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Cluster-collision frequency. II. Estimation of the collision rate
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Gas-phase cluster-collision rates, including effects of cluster morphology and long-range inter-
molecular forces, are calculated. Identical pairs of icosahedral or dodecahedral carbon tetra-
chloride clusters of 13, 33, and 55 molecules in two different relative orientations were discussed in
the preceding paper [Phys. Rev. A 43, 5483 (1991)]:long-range interaction energies were derived
based upon (i) exact calculations of the iterated, or many-body, induced-dipole interaction energies
for the clusters in two fixed relative orientations; and (ii) bulk, or continuum descriptions
{Lifshitz —van der Waals theory), of spheres of corresponding masses and diameters. In this paper,
collision rates are calculated according to an exact description of the rates for small spheres in-

teracting via realistic potentials. Utilizing the interaction energies of the preceding paper, several
estimates of the collision rates are given by treating the discrete clusters in fixed relative orienta-
tions, by computing rotationally averaged potentials for the discrete clusters, and by approximating
the clusters as continuum spheres. For the discrete, highly symmetric clusters treated here, the
rates using the rotationally averaged potentials closely approximate the fixed-orientation rates and

0

the values of the intercluster potentials for cluster surface separations under 2 A have negligible
effect on the overall collision rates. While the 13-molecule cluster-collision rate differs by 50% from
the rate calculated as if the cluster were bulk matter, the two larger cluster-collision rates differ by
less than 15% from the macroscopic rates, thereby indicating the transition of microscopic to mac-
roscopic behavior.

I. INTRODUCTION

Collisions of clusters in the gas phase are responsible
through different mechanisms for cluster formation via
homogeneous or critical nucleation and for the evolution
of the size distribution of stable clusters. Since critical
nucleation is generally assumed to be an equilibrium pro-
cess dominated by the interaction of the condensing va-
por with the evanescent, subcritical clusters, its kinetic
description may be formulated in terms of microscopic
reversibility. ' In contrast, when thermodynamically
stable clusters are present, the environment is such that
the elementary condensing vapor species does not neces-
sarily dominate growth because of its prior depletion.
For this situation, the cluster-cluster collisions that dom-
inate the cluster-size-distribution evolution are effectively
irreversible because the large number of vibrational
modes of the cluster system dissipate, or thermalize, the
collisional energy. This second case, collisions of stable
clusters, is the subject treated in this and the preceding
paper, henceforth referred to as paper I.

As argued in paper I, a factoring of the cluster reaction
rate into the collision rate and the reaction probability
can normally be made and should always be possible for
chemically similar clusters. Therefore, the collision rate,
or collision frequency, is generally the upper limit for the
overall reaction. Since the "reaction" of sticking or
adhesion between colliding clusters is highly favored in
innumerable cases of interest for both research and appli-
cations, the collision frequency is also the reaction rate.
The objective of these papers is to contribute to the devel-

opment of methods for computing collision rates that are
both computationally tractable and physically meaning-
ful. Based upon these rates, computations for the
cluster-size-distribution evolution needed in a variety of
applications can then be made.

In general, the collisions of clusters are subject to ques-
tions similar to those which apply to molecular collisions.
The contributions of the different relative orientations of
the colliding clusters at contact determine the overall
geometrical collision cross section, and the orientation-
dependent long-range interactions between the clusters
give the enhancement of the collision rate beyond that
arising from geometry alone. While the exact treatment
of these questions is too complex for the calculation of
the large number of rates that enter computations of
size-distribution evolution, it may not be required. Un-
like molecular collisions where reactions are determined
by the details of the approach to collision, for collisions
of stable clusters this detail is often unnecessary, as ar-
gued above and in paper I. For these reasons, the para-
digm of detailed molecular-collision calculations may not
be a useful starting point for constructing a computation-
al approach to the estimation of cluster-collision rates.

Ultrafine particulate matter in the gas phase, or free-
molecular aerosols, provide an alternative paradigm for
the construction of cluster-collision rates. There, parti-
cles are customarily approximated as spheres, except in
the most extreme cases, and a rigorous formulation exists
of the effect on collisions of realistic long-range forces be-
tween electrically neutral, free-molecular regime particles
(radius much smaller than the mean free path of back-
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ground gas). The benefits of this approach are that
"large" clusters are indistinguishable in overall dimen-
sions from ultrafine particles and that the collision theory
with recent extensions is entirely consistent with
molecular-collision theory.

In this paper an approach for estimating the collision
rates of clusters is developed which is based upon the re-
sults for free-molecular spheres. The e6'ects of shape and
relative orientation are taken into account by approxi-
mating the upper and lower limits of the rates based upon
appropriate rates for corresponding spheres, and the re-
sults are compared with rates for compositionally
equivalent macroscopic spheres and shown to converge
to those rates for sufficiently large clusters.

II. COLLISION FREQUENCY

A. Spherical aerosol particles

Aerosols frequently are comprised of particles that are
spherical due either to their composition or formation
processes. For the calculation of the collision frequency

of condensed-phase particles, if k /r z and
A,~/rz ) 10, where A,g and r~ z are the mean free path of
background gas molecules and A, B-particle radii, respec-

I

tively, ~bE(As )
~
/kT && 1, and the interaction potential of

particles 3 and 8 at center-of-mass separation R
b,E(R)~ —oo for R ~rz +rs then a rigorous, analytic
formula for the collision rate is available. In the equa-
tions listed above, k is the Boltzmann constant and T is
the temperature of the system. If the long-range interac-
tion potential energy is calculated either according to the
sum over London —van der Waals pair interactions or ac-
cording to the continuum Lifshitz theory of the van der
Waals interaction, the potentials obey these limiting con-
ditions. While the limiting form is unphysical for
sufficiently small separations, the integrals in the exact
collision formula converge for separations well beyond
the orbital overlap region where these macroscopic po-
tentials are still useful. '

For a pair of clusters, the fact that their interaction en-
ergy 6 E is bounded as they approach, as treated in Paper
I, makes the utilization of the aerosol collision-rate for-
mula questionable for the computation of cluster col-
lisions, even when the clusters are treated as spherical.
Recently, this deficiency has been addressed by general-
izing the earlier work with the result that the collision
frequency for free-molecular aerosol particles interacting
via a monotonic, attractive potential is given by

'(b,E)=~v „(r„+rti ) exp
dbE(r)+

kT 2kT dr

db, E(cr ) d b, E(cr )

dO dg
0 exp2 1 o. db, E(cr)

kT 2 do

with the subsidiary condition

cr dAE
2 dI" Tg + 7"g

—1 +bE(r~+rti) bE(o)—
=0, (2)

@ =rrv, „(r~+rs) (3)

where quantity rr(r~ +re�) is the hard-sphere cross sec-
tion.

where v„=&8kT/vrp, and p, is the reduced mass of the
particles. cr i in Eq. (1) is given as follows: If there exists
a o o) (rz + rid ) that is a root of Eq. (2), then cr i

=o.o', oth-
erwise, o.&=r„+rz. For a potential that goes to minus
infinity at contact such as for particles treated as con-
densed matter, there is always a cr )(r„+rs ) that
satisfies Eq. (2) and in this limiting case of a singular at-
tractive contact potential, the first term in Eq. (1) goes to
zero.

The literature contains several computationally simpler
alternatives to Eq. (2) which are based upon difFerent ap-
proximations and whose results will be calculated below
for the purpose of completeness. In the simplest case, if
the two particles are assumed to have no long-range in-
teraction potential, their collision rate is the hard-sphere
rate

If the long-range attraction forces are considered, the
collision frequency is multiplied by a correction factor 4,
called the collision rate enhanc-ement factor (CREF). As a
result, the physical collision frequency N is given by the
product %N . If this expression is rewritten as

N =~b v„,
then b is the capture radius or maximum impact param-
eter leading to collision.

The analysis of particle trajectories before and after en-
counter in the center-of-mass system leads to a simple
correlation between the impact parameter b and the dis-
tance of closest approach or turning point R

bE(R )b=R 1—
0

Here, E0 is the initial total translational kinetic energy of
the particles in the center-of-mass system (i.e., the kinetic
energy of the reduced mass at large separations). Ac-
cording to the Fuchs-Sutugin approximation, "E0=—,'kT
and for attractive potentials, the condition (db /dR )
=0 determines R so that the square of the capture ra-
dius in Fuchs' approximation is

2b,E(R )
m m
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Recently, Sceats' ' used a different approach for the
problem. He based his approximation on a thermal aver-
age of the angular or centrifugal part of the kinetic ener-
gy. The resulting average effective potential, the interac-
tion potential plus the angular part of the kinetic energy,
that he used has the form

O' ' =R exp
2 AE(R—T)

kT

where R T is determined by d ( ( V,s ) ) /dR =0 or,
equivalently,

RT(db, E/dR)~ 2kT =—0 .

Of the formulas presented here, only Eq. (1) sums over
all trajectories to give the realistic weighting of the col-
lisions dependent upon their incident kinetic energies dis-
tributed according to the Maxwell distribution.

B. Intercluster potential energies
and cluster parameters

For computing the long-range interaction potentials
AE needed in collision calculations, the following interre-
lated questions should be addressed: (1) For clusters of
discrete molecules with specific geometry, what is the
correct form of the potential? (2) How does that poten-
tial converge with increasing cluster size to the corre-
sponding potential for condensed matter or matter in the
continuum approximation? (3) How can the cluster in-
teraction energies or collision rates be averaged over
geometry or relative orientation to produce rates that can
be compared with compositionally equivalent macroscop-
ic spheres? (4) What are the practical effects on the cal-
culated collision rates of the difference between the
discrete and continuum energies? (5) Can limiting cases
of the cluster-collision frequencies be given which bracket
the true value? In paper I the first two of these questions
are treated while the last three are the subjects of the
present paper, which applies the results of the energy cal-
culations to collision-frequency estimation.

Clusters of carbon tetrachloride molecules are treated
in these papers. This choice was made for the following
reasons: (1) Extensive spectroscopic data required for
computation of interaction energies are available; (2) as a
closed-shell molecular species, its interaction-energy
characteristics in discrete cluster and continuum pictures
and the results of computations based upon them should
be broadly relevant; and (3) the molecule can be reason-
ably treated as if it were spherical, which allows the con-
struction of clusters based upon this elementary unit. In
paper I the interaction energies of pairs of identical clus-
ters have been computed as functions of separation for
13-, 33-, and 55-molecule clusters. The largest and small-
est clusters are icosahedrons and the others are dode-

( V,s. )(R)=DE(R)—2kT ln(R /Ro),
where Ro is a constant. By determining the maximum
for this effective potential, located at R =RT, Sceats finds
the following formula for the capture radius:

cahedrons; all structures are relaxed to local minimal-
energy configurations under the inAuence of the inter-
molecular potential used here. Repulsive, pairwise,
short-range potentials between molecules are used to en-
sure realistic intermolecular separations while attractive
interactions arise from the induced-dipole interaction
iterated over all molecules (treated as Drude oscillators)
of the two clusters, a potential which generalizes the clas-
sical London —van der Waals intermolecular potential be-
tween a pair of molecules and is consistent with the
Lifshitz —van der Waals potential between matter in the
continuum picture.

Two relative orientations are selected for each cluster
pair with energies computed at a range of separations for
each orientation. The orientations chosen are those cor-
responding to the maximum and minimum separations of
centers of mass when the clusters are in contact. For
both the icosahedral pairs and the dodecahedral pair, the
clusters are mirror images of each other along the three-
fold and the fivefold axes of symmetry. In the case of the
dodecahedron, the fivefold symmetric orientation pro-
vides the closest approach for the centers of mass while
for the icosahedrons the threefold symmetric orientation
provides this minimum distance. The radius of a cluster
is defined as half the center-of-mass separation at closest
approach. Thus, actual variations in cluster dimensions
and interaction energies that are associated with different
relative orientations are taken into account.

For the purpose of defining condensed-phase particles
that correspond to the clusters, the radii of the particles
initially are taken to be radii of the spheres circumscribed
about the clusters; these radii are the larger of the two ra-
dii defined above for each cluster. The interaction energy
of a pair of particles is then computed according to the
standard formula which sums over pair interactions with
the Lifshitz-Hamaker constant dependent upon the mass
of the individual cluster in order that the comparison be
meaningful ~ Collision rates then follow from utilization
of this energy in Eq. (1) where the first term vanishes due
to the unbounded potential characteristic of continuum
interaction energies at particle contact.

The potentials calculated for the discrete clusters are
all finite at contact, but their lack of spherical symmetry
requires either that averaging procedures be introduced
or that special interpretations be conferred upon the pro-
cedures selected for calculating the rates. Both of these
approaches were followed in paper I.

(1) In the first procedure, the energies themselves were
averaged by weighting their values according to the de-
generacy of each relative orientation,

AE„=( 206Eth, ee fojd + 12AEs, efoJd ) /32 .

This average energy is then used in Eq. (1) to compute a
rate denoted A,"„where n is the number of molecules in
each of the two interacting clusters.

(2) The second procedure treats each cluster orienta-
tion alone. The potential as a function solely of separa-
tion for each relative orientation of the clusters is utilized
as the basis for computing the collision frequency accord-
ing to Eq. (1), thereby reducing the computation to the
problem of two spheres with radii appropriate to the par-
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TABLE I. Collision frequencies and derived parameters from alternative methods.

13-molecule cluster
Symmetry Average

Threefold Fivefold energy

33-molecule cluster
Symmetry Average

LH Fivefold Threefold energy LH

55-molecule cluster
Symmetry Average

Threefold Fivefold energy LH

Interaction type
dciUst (A)

Equation (1)
4(10 ' cm'/sec)

Capture radius (A)
CREF
Fuchs

N(10 ' cm /sec)
Capture radius (A)

CREF
Sceats

N(10 ' cm /sec)
Capture radius {A)

CREF

14.71

18.01
26.98
3.365

13.08
22.99

2.444

15.03
24.65
2.808

18.23
27.15
2.544

18.11 32.19 21.62
27.05 36.07 37.31
2.527 4.491 3.395

13.59
23.44

13.30 14.89 15.92
23.19 24.53 32.02

1.896 1.856 2.077 2.50

15.41
24.95
2.150

15.18 16.57 18.17
24.77 25.88 34.21
2.119 2.312 2.853

17.02 17.02 17.02 20.25 23.99

21.87
37.53
2.447

16.51
32.61

1.847

18.61
34.61
2.081

21.74 28.24
37.41 42.64
2.432 3.159

23.42
44.12

3.444

16.32 17.91
32.42 33.96

17.29
37.91

1.826 2.003 2.543

18.46 19.86
34.47 35.76
2.065 2.222

19.71
40.47

2.898

23.99 23.99 23.77

23.59
44.28
2.464

23.40 32.93
44.10 52.32

2.444 3.440

17.78
38.44

17.50 19.35
38.13 40.10

1.857 1.827 2.021

20.05
40.83
2.094

19.85 21.49
40.61 42.27

2.073 2.245

28.21 28.21 28.21

singular, attractive contact potentials where the 6rst term
was not present. The calculations showed that in all
cases the new term made a negligible contribution to the
overall fiux, never exceeding 0.05% of the final value.
Thus, the nonintegral first term in Eq. (1), which is the
term that has a direct dependence on d,&„„, can be
dropped in practice and the dependence on the physical
radius is weakened. The effect of this weakened depen-
dence is seen in the collision Auxes or capture radii which
differ by less than 1% for the two distinct orientations for
which the discrete intercluster potentials were evaluated
for each size of cluster. Thus, at least for these highly
symmetric clusters, the collision Auxes or frequencies are
similar regardless of the mutual orientations upon which
the interaction potentials were based, a result that is also
manifested by the close agreement with the results calcu-
lated from the averaged discrete intercluster potentials.

The CREF's, 4, for the rates corresponding to the two
specific orientations differ by as much as 40% in the three
cases examined here. This is due to their strong depen-
dence on the center-of-mass distance at contact,
tlr=(b /d„„st), which did not exist for the fiux or cap-
ture radius calculations. Indeed, this discrepancy be-
tween the CREF's of the same interaction case is directly
dependent on the square of the ratio of the associated
minirnurn and maximum contact separations d,&„„. This
ratio is more pronounced for the 33-molecule dodecahed-
ron and the 55-molecule icosahedron than for the 13-
molecule icosahedr on and accounts therefore for the
enhanced gap between the limiting-case potential CREF's
for the two larger clusters.

In Table I the CREF's corresponding to the rotational-
ly averaged potentials are computed with d,&„„equal to
the circumscribed sphere diameters. Since these values
do not reAect the real average center-of-mass separations
at contact, the corresponding enhancements differ
significantly from the ranges given by the discrete cluster
calculations.

For the CREF's arising from the continuum-model ap-
proach, no dependence on contact separation is present.
This well-known result is due to the scaling property of
the long-range force' when retardation is neglected. '

For this reason, dependence upon d,&„„ in this case only
occurs through the capture radius (b =tlld, &„„).

The dimensions of the molecules comprising the bulk-
matter particles are not negligible compared to the parti-
cle diameters. Therefore, the collision frequencies, or
capture radii, calculated with d,&„„equal to the cluster
circumscribed sphere diameters, are inconsistent with the
values found from the microscopic model as described
above. The fractional deviations of the collision rates for
the continuum model from the discrete cluster rates are
75%, 30%, and 40%, respectively, for the 13-, 33-, and
55-molecule clusters. The fall from 75% to 40% for the
icosahedral structures tends to reAect the expected con-
vergence of the molecular-based model for large clusters
to the macroscopic approximation. The smaller 30% de-
viation indicates that the dodecahedron is closer to a
sphere than the icosahedron, corresponding to the fact
that the dodecahedron has more vertex molecules (20) in
contact with its circumscribed sphere than the icosahed-
ron (12).

An averaged d,&„„can be computed in exactly the
same way that the averaged potential was computed by
weighting the different d,&„„according to the frequency
of occurrence of the different axes of interaction. Thus,

(dclust )fivefold+ ( ctust )threefold
clust 32

Here, the subscripts correspond to the respective axes of
symmetry along which the molecular interactions are
computed for each pair of clusters. This new value leads
to new CREF's for the rotationally averaged potentials
that can be compared with the CREF's for the continu-
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TABLE II. Collision parameters based on corrected contact separation, (d„„„)using Eq. (1):
values reproduced from Table I. Parameters obtained from corrected values appear with an asterisk.

Interaction model

13-molecule cluster
Average
energy LH

33-molecule cluster
Average
energy LH

55-molecule cluster
Average
energy LH

(d„„„)(A)
4 (10 ' cm'/sec)
Capture radius (A)
CREF

18.11
27.05
3.061*

15.58
26.96*
33.01*
4.491

21.74
37.41
2.743*

22.59*
25.03*
40.15*

3.159

23.40
44. 10

3.006*

25.44*
26.78*
47.18*

3.440

um spheres. Conversely, those averaged contact separa-
tions can be used in the macroscopic model to yield new
collision rates and capture radii.

The collision parameters obtained from this approach
of using (d„„„)are presented in Table II; the new
corrected values appear with an asterisk and the values
reproduced from Table I are also given. From these re-
sults, a more coherent comparison between macroscopic
and discrete-molecular models can be drawn. Now, the
rotationally averaged potential CREF's are within the
range imposed by the limiting-case potentials (see Table
I). This picture corresponds more closely to the picture
of a diameter that is averaged over the effective-
interaction contact diameters, rather than that of the
sphere circumscribing the cluster.

The new fractional deviations between the collision
rates, cross sections, and CREF's based on the macro-
scopic approximation with those from the discrete model
are, respectively, 49%, 15.1%, and 14.4% for the 13-,
33-, and 55-molecule clusters' interactions. This time a
real convergence is observed as the clusters increase in
size. A greater relative deviation might have been ex-
pected between the 33-molecule and 55-molecule cases,
but, as mentioned above, the fact that the dodecahedral
structure is closer to a sphere than the icosahedral struc-
ture accounts for the small improvement.

III. SUMMARY AND CONCLUSIONS

The collision rates, or collision frequencies, of three
pairs of icosahedral or dodecahedral identical molecular
clusters of increasing size have been calculated via several
approaches that take into account effects of the non-
spherical shape of the clusters. Intercluster potential en-
ergies given in paper I are shown to affect the collision
rates primarily at cluster separations greater then 2 A
where effects of overlap of surface atomic electrons usual-
ly can be neglected. As shown in paper I, at such separa-
tions the intercluster potentials are less than 10 ' erg
and therefore sufticiently weak that little or no perturba-
tion to the cluster structure will occur (paper I showed
cluster binding energies greater than 2 X 10 ' erg).

Thus, the relatively simple induced-fluctuation-type force
(van der Waals) is adequate for collision-frequency calcu-
lations independently of other reaction or accommoda-
tion considerations.

Collision rates have been calculated for clusters in two
fixed relative orientations. In this manner, the angular
variability of the interactions is suppressed, permitting
the rates to be calculated for spheres. These calculations
showed that the considerable differences in center-of-
mass separations at contact (or hard-sphere radii in a
given orientation) are largely compensated by the
differences in the long-range interaction potentials that
are also orientation dependent with the result that the
two rates differ by less than 1%. By computing a rota-
tionally averaged potential energy and treating the clus-
ters as true spheres whose diameters are those of the
spheres circumscribed about the clusters, the rates were
shown to agree closely with the orientation-dependent
rates.

Computing the collision frequencies of free-molecular
aerosols is relatively well defined for spherical particles
and serves as a ' macroscopic limit" for cluster-collision
frequencies. To determine the convergence of the cluster
rates to the aerosol rates, comparisons were made for the
cluster types and collision approaches of these papers.
The cases of 13-, 33-, and 55-molecule clusters examined
here showed that while the smallest cluster-collision rate
differed from the macroscopic by about 50%, the rates
for the larger two cluster pairs decreased to less than a
15% difference from the rates for spheres. Since the
sum-over-pair interaction energy with the Lifshitz-
Hamaker constant used in these studies represents only
the upper limit on the magnitude of the interaction ener-
gy, the prospects are good for improved agreement with
the use of the complete expression for the Lifshitz —van
der Waals interaction energy. '
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