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In recent years, gas-borne atomic and molecular clusters have emerged as subjects of basic physi-
cal and chemical interest and are gaining recognition for their importance in numerous applica-
tions. To calculate the evolution of the mass distribution of these clusters, their thermal collision
rates are required. For computing these collision rates, the long-range interaction energy between
clusters is required and is the subject of this paper. Utilizing a formulation of the iterated van der
Waals interaction over discrete molecules that can be shown to converge with increasing numbers
of atoms to the Lifshitz —van der Waals interaction for condensed matter, we calculate the interac-
tion energy as a function of center-of-mass separation for identical pairs of clusters of 13, 33, and 55
molecules of carbon tetrachloride in icosahedral and dodecahedral configurations. Two different
relative orientations are chosen for each pair of clusters, and the energies are compared with ener-
gies calculated from the standard formula for continuum matter derived by summing over pair in-
teractions with the Hamaker constant calculated according to Lifshitz theory. The results of these
calculations give long-range interaction energies that assume typical adhesion-type values at cluster
contact, unlike the unbounded results for the Lifshitz-Hamaker model. The relative difference be-
tween the discrete molecular energies and the continuum energies vanishes for r*=2, where r * is
the center-of-mass separation distance in units of cluster diameter. For larger separations, the rela-
tive difference changes sign, showing a value of approximately 15%, with the difference diminishing
for increasing-sized clusters. We argue that the details of the results of these calculations indicate
that the deficiency in the continuum picture for small separations lies in the substitution of an aver-
aged picture of the interaction for what is intrinsically the cumulative energy of discrete interac-
tants.

I. INTRODUCTION

Gas-borne clusters spanning the range from atomic to
macroscopic dimensions enter questions as diverse as
condensed-matter research, air pollution, and environ-
mental chemistry, and many areas of technology from
combustion to vapor deposition. Wherever they appear,
the evolution of their mass distributions is dependent
upon their thermal-collision rates. However, the depen-
dences of cluster-collision rates on their physical proper-
ties apparently has not been systematically treated. The
development of a framework for calculating both the
evolving physical properties that affect cluster collisions
and the utilization of those properties - in practical
collision-rate calculations raises questions of intrinsic
physical interest as well as of importance for their appli-
cations to modeling cluster behavior in many different
fields.

In the simplest example, which is the subject of these
papers, a cluster of n monomers C „has a unique
configuration and coagulates with a cluster of m mono-
mers C to produce a cluster of p =n+m monomers,
C „+C ~C, with the population balance equations
written as

d[C ] =
—,
' g g k„[C„][C ]—[C'„]g k, [C, ] .

n m i=]
m+n =p

Here, the brackets [ ] denote concentration, t is time, and
k„ is the rate of the coagulation reaction. The coagula-
tion rate can be divided into two factors: a sticking prob-
ability and a collision rate which is the subject of the fol-
lowing paper. '

To understand what might comprise the minimal set of
factors required for calculating k„, a comparison with
the limiting cases that "bracket" clusters is helpful. The
reaction rate for two interacting gas molecules is depen-
dent upon a number of factors, including physical struc-
ture, temperature, the presence of a third body, and elec-
tronic states. In contrast, in the "macroscopic" limit,
which is here taken to be ultrafine aerosol particles in the
free-molecular transport regime (defined as particles of
radii much smaller than gas mean free path), the depen-
dences of the rate are generally much simpler than for
molecules for several reasons: First, "condensed" bodies,
even in the nanometer range, possess a large number of
vibrational modes which readily thermalize the collision-
al kinetic energy, as demonstrated by simulation calcula-
tions. Thus, in this case the collisional energy is
effectively dissipated into heat so that particle-particle
collisions are inelastic. The onset of this characteristic of
irreversibility in aerosol collisions has been proposed in a
dynamically based definition of an aerosol system as op-
posed to the many functional definitions in the litera-
ture. Second, there is always an attractive interaction en-
ergy between condensed bodies, separated by a vacuum,
resulting from the collective effects of long-range, or van
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der Waals, intermolecular potentials. This energy has
the dual effect of enhancing the collision cross section of
the particles beyond their geometrical cross section ' and
of overriding the short-range repulsion that may develop
as the surface atoms of the particles approach. Finally,
for the overall thermodynamics of the aerosol system, the
unification of the two particles lowers the energy of the
system by reducing the surface area. For sufficiently
small aerosol particles where other inAuences are not
significant, experimental evidence' confirms the theoreti-
cal indications that the binary reaction constant analo-
gous to k „ is a coagulation rate and must be greater
than the value given by the particles' geometrical cross
sections alone, contrary to the case for colliding mole-
cules.

Since clusters span the microscopic-macroscopic scale,
their collisions are expected to show a corresponding
range of characteristics. In the most general case, and
particularly for very small clusters, questions of the
disposal of collisional energy, rearrangernent following
collision, evaporation, and other questions are present
which require treatment by simulation methods and are
currently under investigation. "However, there are some
important limiting cases for which these questions are
secondary. One example is postcritical clusters in critical
nucleation' where only clusters larger than a critical size
are thermodynamically stable. The second case is where
no barrier to nucleation exists such as for low-vapor-
pressure monomers (i.e., where a molecular monomer can
be thought of as the critical nucleus). In both cases, the
interacting species resemble an aerosol in the sense that
their coagulation rates k „are essentially the same as
their collision rates. Thus, determination of the collision
frequency alone is useful for a significant range of gas-
phase clustering phenomena.

In collisions of thermalized, spherical aerosol particles,
calculations show that the total collision rates' are
determined by the interaction potential energies of the
particles at surface-to-surface separations greater than

0
the 4-A range where orbital overlap effects do not arise.
Consequently, only the long-range components of the in-
teraction energy need be considered for collisions. For
molecules' these energies arise from van der Waals in-
teractions and the interaction of the permanent moments
of the molecules; for ultrafine particles, the permanent
moments are assumed unimportant, leaving only the van
der Waals —type interactions, whether they be the simple
pairwise sum over intermolecular interactions or the col-
lective interactions first discussed by Lifshitz, ' to con-
tribute to the long-range interaction potential energy.

The subject of this paper is the long-range potential be-
tween clusters. We will use a formulation of this energy
that interpolates between the van der Waals energy for a
pair of molecules and the collective energy that is ap-
propriate for condensed-matter interactions. Calcula-
tions for a model case, identical pairs of (CC14)„clusters,
will be performed and results compared with computa-
tionally simpler bulk-matter calculations. The domains
of usefulness of the cluster and bulk computations will be
discussed and practical computational approaches will be
pointed out. While the immediate objective of these cal-

culations is the determination of the energies required for
calculating gas-phase collision rates k „, the results are
general in nature and should prove useful not only for
describing the dynamics of gas-phase clusters but also in
other cluster interaction questions and in more general
questions where matter appears in quantities too small to
be treated as "condensed" or "bulk" and too great to be
adequately described as discrete atoms or molecules.

II. A CONSISTENT THEORY
OF THE LONG-RANGE POTENTIAL

BETWEEN CLUSTERS

While, in general, permanent moments are characteris-
tics of most molecules, in this treatment we will not take
their effects into consideration. This simplification is
predicated upon the assumption that these moments, as
well as characteristics of geometry, manifest themselves
primarily in the particular structures of the cluster, a
matter which is not the focus of these papers. Externally
to the cluster, the aggregate effect of the permanent mo-
ments is largely cancelled due to the internal arrange-
ment of the rnonomers. Thus, the fluctuating
dipole —induced-dipole or London —van der Waals in-
teraction is the lowest-order interaction energy that
remains. For this reason, a description of this interac-
tion, which applies with equal validity across all levels of
atomic and molecular aggregation, is required and is the
subject of this section, which in turn is the basis for the
results of this paper.

A. Pair interactions

where e and I are the charge and mass of the electron, h
is Planck's constant, and R is the separation of the
centers of the two charge distributions. f0„' is the oscilla-
tor strength of the ith molecule for the dipole transition
between its ground state 0) and excited state ~(n ) and
coo'„' is the characteristic frequency of that transition.

Expressing the (isotropic) polarizability by

e fon
a;(co)= g (.)2 (2)

the resultant intermolecular energy is given as

b,E(R)=— 3h
2 6 J a, (ig)a2(ig)dg

(2vr) R

C6
(4)

where C6 is defined by this expression and is the charac-

If perturbation theory is applied to solve a Schrodinger
equation whose Hamiltonian is the lowest-order term in
the expansion of the electrostatic interaction energy of
two neutral atomic or molecular charge distributions'
separated by a distance R, then the resulting "dispersion"
energy is

4 (&) (2)
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teristic parameter for the intermolecular van der Waals
interaction.

If the assumption is made that the attractive interac-
tion energy of aggregates of atoms or molecules can be
computed as the pairwise a summation over the interac-
tion energies of their constituents, ' then the attractive
energy of two bodies A and B can be expressed as

(S)

R —(a +b)
R —(a b)— (6)

where the constant 3~z is called the Hamaker constant
and is defined as

A~~ =m n~n~C6H 2 (7)

If the molecular species in A and B differ, C6 is modified
accordingly.

While Eq. (6) is mathematically simple, it suffers from
two general defects: (1) As R ~(a +b), b,E,"h ~—oo

rather than converging to a typical adhesion energy and
(2) the integration in Eq. (S) does not take into account
the collective effects that are operative in condensed
matter (as discussed, for example, in Refs. 7 and 17).
Thus, this treatment is inherently inconsistent and, as
written, inappropriate for utilization in describing the in-
teractions of clusters, even if rendered as a discrete sum-
mation.

B. Collective interactions

where R is the separation distance between the volume
elements d ~~ of 3 and d ~~ of B, C6 is the van der Waals
constant from Eq. (6) and n„,n~ are the molecular num-
ber densities of volumes V~ and V~. For the case of two
spheres of radii a and b whose center-of-mass separation
is R, the result of the integration is

wa 2ab 2abgH

R —(a +b) R —(a b)—

e~(0) —1

e~(0)+1

3P e„(ig)—1+
8~ [{277) kT]/h eg l + 1

e~(i g) —1

e~(ig )+ 1

Here, T is temperature, e„(ig) and e~(if) are the dielec-
tric constants on the imaginary frequency axis, and k is
Boltzmann's constant. While this replacement is general-
ly valid for half-spaces, for spheres it provides a lower
bound on the magnitude of the Lifshitz —van der Waals
energy ' when used in Eq. (6).

Though the replacement of Eq. (7) by Eq. (8) is helpful
in accounting for the collective intermolecular interac-
tions characterizing condensed matter in the continuum
limit, it does not indicate the manner in which the
summed discrete interactions approach the condensed-
matter interaction energy with increasing numbers of
molecules, the question which is of interest for treating
cluster interactions. This issue has been addressed direct-
ly by Langbein, originally using a Drude oscillator
model for the atoms. In this computation, the oscillators
are coupled via the dipole coupling tensor

1
IJ l J 7

where r; is the location of oscillator i and the Hamiltoni-
an for the coupled system is

(10)

Here, u; and ~,. are, respectively, the oscillation ampli-
tude vector and unperturbed frequency of oscillator i.
The dispersion energy of this system is the difference be-
tween the zero-point energies of the coupled and uncou-
pled system of oscillators:

The long-range interaction energy of condensed bodies
is computed analogously to that of the intermolecular en-
ergy discussed above. For condensed matter, the pertur-
bations of the electrostatic interaction of the two bodies
are their zero-point and thermal Auctuations. ' ' The in-
teraction energy arises from the dissipation' of these

fluctuations

and is dependent upon the frequency-
dependent dielectric constants e(co) of the bodies without
direct reference to atomic or molecular structure. Unlike
the pair-summation method, this approach intrinsically
accounts for the collective effects that are present in con-
densed matter while not resolving the problem of diver-
gence of the potential at particle contact.

The incorporation of the collective effects into the
long-range force can be utilized to arrive at an alternative
form for the Hamaker constant which is based strictly
upon the properties of the interacting media. For in-
teracting half-spaces A and B separated by a vacuum, the
Lifshitz-Hamaker constant A zz can be expressed as

where, here, 0, are the coupled eigenfrequencies. Again,
using perturbation methods, Langbein gave a series solu-
tion to this problem and showed that by assuming the
standard Clausius-Mossotti relation between the dielec-
tric constant and the molecular polarizability, he could
derive the Lifshitz energy. '

This formulation of the coupled interaction energy,
which reduces to the pair-interaction energy in the limit
of two oscillators (or molecules) and to the condensed-
matter form in the limit of a highly coupled system, sug-
gests that it is the proper framework for calculating clus-
ter interaction energies where a limited number of oscilla-
tors interact. For the coupling of discrete oscillator
units, the total energy may be shown ' to be expressed

(bE&z )„,= f dglnIdetr I—a(ig)T]I, (12)
8~
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where

a(ig)=
u(~) 0

0 ~(B) (13)

is the polarizability matrix for the system and I is the
3lV~ X 3X& identity matrix, with X the number of mole-
cules in cluster x. Each major submatrix a( ' is diagonal
in the 3 X 3 polarizability tensors, each of which corre-
sponds to a distinct molecule in cluster X. The dipolar
coupling tensor

T( A) T(C)

T(C) T(B) (14)

consists of the submatrices given by Eq. (9) where the in-
dices are such that T' ' couples only molecules in 2, T' '

couples only molecules in B, and T' ' couples the mole-
cules in the separate clusters. The cluster interaction en-
ergy AEzz is given as the difference between the energy
of the fully coupled clusters and the sum of the individual
cluster self-energies in isolation of each other [i.e., Eq.
(12) with T' ' set to 0],

6
6 o.

n —6 r

n

The programs for computing Eqs. (12) and (15) were
written in FORTRAN for an IBM-3090 computer located
at Texas A K M University. It is adapted for IBM main
frames because it uses IBM-SL mathematical subrou-
tines. These subroutines, along with IMSL subroutines
also utilized, are vectorized along with the rest of the
code during compilation of the FOR.TR.AN source file.
Throughout, double precision is employed for all real
variables.

For both the purposes of deriving interaction energies
for clusters that assume physically realistic forms and for
determining the minimal energy configurations of the
clusters (assuming no internal degrees of freedom for the
purposes of this calculation), a short-range repulsive in-
termolecular potential has been used. A Lennard-Jones
(n-6) type potential has been taken with the following
form (Ref. 16, pp. 28 and 29):

C6 C„V(r)= — +
6 n

~E~a =(~E~a 4.~

—(~&~+Fr) . (15)

The energy as represented by Eq. (15) is the basis for
computing the long-range cluster interaction energies in
this paper. While it is a relatively crude representation
for general intracluster properties, for intercluster attrac-
tion, it should be realistic provided no collective states,
such as conduction bands, form within the clusters.

III. LONG-RANGE INTERACTION ENERGY
CALCULATIONS: CC14 CLUSTERS

AS PROTOTYPE

A. Molecular parameters

Carbon tetrachloride was chosen for the calculations of
this and the subsequent paper on the collision frequency
for several reasons: (1) The approximately spherical sym-
metry of the individual molecules reduces the need for in-
cluding permanent moments and molecular structural
features in energy calculations and structures of the clus-
ters. (2) An extensive literature on the substance facili-
tates accurate polarizability and dielectric-constant
determinations from spectroscopic data. (3) Unlike the
rare-gas atoms for which calculations of idealized cluster
systems are often performed, a molecular species
possesses infrared and longer-wavelength polarizability
which can materially aA'ect collisions, the immediate ap-
plication for these studies.

Quasispherical clusters are used as the subject of this
study to facilitate comparison between microscopic and
macroscopic calculations of energy and collisions. Since
we want to compare cluster energy calculations with the
results from Lifshitz theory, results must be available
from that continuum theory in a geometry that corre-
sponds to the geometrical arrangement utilized for the
clusters. For the collisions, exact transport formulas that
can be used as the basis for approximate treatment of
cluster collisions are available only for spheres.

Vo

3

6 24

The unknown quantity C24 can be found from the
knowledge of C6 and o. , which are empirical quantities.
Using the dynamic polarizability in Eq. (3) gives the
value C6=3. 110X10 erg cm . The value of o. , which
can also be considered as the spherical molecule diame-
ter, is obtained from the literature as 5.77 A. At con-
tact the relation C24 =(C6o' )/4 holds, which yields

(C )' =1 554X10 (ergcm )'

From this value and C6, the value of
~ Vo~ is found to be

6.321X10 ' erg, which is comparable to well depths
found in the literature. In one case, '

i Voi =4.418 X 10 ' erg
0

for o. =5.753 A and in another,

~ Vo~ =8.384X10 ' erg
a

for o.=5.806 A. Thus, the computation of C6 from the
dynamic polarizability is entirely consistent with data
from other sources.

In a direct check on the computational procedure em-
ployed here, Eq. (12) as formulated in the general case for
utilization in cluster coupling was computed for the case
of a pair of interacting molecules. A deviation in C6 of

where r is the separation distance between the centers of
mass of the two molecules, n is a variable integer, Vo is
the extremum of the potential, and C6 and C, are the
corresponding potential constants, with C6 given by Eq.
(3). Most recently, CC14 has been referred to as having a
(24-6) potential so that

C6 C246+
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less than 0.25% from the value given by computing Eq.
(3) was found implying only a 0.01% difference between
the resultant recomputed C24 and the value computed
above.

In the following calculations, the r repulsive inter-
molecular potential is assumed to be pairwise additive for
an assembly of N molecules, unlike the coupling for the
van der Waals attraction. Therefore, the repulsive part
of the total interaction of such a system is given by

Outer, first-layer
monomers

Origin point

Compressed
central monomer

JL

2I'

N 1V { 24«I=& & 24i)jij=i ij
~. . . r" (18)

where r; is the separation between the centers of mole-
cules i and j. In the case of an interaction-energy compu-
tation between two molecular clusters A and B, only the
terms coupling pairs, with one molecule located in A and
the other one in B, need to be summed.

FICx. 1. Segment from 13-molecule icosahedron illustrating
notation. Distance between first-layer neighbors, 2r, is variable
used in search for minimum-energy configuration of cluster and
r' is radius of first-layer molecules for the resulting structure.
For 13-molecule icosahedron, first-layer molecules are also

0
outer-layer molecules so that r'=R =2.885 A. R. is half the
center-of-mass separation between molecules in an isolated pair.

B. Structure of the clusters

In order to assemble the most compact clusters feasible
for comparison with spheres described via a continuum
picture of matter, we selected the 13-molecule icosahed-
ron as the starting point. It consists of a central molecule
with 12 first-layer molecules arranged about it at equal
distances from each other. Around this first layer, a
second layer of molecules was assembled in two ways. In
the first arrangement, a 33-molecule, dodecahedral clus-
ter was constructed by placing a molecule in contact with
each of the 20 triplets of first-layer neighbors. In the
second arrangement, the second layer was assembled
around the icosahedral core by adding one molecule at
the top of each of the 12 first-layer elements (i.e., on the
straight line passing through the centers of the core and
first-layer molecules) and one in contact with each of the
20 pairs of first-layer neighbors to give a 55-molecule iso-
sahedron. Experimental measurements of the size distri-
butions of clusters have pointed to the existence of "mag-
ic" numbers corresponding to the numbers of molecules
in particularly stable clusters. The numbers of elements
required to build icosahedrons (13,55, 147,309,. . . ) were
found to be magic, confirming the strong stability of
icosahedral structures. The 33-molecule dodecahedron is
used because it provides a high-symmetry cluster inter-
mediate between the two lowest icosahedrons for com-
parison with continuum calculations.

The configuration of greatest stability, or lowest in-
teraction potential energy ( not free energy), is obtained
by taking account of the many-body induced polariza-
tion, Eq. (12), which lowers the potential along with the
positive, repulsive potential of Eq. (18). In the three
cases, the outer cluster molecules are assumed to have the
same size as if they were isolated because they are the
ones that are the least affected by van der Waals force
compression. Thus, for carbon tetrachloride, the outer
hard sphere elements will be assumed to measure
2R =5.77 A in diameter. Then half the distance between
first-layer neighbor molecules is chosen as the packing
variable. It is noted r and represents the unit distance
factor which the normalized coordinates of the 13-
molecule icosahedron vertices have to be multiplied to be

1. The 13-molecule icosahedron

A molecule is first located at the origin point while the
twelve others are distributed at the vertex sites of the
icosahedron, with the real scale factor r varying by in-
crementation: The packing variable r is initialized to the
value R, that is to say, half the distance at contact be-
tween outer layer molecules, and then incremented before

'151.5—

150.5
~ ~

149.5-

148.5

T

77.5
77.1

76.7-

76.3-

75.9
?5.5

55 molecule icosahedron

~ ~ ~ ~

33 molecule dodecahedron

25.2

24.8

24.4

24.0

23.6
5.65 5.70

~ ~ ~ ~ ~

13 molecule icosahedron

5.75 5.80 5.85 5.90 5.95 6.00 6.05
packing variable (A)

FIG. 2. Absolute value of cluster self-energy from Eq. (12) as
a function of packing variable r for 13-, 33-, and 55-molecule
carbon tetrachloride icosahedral and dodecahedral clusters.

expressed in real scale. For every packing variable step,
the locations of the molecules within the cluster are
determined from the geometrical constraints defining the
clusters. Once the spatial coordinates of a cluster's mole-
cules are given, the self-energy is then calculated on the
basis of Eq. (12) to which the repulsive potential given by
Eq. (18) is added and for 55-molecule cluster results in a
modified radius r' for the first-layer molecules. See Fig.
1.
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each potential-energy computation until the minimum
has clearly been reached indicating the most stable pack-
ing. Due to the geometry defining the cluster, the central
sphere undergoes compression even though the outer
molecules are not in contact with one another. Figure 2
shows the absolute value of the cluster energy versus the
distance between vertex-center neighbors for the 13 car-
bon tetrachloride element icosahedron. It exhibits the
energy extremum at

E;„=—25.06 X 10 ' erg

for a separation distance between two close vertex mole-
0

cules of 2r =5.91 A. With the assumption above con-
cerning the size of the outer surface molecules, the radius
r ' of the molecules in the first layer has the value
R =2.885 A giving a diameter of 5.47 A for the central
sphere molecule, representing a 5.17% compression in ra-
dius.

2. The 33-molecule dodecahedron

The same process is used, but the way the packing vari-
able is incremented requires modification. Because of the
addition of a second layer of rnolecules upon the 13-
molecule icosahedron, the 33-molecule dodecahedron
should increase the van der Waals forces packing around
the central sphere molecule, therefore decreasing the dis-
tance between first-layer neighbors when reaching
minimum energy. So this time, for each energy computa-
tion step, the packing variable r must be decremented
from a value only slightly greater than the one corre-
sponding to the most stable packing in the 13-molecule
configuration. While the locations of the 12 first-layer
molecules are still determined by the simple prescription
for the icosahedron vertex coordinates, the coordinates of
the 20 second-layer molecules are somewhat more com-
plex because they are derived from the locations of three
molecules in the first layer. Figure 2 displays the self-
energy of the 33-molecule dodecahedron. It reveals the
energy extremum at

E;„=—77 38X10 ' erg

for an inner-layer neighbor separation distance of
2r =5.88 A. Since this distance is greater than 2R, for a
stable packing, the inner-layer neighbor elements are not
in contact with one another, so they undergo no compres-
sion according to the above assumption. Because of the
assumption, too, the graph shows a slight curve discon-
tinuity at 2r =5.77 A. With r =2.94 A and r'=2. 885 A,
the diameter of the central sphere is 5.415 A, which
represents a reduction in radius of 6.16%%uo.

3. The 55-molecule icosahedron

As in the preceding case, to identify the minimal-
energy structure of the 55-molecule icosahedron, the
packing variable r was decremented for each stage of
computation. In this case, the final configuration was not
a true icosahedron due to a misalignment of the three
outer-layer elements with the 13-element icosahedron
below. The results for this calculation are displayed in

Fig. 2. As for the dodecahedron, the discontinuity at
2r =5.77 A is due to the assumption of no modification
of molecular radius for the outer-layer molecules. The
minimum cluster self-energy is found at

E;„=—150.95 X 10 ' erg

for an inner-layer neighbor separation distance of
2r =5.74 A. Since this 2r value is smaller than 2R, r'
here equals r, and the first-layer molecules undergo a
slight reduction due to compression. Their diameter is
decreased by 0.52%, whereas that of the central sphere is
found to be 5.18 A, a reduction of 10.26%.

C. Interaction energies for pairs of clusters

1. Choice of orientations and aueraging

The absence of spherical symmetry for real clusters
necessitates the selection of specific relative orientations
for which interaction energies are to be calculated. Since
a primary objective of this study is the determination of
the approach of the long-range interaction energy of clus-
ters to that of spheres treated as bulk matter, cluster rela-
tive orientations are used which bracket the possible
range of interaction energies. Thus for each type of clus-
ter, the only cases of interaction orientation that are stud-
ied are the "extreme" mutual configurations which in
terms of center-of-mass separation distance at contact are
those orientations at which the separations are greatest
and least. However, any mutual configuration for which
the clusters' outer molecules would fit into one another at
contact is ignored because such a case corresponds nei-
ther to any possible interaction of distinct, macroscopic
spheres nor to a configuration relevant to computations
of total collision frequency.

For the icosahedrons, energies are computed for two
relative orientations that can be described as mirror sym-
metric. The first orientation brings the clusters together
along their threefold axes of symmetry to provide the
orientation giving the distance of closest approach of the
centers of mass. In the second case, the clusters ap-
proach along their fivefold axes giving the greatest
center-of-mass separation distances with only one mole-
cule from each cluster coming in contact. For the first
case, two triangles of molecules face each other directly
in the 13-molecule example and six elements face each
other in the 55-molecule example.

In the same way for the 33-molecule dodecahedron, the
threefold and fivefold axes in mirror symmetry are uti-
lized. This time, the clusters' centers of mass are closer
at contact when interacting along their fivefold axis,
where pentagons of molecules face each other; in con-
trast, the dodecahedrons are more distant when facing
each other along their threefold axis where single mole-
cules only approach each other.

Due to the dependences of the interaction energies on
the relative orientations of the discrete clusters, compar-
ison with the Lifshitz-Hamaker result for spheres re-
quires an averaging of the cluster energies. The objective
of the following approach to averaging is intended to pro-



43 CLUSTER-COLLISION FREQUENCY. I. THE LONG-RANGE ~ ~ ~

TABLE I. Cluster diameters.

5489

13 33

r(A)
Type
d,i„„(A)

13S3
14.71

2.957
13S5
17.02

33S3
23.99

2.942
33S5
20.25

55S3
23.77

2.872
55S5
28.21

~Eav (2 ~+threefold+ 2~+svefold)~ (19)

e ne t e center-of-The " iameter" of a cluster, used to define th
mass separation at closest approach of the clusters is7

vide a rough approximation for the sake of comparison
and not necessaril as the b
tion for the efFects of orientationally dependent long-
range interactions on collision dynamics Fics. or eac' o" the
three cluster interactions a rot t 11thr ', a iona y averaged poten-
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2. Discrete-cluster interaction-energy results

Cluster interaction energies were calculated for the six
orientations discussed above at a sequence of separations
adequate to determine a spline fit of order 7 to the ener-
gies. Figures 3(a) —3(c) display the values that were
determined with the relative orientations as discussed
above indicated on the graphs. On each of these graphs
the dotted lines that start at the center-of-mass separa-
tions d,&„„, as given in Table I, represent the two
limiting-case energies computed from eqs. (12)—(15) with
the rotationally averaged potential generated from them;
the solid lines correspond to the potentials obtained from
Lifshitz theory via Eqs. (6) and (8).

Several observations can be made on the energies
graphed Figs. 3(a)—3(c). At contact, the interactions
along the threefold axes for the iosahedrons and fivefold
axis for the dodecahedron are much stronger than the en-
ergies at contact along the other axes where only single
molecules face each other. The contact-energy difference
between the two types of orientations increases with the
number of molecules facing one another, which is to be
expected. Next, consider cluster interaction energy for
center-of-mass separations greater than the smaller of the
two values of d,~„„given in Table I for each pair of clus-
ters. The interaction energy for the clusters in the orien-
tation with the smaller d,&„„value decreases sufficiently
rapidly with increasing separation that when it is equal to
the larger of the d,&„„values, the energy is smaller than
the contact energy for the orientation with only single
molecules facing each other. This is due to the rapid de-
crease in energy with distance of separation that leaves
the nearest molecules as dominating the interaction for a
given center-of-mass separation. Finally, at relatively
long range, the two interaction potential types converge
on each of the three graphs: If we take r * as the center-
of-mass separation distance in units of the diameter of ei-
ther cluster in each pair, then the two energy values differ
by less than 15% for r*=1.2 and less than 9% for
r*=1.3. This observation is in agreement with the pic-
ture that clusters lose their discrete-molecule interaction
aspect as they become sufficiently removed from each
other.

3. Macroscopic-sphere interaction

For the purpose of comparing the interaction energies
of the clusters of discrete molecules with energies based

upon a continuum model of the clusters, a macroscopic
sphere of radius Do which approximates a cluster is
defined as that sphere which circumscribes the cluster;
Do is equal to the larger of the two values of d,i„„ for
each set of clusters in Table I.

While a temperature-dependent form of the Lifshitz-
Hamaker constant, Eq. (8), is expressed here for correct-
ness, its value for carbon tetrachloride is essentially the
same as for the zero-temperature limit. For cases in
which e(iO)&e(i2rrkT/A), the finite-temperature form of
Eq. (12) (see Ref. 24, p. 37) must be employed.

The number densities used to compute the dielectric
susceptibilities from the dynamic polarizability were
consistent with the packing of the clusters considered
here. For each of the three cluster structures studied, the
number density was found by dividing the number iV

&
of

molecules within the cluster by the volume
V=(4ir/3)(DO/2) of the corresponding circumscribed
sphere. Thus, because of the variations of such ratios,
the dielectric and Lifshitz-Hamaker constants were found
to have values somewhat different from the one found for
the liquid phase at normal temperature and pressure.
Table II presents these data.

For the purpose of comparing the Lifshitz-Hamaker
potential with the microscopic potential, the rotationally
averaged potential based upon discrete interactions is as-
sumed to approach most closely to the macroscopic case
while best reAecting the exact energy. Therefore, for
brevity, it will be referred to as the discrete potential.
Referring again to Figs. 3(a)—3(c), at very short range,
the Lifshitz-Hamaker energy is far from the discrete po-
tential and is a manifestation of the divergence at contact
implicit in Eq. (6). At longer range (1.5(r" (2),
continuum approximation leads to energies close to the
discrete ones, and then matches them around r ' =2, and
subsequently slightly underestimates them, as is antici-
pated by the fact that it is lower bound, as mentioned
above. Quantitatively, the underestimate for r*)2 is by
less than 15% for r going to infinity. This is shown in
Fig. 4, which represents the relative difference between
the Lifshitz-Hamaker and discrete potentials
[b, =(Ei H E,„)E,„]vers—us the ratio r*=D/Do, where
D is center-of-mass separation and Do varies according to
the individual case as given in Table II. The relative
match of the two potentials at long range comes into
agreement again with the fact that clusters, by losing
their discrete aspect when remote enough from each oth-

TABLE II. Parameters used for the computation of the Lifshitz-Hamaker potential.

Liquid at
20'C'

13-molecule
cluster

33-molecule
cluster

55-molecule
cluster

Circumscribed sphere
diameter Do (A)

Number density (nm ')
Dielectric constant e

(10' erg)

6.23
2.238
9.919

17.02
5.037
1.928
6.698

23.99
4.564
1.817
5.572

28.21
4.679
1.843
5.838

'Bulk properties are given for comparison; cluster structures were chosen soley to facilate studies of
current and following papers so there is no reason to expect cluster physical properties given in this
table to converge to the properties of the bulk substance.
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FIG. 4. Relative di8'erence 6= (ELH —E,„/E„, between
continuum-model attractive energy ELH according to Eq. (6)
and rotationally averaged energy E„ from Eq. (19) for discrete
clusters plotted as a function of nondimensionalized center-of-
mass separations D/Do.

IV. CONCLUSIONS AND IMPLICATIONS

The fact that the energy following from the use of the
Lifshitz-Hamaker constant in Eq. (6) exceeds the iterated
induced-dipole energy for r* & 2 indicates that at close
range the approximation implicit in the macroscopic, or
continuum picture, fails for small clusters. At very close
range where orbital overlap enters, the omission of the
repulsive interaction should play a role. However, the

er, can be treated as bulk-matter spheres. This macro-
scopic view is confirmed by the observation that at quite
long range (r' )4), the larger the interacting clusters are,
the closer their Lifshitz-Hamaker potential matches the
exact potential.

fact that discrete and continuum potentials become com-
parable at the same scaled separation, as opposed to the
same actual distance, indicates the deficiency in the con-

0
tinuum picture for separations (Do+ I A)/Do &r*(2
lies less in the absence of the repulsive term than in the
substitution of an averaged picture of the interaction for
what is intrinsically the cumulative energy of discrete in-
teractants. Another way of viewing this energy is to con-
sider the relative diff'erence curves of Fig. 4 as functions
of actual, not scaled, separation. In that case, the conver-
gence of the discrete to the continuum energies occurs at
distances that increase with the size of the cluster, there-
by indicating that, prior to the apparently asymptotic
convergence of discrete to continuum for r *)4, the rela-
tion of separation to particle dimension is important.

The meaning of these energy calculations for describ-
ing physical results is dependent upon application. Im-
plicit to what is calculated here is the interaction of
geometrically delimited media. Thus, no conclusions for
interacting half-spaces and adhesion energies for thick
films according to Lifshitz theory are clear from these
calculations. In contrast, for spreading films, there may
be a benefit from describing the leading edge of the film in
terms of discrete interactions, as is done here. Similarly,
in colloidal considerations, calculation of micellar long-
range interactions are very much subject to the questions
treated here. Applications of these results to collisions of
gas-phase clusters are treated in the following paper. '
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