree chaos in the
vicinity of either the group-I orbit in Fig. 6(a) or the
group-II in Fig. 6(b).

3.0

2.0

O
N

n

go

I.O

O. O
0.0 l.o

acr
0

I i[ 1

2.0
eBo

oo =

fAC k~

= 0.64
aw 02
y = 3.0

4.0

FICs. 4. Schem. atic of torus in the vicinity of the stable,
steady-state orbit (Pp Pyp). Here, P,b and cobp are the normalized
angular velocities of the angle itj and the phase a of the betatron
oscillation, respectively.

FIG. 5. The equilibrium self-field resonance curves (solid
curves) correspond to the solutions to Eq. (48) for e, =0.64,
go=3.0, a,„=0.2, and n = —1, —2, and —3. The dashed curves
are the integrable steady-state orbitals calculated in Fig. 2, and
the dots mark the intersections between the resonance curves
and the steady- state orbits.
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The threshold values of the parameter e, for the onset
of chaos can be estimated, using the scaling relation in
Eq. (49). The criterion used here is that the onset of
chaos occurs whenever the half-width of the self-field-
induced resonance near the stable, steady-state orbit is
greater than the momentum separation between the reso-
nance and the steady-state orbit. For example, the onset
of chaos for the case corresponding to Fig. 6(b) can be es-
timated by making use of the secondary resonance at
P -=0.85m and P, =—2. S in Fig. 6(b). Substituting the
values n = —2, 5go—=0. 157r, yb =3.0, a0=4.0,
k r =(2P&lao)' =0.25, and k r, =(2PJolao)'~

=[a /(ao —P,o)]' =[0.2/(4. 0—2. 8)]' =0.4 into Eq.
(49), we find that the width of the resonance scales as
w 2=0.43m,'~ . Note from Fig. 6(b) that the momentum
separation between the group-II orbit and the resonance
is Ap, =0.3. Therefore it follows from m z/2=6p, that
the estimated value of e, for the onset of chaos is given by
e, =1.2. In reality, the actual onset of chaos for the
group-II orbit [corresponding to the group-II orbit in
Fig. 6(b)] occurs at e, —=2. 5 and is shown in Fig. 7, where
ac=4.0, H=3. 0, a„=0.2, P,b =0.93, and k rb =0.6S.
As an example, for A,„=3.0 cm, the dimensionless pa-
rameters in Fig. 7 correspond to r& =0.31 cm, Ib=4. 3
kA, B„=710G, Bo = 14.2 kG, P,b

=0.93, and yb =3.0.
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IV. PARTICLE GRBITS
IN A REALIZABLE HELICAL-WIGGLER FIELD

In this section, we examine the motion of an individual
test electron for the case where the axial-guide field is
zero (Bo=0 and ao =0) and the wiggler magnetic field is
described by a realizable helical wiggler. For an electron
beam with k r& & 1, it follows from Eqs. (15)—(20) that
the Hamiltonian H=H/mc can be approximated by
(for r &rb)

H(k„x, k y, k z, P,P&,P, )

=[(P+ A) +1]' —
—,'~, k (x +y ) . (50)

s 016
h
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Here, P=P/mc is the normalized canonical momentum,
and the dimensionless vector potential is defined by

A(x)= A'„'(x)+ A' '(x)+ —,'P,be, k (x +y )e, .
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FIT+. 6. Typical nonintegrable surface-of-section plots in the
(P,P, ) plane at $=0 (mod 2') for the two cases: (a)
0&ao=2.0&ao' —=2. 1 and (b) ao=4.0) ao'. Other system pa-
rameters are (a) e, =0.16, H =3.0, a =0.2, and p b =0.91, and
(b) e, =0.64, H=3. 0, a =0.2, and P,i, =0.93.

FIG. 7. Surface-of-section plot at the onset of chaos in the
group-II orbit for the choice of system parameters e, =2.5,
a0=4. 0, H=3.0, a =0.2, and P,b =0.93, corresponding to Fig.
6(b). Here, the normalized effective gyroradius
k r, —= (2P&/ao)' ranges from 0.17 to 0.35, the normalized
guiding-center radius is k rg —= (2P&/ao)' =-0.25, and the nor-
malized beam radius is k„rb =0.65.
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In Eq. (51), we have approximated A (x)
—= A~'(x)+ A' '(x) for a realizable helical-wiggler field,
and A' '(x) and A ' I(x) are defined in Eqs. (19) and (20).

A. Condition for radial orbit confinement

We first consider the case of a thin electron beam with
kerb ((1. Because P +P &k rba [see Eq. (62)], the
Hamiltonian defined in Eqs. (50) and (51) can be expand-
ed to order k r . For r & rb, this yields

ybe, ( 1 p,'b—
) & a„',

or equivalently,

(58)

is the normalized frequency of the wiggler-field-induced
betatron oscillations in the absence of self-fields. It fol-
lows from Eq. (56) that the guiding center of helical orbit
oscillates harmonically about r =0 provided
ybe, (1—p» ) & a~, and diverges radially if
y„e,(1—p,b)) a . Therefore the condition for radial
confinement of the particle orbits can be expressed as

8 -=Ho+H, , (52) ybcopb(1 —p,b) (co, (59)

where

(P 2+P 2+2 A ~o~. A ~»)
1 2 x y W W

To

1 —P,b k (x+y ).
4 'ro (54)

For the case of zero transverse canonical momentum
with P =P~ =0, it follows from Eq. (53) that the lowest-
order (helical) particle orbit is described by

xo(r)=r, sin[k zo(r)]+x

yo(r)= —r, cos[k zo(r)]+y

zo(r) =(P,o/k )r+zo(0) .

(55)

In Eq. (55), r=ck t, p,o=[1—(1+a )/yo]'~ =const,
r, =a /k yop, o is the radius of the helical orbit, and xg
and y are slow variables describing the center of the
helix which is referred to as the guiding center in the
remainder of this paper. (Because the center of the helix
does not necessarily follow magnetic field lines, the guid-
ing center here is not the one used usually in plasma
physics. ) Note from r, & rb that the assumption k„rb « 1

requires a„(&yap, o.
To calculate the guiding-center trajectories, we substi-

tute Eqs. (19), (20), and (55) in Eq. (54) and average over r
for one period 2m/P, o. For yo-=yb and
p,o—=p, b

= [1—(1+a )/yb ]', some straightforward
algebra shows that the average Hamiltonian can be ex-
pressed as

2+b

b~sP +P +ybcop 1 — (1—P b)
aW

Xk„(x +y ) +const, (56)

where

Ct)p
PW (57)

Ho(k z, P„,P,P, )

=IP, +2a [P,cos(k z)+P sin(k z)]+a +1]'~

(53)

Here, c0 b =(4rre nb/m )'~ is the nonrelativistic plasma
frequency, and co,„=e8 /mc=ck a is the nonrela-
tivistic cyclotron frequency associated with the wiggler
field amplitude 8 . Note that the condition in Eqs. (58)
and (59) is analogous to the condition for radial
confinement of particle orbits in a non-neutral electron
beam by a uniform axial magnetic field. " Expressing
e copb /c k (4/p b k rb )(Ib /I„), where Ib is the
beam current and I„—=mc /e -=17 kA is the Alfven
current, it readily follows that the condition in Eqs. (58)
and (59) can be expressed in the equivalent form

~ b&~zb w b9 k r a
b b =

4 1+ 2 AI &I"=

Tb&s9 I'i =coP 1 — (1 Pb )—
QW

(61)

is the normalized frequency of the wiggler-field-induced
betatron oscillations including self-field e6'ects. Because
P„=yod(k x )/dr, P~=yod(k y )/dr, and x +y
& rb, it is readily shown that

(62)

which assures the validity of the expansion in Eq. (52).
Figure 8 shows typical transverse trajectories for the

two cases (a) e, (e,"=a~/yb(1 —p,'b)=yba'/(1+a'),
and (b) e, )e,". The orbits in Fig. 8 are obtained by in-
tegrating numerically the equations of motion derived
from the Hamiltonian defined in Eqs. (50) and (51). In
Fig. 8(a), because the focusing force due to the wiggler
and self-magnetic fields is greater than the defocusing
force of the self-electric field (e, & e,"), the guiding center
of the orbit oscillates about the axis of the wiggler helix,
corresponding to a real value of co& . In Fig. 8(b), be-
cause the defocusing force exceeds the focusing force

As an example, for a„=0.4, k„rb =0.2, yb=3. 0, and

P,b
= [1—(1+a )/yb]'~ =0.93, the critical value of

beam current defined in Eq. (60) is Ib'= 65 A.
Solving the equations of motion determined from

(H, ) in Eq. (56) for radially confined orbits, we find that
the guiding-center trajectories are given by
x (r)=x cos(cos r+a ) and y (r)=y cos(cop r+ap).
Here, n„and a are the phases of the betatron oscilla-
tions, x and y are the amplitudes, and

1/2
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(e, )e,"), the radius of the guiding center of the orbit os-
cillates between some minimum radius r;„and max-
imum radius r,„. The focusing force provided by
higher-order terms in the vector potential expansion in
Eq. (18), which become increasingly large as r increases,
prevents the particle orbits from diverging indefinitely in
the radial direction in Fig. 8(b). Figure 9 shows the plots
of the parameter e,"/yb versus a . Here, the solid curve
corresponds to the analytical estimate
e,"/yb =a„/(1+a„), and the dashed curves are obtained
from numerical integration of the equations of motion.
In Fig. 9, the two dashed curves correspond to yb =4 and
10 used in the simulations. It is evident from Fig. 9 that
the analytical and numerical results are in good agree-
ment.

0.6

0.5

0.4

C&
&g Oa
7b

0.2

O. l

0.0
0.0 0.2 Q 4

ow
0.6 0.8 I.O

Q 4

0.2—

FIG. 9. Plots of e,"/yb vs a . Here, the solid curve corre-
sponds to the analytical estimate e,"/y& =a /(1+a ), and the
dashed curves are obtained by solving numerically the equations
of motion for y&

=4 and y b
= 10.

0.0— B. Chaotic motion in the strong-pump regime
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%'e now examine the particle orbits in the regime
where the wiggler field amplitude a is sufficiently large
that

au& Ybpzb (63)

Because the normalized beam radius k rb and gyroradius
k„r, =a /ybp, b are allowed to be of order unity, the
analytical treatment in Sec. IV A is no longer valid. For
k r k r& (1, however, the approximate Hamiltonian
defined in Eqs. (50) and (51) still provides an adequate
description of the particle motion. In the remainder of
this section, we show that the motion is nonintegrable
and exhibits chaotic behavior when a is sufficiently
large.

To simplify the analysis, we assume that self-field
effects are negligibly small (e, =0 and 4&, =0), and focus
on the region of the phase space in the vicinity of helical
orbits with guiding center on the z axis (r =0), electron
energy y =y b, and normalized axial velocity
P, —=P,b

= [1—(1+a„)/yb ]'~ . In addition, it is useful to
introduce the dimensionless parameter

b
1.0 I I I I I I I I I I I I I I I j I I

ck pb

Clw

[P(~2 1 a2 )]i/2
-1.0 - 0.5 0.0 O. 5 I.Q

kwx

FIG. 8. Plots of typical transverse trajectories for the two
cases (a) e, &e,'":—yba /(1+a ) and (b) e, &e,". Here, the
choices of the system parameters for the two cases are (a)
e, =0.13, a =0.2, y =4.0, and e,"=0.154, and (b) e, =0.18,
a =0.2, yb =4.0, and e,'"=0.154.

which is a measure of the nonintegrability of the motion.
Physically, A, /6 is the axial distance through which an
electron with energy y=yb and axial velocity v, =p,bc
travels in one betatron oscillation period 2'/~& .

For present purposes, it is convenient to describe the
particle motion in cylindrical polar coordinates (r, 8,z).
The Hamiltonian in Eq. (50) can be expressed as
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cos(8 —k z)
2

0P
k„r

3k r
a 1+

W 8
sin(8 —k z)

H= ' P+a 1+
have been introduced. Because the combination 8—k z
appears in H, it is useful to perform the canonical trans-
formation to the new variables (k r, y, k z', P„,Pr, P,. )

defined by

+P, +1 '

1/2

(65)

y=8 —k z, k z'=k z,
A A

P~ =Pg, P, =P, +Pg .

(67)

(68)

where the dimensionless variables

P, k Pg
P, = and P&=

mc mc
(66)

Here, the generating function is given by
F2(k z, O;P, ,P&)=k zP, +(0—k z)Pr. The Hamil-
tonian in the new variables can be expressed as

2 2

H(k r,g, P„,Pz, P, .=const)= ' P„+a 1+
8

P~
cosy + —a 1+

k r 8
sing +(P, Pr) +—1

' 1/2

=const . (69)

k r=k ro, y=yo=3m/2,

P„=P„OO, Pz = (3a l4)(k ro )
(70)

where the normalized gyroradii k rp =k rp and
k rp =k„rp are the solutions of the algebraic equation'

f(k„ro) = 2 1+ 1

k'rp

—j. /2

9k rp
2 2-2

1+ —2
8

(71)

Because the function f(k ro) satisfies f(0)=f(ao)=0
and has a (single) maximum f =—0.28 at k ro=—0.625, it
follows that Eq. (71) has two real solutions when b, is in
the interval 0 & b, &f, and no real solution otherwise.

Poincare surface-of-section maps are generated to
demonstrate the existence of chaos in the phase space in
the vicinity of the steady-state orbit in Eq. (70) with
k rp =k„rp, where r p is the smaller of the two solutions
to Eq. (71). Figure 10 shows the Poincare surface-of-
section plots in the (y, Pz ) plane at P„=O for
H=yb =6.0 and e, =0, corresponding to the two cases
(a) b =0.18 &f —=0.28 (or a =1.5) and (b)
b, =0.22 &f (or a„=1.8). The orbits in Fig. 10 are cal-
culated numerically from the equations of motion derived

Equation (69) possesses two constants of the motion,
namely, H and P, The motion occurs in the three-
dimensional phase space (y, Pr, P„), because k„r can be
determined from H =const.

The (helical) steady-state orbits with guiding center on
the z axis are the solutions of the steady-state equations
of motion derived from the Hamiltonian in Eq. (69). Fol-
lowing Diament, ' it can be shown for 0& b, &0.28 (Ap-
pendix) that the steady-state orbits with normalized axial
momentum P, =P,.—P& )0 are given by

from the Hamiltonian in Eq. (69). Because
Pz= (P, P, ,—) [Eq.—(68)], a reversal of the vertical axis
in Fig. 10 corresponds to the normalized axial momen-
tum P, relative to the constant P, . It is evident that the
phase space contains regular and chaotic orbits. In fact,
the axial velocity of a chaotic orbit can be negative at
random time intervals even though the initial axial veloc-
ity is positive. In Fig. 10, the fixed point at g=yp=3m. /2
and P& =P&p corresponds to the steady-state orbit
defined in Eq. (70). Each contour in Fig. 10 corresponds
to an orbit with guiding center oscillating about r =0 ap-
proximately at the betatron frequency co& . As the con-
tour size increases, the amplitude of the betatron oscilla-
tion increases, and consequently the coupling between the
helical motion and the betatron oscillation is enhanced,
leading to chaos. Furthermore, as the value of the pa-
rameter b, (or a ) is increased, the area of the regular re-
gion in the phase plane decreases [compare Fig. 10(b)
with Fig. 10(a)]. Therefore it is of interest to calculate
the threshold value of the parameter b, =h, (k r~ ) for
the onset of chaos for an electron orbit with maximum
normalized guiding-center radius k rg from the axis of
the wiggler helix (r =0). For electron orbits with guiding
center on the axis of the wiggler helix, we find that the
threshold value is given by

4, (0)=f =0.28 . (72)

Figure 11 shows the dependence of 6, on k„rg, as ob-
tained from the computer simulations. It is found that
the function b,,(k r ) is independent of the value of the
electron energy y&. In Fig. 11, although 5, decreases
monotonically in a weak manner as k r varies from 0
to 0.5, there is a discontinuous drop in 6, at k r —=0.5.
This may be associated with changes in the resonance
structures in phase space. Solving for a =a' from Eq.
(64) with b, =b, ,(0)=0.28, it readily follows that the
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threshold value of the dimensionless wiggler amplitude
for the onset of fully developed chaos is given by

gc —0 37(y2 1 )I/2

0.3 0

0.28

For a given y&, the phase space is fully chaotic if
a )a'(yb), whereas there is a regular region with some
finite area in phase space if a & a'(yb ).

Although the present results are similar to the results
obtained earlier for the case of realizable planar-wiggler
field configuration, there are qualitative and quantitative
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FIG. 11. Plots of 6, vs k rg for the onset of chaos in elec-
tron orbits with maximum guiding-center radius rg, as ob-
tained from the computer simulations. The value of

(k rg ) is found to be independent of the electron ener-

gy yb, for values of yq up to 100.
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difFerences. First, there is a threshold wiggler amplitude
a =a' beyond which orbits with r~ =0 become unstable
and chaotic in the helical-wiggler case, while in the
planar-wiggler case, orbits with exactly zero displacernent
in the wiggle plane are integrable. Second, the threshold
value of the wiggler amplitude for the onset of chaos in
the helical-wiggler case is less than the corresponding
value in the planar-wiggler case, for similar beam radius
and energy, and wiggler period.

V. CONCLUSIONS
0 6 I I I I

I
I I I I

I
I I I I

I
I I I I

04—
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FIG. 10. Poincare surface-of-section plots in the (y, I' ~) plane
at P„=O. Here, 50 iterations are plotted for each orbit with the
initial conditions marked by the crosses. The choices of system
parameters for the two cases are (a) 6=0. 18 (a = 1.5),
Q=yb =6.0, and e, =0, and (b) 6=0.22 (a =1.8),
H=y& =6.0, and e, =0.

We have investigated the efFects of the equilibrium
self-fields and an inhomogeneous wiggler field on the dy-
namics of a test electron in a helical-wiggler free-electron
laser in the absence of electromagnetic signal wave. It
was shown that the transverse spatial gradients in the
self-fields and a realizable helical-wiggler field can cause
chaos in the particle orbits. In addition, the characteris-
tic time scale for radial-gradient-induced changes in the
particle orbits is of the order of the beam transit time
through a few wiggler periods. The following is a brief
summary of the principal results and conclusions.

First, the inhuence of equilibrium self-fields on the par-
ticle orbits was analyzed in the field configuration consist-
ing of an ideal helical-wiggler field and a uniform axial-
guide field. It was shown that the inclusion of the equi-
librium self-field efFects destroys the integrability of the
motion, and results in chaotic particle motion at
sufIiciently high beam density. In particular, the group-I
orbits and the group-II orbits can become fully chaotic.
The origin of this chaotic behavior is the coupling be-
tween the guide-field-induced betatron oscillations and
the helical motion, modified by the radial gradient of the
self-fields. An analysis of the self-field-induced reso-
nances was carried out, and scaling relations for the reso-
nance widths were derived. Good agreement was found
between the computer simulations and the analytical esti-
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mate of the threshold value of the self-field parameter for
the onset of chaos.

Second, the effects of wiggler-induced betatron oscilla-
tions on the particle orbits were analyzed for a realizable
helical-wiggler field configuration in the absence of axial-
guide field, but including the inhuence of equilibrium
self-fields. For a thin electron beam and small wiggler
amplitude, a condition for radial confinement of the par-
ticle orbits was derived analytically and verified in com-
puter simulations. Although the particle orbits consist of
well-defined helical motion and betatron oscillations
when the wiggler amplitude is small, it was shown that
the particle trajectories become strongly chaotic when
the wiggler amplitude is sufficiently large. As the wiggler
amplitude is increased, the area of the regular region in
phase space decreases in the Poincare surface-of-section
plots. For the special case where self-field effects are
negligibly small, the threshold value of the wiggler ampli-
tude for the onset of fully developed chaos was found to

I

be a' =0.37(yb —I)'~, which corresponds to the max-
imum allowed value of the wiggler amplitude for the ex-
istence of regular helical orbits for given electron energy
Vb
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APPENDIX:
ANALYSIS QF STEADY-STATE ORBITS

The equations of motion derived from the Hamiltonian
in Eq. (69) have the form

d(k r) gH 1 k r
P, +a 1+

d~ gp y
' 8

cos+ (A 1)

dg BH

Qp

1 1

y k r
Px —a„1+
k r

3k„r
8

sing —P,.+P (A2)

dp„
dv

BH
B(k r)

dP~

d7 Bg

Cos+ COS+

P3akr
+ singk'r' 4

3k r

sing

1 k r
a 1+

y 8

P~
a 1+

w

sing sing

a„k r k r
P, +a 1+

4

Pq 3k r
+ —a 1+

k r 8
(A3)

+a 1+w 8

k r
P„+a 1+

8
COS+ COS+ (A4)

Here, ~=ck t and H=@. It is readily shown from Eqs.
(A 1)—(A4) that the steady-state solutions
(k rp gp P p P+p ) are given by

I

It is clear from Eq. (A9) that P,p) 0 when gp=3n /2, and
P,p & 0 when yp =~/2. Substituting Eqs. (A5) —(A8) into
Eq. (69) gives'

—a
3k rp 3kwr 0(1+k )+ 1+

4 w 0 2
aw

'+ 1

k rp

9k ro2 2 2

1+
8

(Alo)

cos+0 =0

P„0=0,

X simp =P.. . (A5)

(A6)

(A7)

Making use of Eq. (64) and y=yb, it is readily shown
that Eq. (A10) can be expressed as

A=f(k rp)

Pxp = —( 3a„/4 )k r p sinyp, (Ag)

which correspond to helical orbits with guiding center on
the axis of the wiggler helix. Subtracting Eq. (AS) from
Eq. (A5) yields the axial momentum

2
—1/2 1+ 1+1

k rp

9k rp
2 2-2

—1
8

—1/2

(A 1 1)

k ro
P,p=P, , P~p = —a + —

simp . (A9)
k r, 8

which determines the gyroradius of the helical orbit. For
x )0, the function f(x) is always non-negative and
possesses the (single) maximum f =—0.28 at x =—0.625.
Therefore Eq. (Al 1) has two real solutions for 0 & b, &f
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