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P relaxation at the glass transition of hard-spherical colloids
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The glass transition studied for suspensions of colloidal particles through dynamical light-
scattering experiments is analyzed within the mode-coupling theory for the supercooled liquid dy-
namics. These suspensions are treated as simple atomic systems with a hard-sphere interaction.
The scaling properties predicted by the theory are verified. The shape of the master function for the
P-relaxation region agrees well with the experimental data.

Suspensions of small colloidal spherical particles of
equal size show structural and dynamical properties that
have many features in common with those of simple
atomic systems. ' In particular, the interaction between
the particles is of very short range, and may come close
to that of an ideal hard-sphere system. While a simple
atomic one-component system rapidly crystallizes upon
supercooling, a colloidal system can be brought to a
metastable fluid or glassy state for several hours or days
without crysta11ization taking place. The dynamical
properties of the metastable fluid and glassy states can
therefore be studied. Recent dynamical light-scattering
studies in a colloidal system detected a glass transition at
a critical packing fraction @,=0.560+0.005, ' and the
results were in overall agreement with computer simula-
tions and theoretical calculations. ' In dynamical
light-scattering experiments one measures directly the
normalized intermediate scattering function Pq(t)
=F (t)/S, as a function of wave vector q and time t
Here S denotes the static structure factor. Since tb (t) is

of primary concern in mode-coupling theories of the glass
transition, and can be calcu1ated for a simple hard-sphere
system, light-scattering experiments on colloidal systems
seem to be an ideal way to quantitatively test the predic-
tions of this theory, without introducing any adjustable
parameters. In the present paper, we will analyze the ex-

perimental results along this line. A detailed discussion
of the experiment with a complete reference list can be
found in the preceding paper. "

The density-correlation function can be rewritten in
terms of a generalized longitudinal viscosity M (z) as

P (z)= —1/Iz —0 /[z+M (z)]] .

Here enters the well-known characteristic frequency of
the liquid dynamics: 0 =(q v /Sq)', where v denotes
the thermal velocity. The viscosity M can be decom-
posed into two parts: M (z)=O [m (z)+m (z)], where
m (z) describes the details of the liquid dynamics on mi-
croscopic time scales. It deals essentially with uncorre-
lated binary co11ision events. The most important part of

the theory is m (z), which describes correlated processes
and is expressed in terms of the correlation function it-
self:

m, (t) =
—,
' g V(q, kp)P„(t)P, (t) .

k, p

(lb)

The vertex V(q, kp)~0 is given by the structure factor
S, ' and is assumed to depend regularly on external
control parameters.

The self-consistent solution of the closed nonlinear
equations above gives an ideal ergodic to nonergodic
transition at a suSciently large packing fraction cp, .
Close to y, there appear two distinct relaxation process-
es, the a and P processes, for times t longer than a typical
microscopic time to. The a process exists only on the
liquid side and describes the decay of density Auctuations
on the longest time scale r . The P process exists on
mesoscopic time scales between the microscopic and a re-
gions. For this latter relaxation process the mode-
coupling theory makes detailed and nontrivial predictions
for the behavior of P (t) Explici. tly one finds'

Pq(t)=f'+h c g+(t/t ),
valid for

(lc)

to « t «7 (1d)

These formulas imply a scaling behavior in the specified
time region. The solution depends, through the correla-
tion scale c and the time scale t, crucially on the dis-
tance from the transition point measured via the separa-
tion parameter o.,

So the glass and liquid states correspond to o.~~O, respec-
tively. The scaling functions g+, where + refers to o.~~O,

respectively, as well as the parameters f' and h do not
depend on the packing fraction in leading order. The re-
sult in (lc) also predicts a strict factorization between the
wave vector and time or frequency dependencies. The
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functions g+ do not depend on q; the wave vector enters
only in the nonergodicity parameter f' and the ampli-
tude factor hq. The master functions g+ satisfy the equa-
tion'

+ —+gg+(g)+Xi f dec'~'g+(r)=0,
0

(3)

g+(~«1)= I/~' . (4a)

For long rescaled times one gets

g+ (r»1)= I /v'1 —
A, ,

g (r»1)= B~~, —
(4b)

(4c)

where B &0. The exponents a and b are given by the ex-
ponent parameter A, by way of

A, =I (1—a)/I (1—2a)=l (1+b)/I (1+2b),
where 0&a & —,

' and 0&b (1. The time scale in (1)
diverges algebraically with o'.

t =I/co =tolio i' (6a)

and the correlation scale shows a simple square root vari-
ation

where g =zt and r = t /t are rescaled variables. The
scaling function depends therefore only on the exponent
parameter A., which is characteristic for any particular
system. This parameter is given by various wave-vector
integrals over the coupling constants V in (lb), and can
be calculated numerically for some simple systems. The
solution of (3) is known for any value of A.. ' We can also
obtain explicit expressions for short and long rescaled
times. In the former case one finds

packing fraction one obtained the value

y, =0.52+0.01. ' ' The exponent parameter of the
hard-sphere system is A, =0.758 which gives the ex-
ponents a =0.301, b =0.545. ' The corresponding mas-
ter functions are shown in Fig. 1. The critical value of
the nonergodicity parameter fz was calculated and the
amplitude factor h was also obtained. ' Equation (3) is
scale invariant and does not allow one to fix to. The
latter depends smoothly on o., and characterizes the
overall scale for the dynamics outside the transient initial
motion. It depends on the properties of the solvent and
on the coupling of the particles via hydrodynamic in-
teractions. It has to be determined via matching of the
general P-relaxation solution to the transient dynamics.
The latter is not known in detail and therefore the one
number to enters the following analysis as fit parameter.
It connects the mathematical time with the physical one.
Let us emphasize here that P relaxation is used in the
present context as dynamics described by Eq. (lc). It
contains also the initial part of the a process, as described
by (7a); see below for a more detailed discussion.

Equation (lc) specifies an asymptotic solution for the
mode-coupling equations valid in the limit o.~0 but
t/t =r fixed. For o&0 one gets deviations from the
scaling law. For t ~to, they depend on all the tranisient
properties and cannot be calculated at present. For
t ~t ' the deviations are given by the master functions of
the e process. The results for the latter are not yet avail-
able, but the following general features are known. P~(t)
remains positive and therefore the von Schweidler asymp-
tote falls below the correlation function for large times.

(6b)

The behavior in (4a) implies that for short times on scale
t the relaxation is the same for the liquid and the glass.
For longer times, there is a qualitative difference between
these two states. On the liquid side the critical decay
crosses over to a new algebraic decay which is the von
Schweidler law

20—

10—

P, (t)=f; h, &(t/t' )— (7a) 0—

The new time scale t' is the predicted scale for the a-
relaxation process and it is given by -10—

(7b)

The decay in (7a) can only hold for t It ' (& 1. For larger
times on scale t' =~ the dynamics is ruled by the a pro-
cess, which will be considered below. In the glass the
scaling function decays to a constant for long times. To-
gether with f this constant gives the full nonergodicity
parameter or Debye-Wailer factor for the glass,

f =f'+h v'~o i/(I —
A, )+O(a ).

The formulas above can now be compared with experi-
rnental results. For a hard-sphere system all relevant
quantities have been calculated earlier. For the critical

-20—

10 10 10 10

FICx. 1. Master functions for the hard-sphere system with ex-
ponent parameter A, =0.758 (solid curves). The dotted line,
denoted by a, is the critical decay law 1/~ .- The dotted line,
denoted by b, is the von Schweidler law —B~ . Here a =0.301,
b =0.545, B =0.963. On the liquid side g (r*)=0 for
w* =0.608.
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FICx. 2. Normalized intermediate scattering function Pq(t)
measured at the peak q =q of the static structure factor (sym-
bols). The solid curves are the predictions of the mode-coupling
theory according to (1). The horizontal lines are drawn at
f9 =0.83.

The onset of this deviation of a process from P process
depends on q; it occurs earlier and is stronger the smaller
f'. If f' is large, i.e., for q near the peak position q of
the structure factor, the part of g (r) for r) r", where

g (r*)=0, is followed for a long interval. In this case
deviations from scaling are big for r (r*. If fq is small-
er, i.e., for q off the peak position q, the opposite holds.
The part of g (r) with r(r' is followed for a long inter-
val, but a clearly developed von Schweidler law cannot be
observed. '5

The scaling behavior in (lc) implies that the experi-
mental results for various values of y should fall on the
same master curves g+(r) provided the data for
P (t) f' ar—e shifted with appropriate scale factors h c
and t . The best way to test this property is to separately
test the shape of the experimental functions and the
analytical form for the scales. In this way one can pre-
cisely compare with the predicted shape, Fig. 1, for the
master functions and the analytical form for the scales.
The result of such an analysis is shown in Fig. 2. The
various symbols refer to the experimental light-scattering
results;" to avoid overloading of the figure we have
reproduced only ten experimental values per decade
spaced with equal distance on the log(t) abscissa. The
solid curves are the theoretical results. These latter
curves were obtained in the following way. First one has
to fix a value for the parameter f' above. The predicted
value for f' is 0.87+0.01. ' This number for f was
also measured for cp=0. 565." Since this value of y
refers to the glass state, the present value for f' must be
smaller than 0.87. This observation agrees with the gen-
eral conclusion that the mode-coupling theory has some
tendency to overestimate the trend to the glass formation
and the structures in f . ' This is, for instance, reflected
in the calculated value y, =0.52 above, which is lower
than the observed value. We tried therefore with a 5%
lower value f'=0. 83. Figure 2 shows the corresponding

fit to be quite reasonable. Slightly different values might
give somewhat better fits; but optimization in the choice
of f has not been tried in order to avoid overinterpreta-
tion of the data. Having determined fq we can now read
off the values for the scaling times t on the liquid side of
the transition. These values are obtained from the times
t* where pq(t*)=fq or g (r*/t )=0; for the present A.

the zero r* of the master function, g (r*)=0, is
~*=0.608. On the glassy side the scale t can be fixed by
fitting the critical spectrum for short times. The ampli-
tude factor h c was determined for every distinct curve
to obtain the best overall agreement. The value for h

qm

obtained from our fit was 0.48 which is 20% above the
calculated value 0.40. '"

Figure 2 shows that one can obtain a good matching
between experimental and theoretical results. The tran-
sient dynamics extends up to about t =10 . The devia-
tions from the master curves for Pq(t) (0.2 mark the on-
set of that part of the a process which differs from the
von Schweidler law. This proves that the experiments
follow the predicted master functions. The results also
verify the scaling behavior since all curves on the liquid
side have the same functional shape, and only the scales
differ. The dependence of the scales on cp can then be
tested versus the theoretical predictions, and this is done
in Figs. 3(a) and 3(b). For the amplitude scale c the
theory predicts a square root variation (6b) with respect
to the separation parameter o.. This is tested by plotting
(h c ) (dots) versus the packing fraction q& as is done in
Fig. 3(a). The amplitudes used to fit the data closely fol-
low a straight line, and the intersection with the abscissa
gives a first determination of the critical value y, =0.557.
Similarly, the scale t is predicted to diverge algebraical-
ly as in (6a) when approaching the critical point. In Fig.
3(b) we therefore plot co

' versus q& (solid circles). Again
the data points fall close to a straight line, shown by the
solid curve, as predicted by the theory. The intersection
gives a second value of y, =0.559. In Fig. 3(b) we also
show as open circles co' ~ versus y. The a-relaxation
scale r' =1/co' was taken from the data by that value of
time, where the glass structural arrest has decayed to
I/e, i.e., P (t' )=fq/e =0.30. Again the experimental
data fall on a straight line, given by the dashed curve, and
the intersection with the abscissa gives a third value for
y, =0.560. Equations (lc) and (6) predict a symmetry for
the scales c and t around y=y, since these only de-
pend on the distance from the critical point. This sym-
metry is partially verified in Fig. 3 since the points at
y=0. 555 represent the results for can=0. 565. It is a
severe test of the relevance of the analysis, that the three
values for the critical point agree so closely. The previ-
ous estimate y, =0.560+0.005 (Refs 6 and 7) is strongly
corroborated by the present analysis.

The appearance of two consecutive relaxation process-
es with two separate time scales is one of the major pre-
dictions of the mode-coupling theory. In order to illus-
trate this point further we show the time scales t and t'
versus cp in Fig. 4. One can clearly see the strong in-
crease of both scales as they approach the critical point.
The solid and dashed lines show the theoretical predic-
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tions corresponding to the straight lines in Fig. 3(b). At
y=0.48 the scales differ by one decade while at y=0. 545
they differ by two decades. So when approaching y, the
two times separate more and more. Actually it is well
known that to also depends appreciably on y due to hy-
drodynamic interactions. This dependence can be ex-
tracted by fitting the short-time decay to an exponential

P (t)=exp( —tlto). The resulting values for —toln(f')
are included as a dash-dotted curve in Fig. 4. Figure 5
shows that this fit describes well the first 5 —10%%uo decay
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FIG. 4. The two time scales t (solid circles) and t' (open
circles) vs y. The solid and dashed lines show the predicted
power laws obtained from the straight lines in Fig. (3b). The
dash-dotted curve indicates the density dependence of—tain(0. 83), i.e., where an initial exponential decay crosses f~.
y„yM, and yF denote the glass transition, the melting, and the
freezing points, respectively.
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of P (t), but at the level f'=0.83 there is already one or-
der of magnitude discrepancy for y=0. 542. This indi-
cates the importance of the time scale t . For the a-
decay process for y & y, the mode-coupling theory pre-
dicts another scaling law: Pz(t) =fq4z(t/r ) with
@ (t =0)=1. Here N (t) is a q&-independent master
function and ~ is the a-relaxation scale. The latter de-
pends sensitively on y and it is predicted to be propor-
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FIG. 3. (a) The dots show the scaling amplitude (hqc~) vs
packing fraction y obtained from fitting the experimental data.
The straight line shows the theoretical prediction in (6b). The
intersection with the abscissa gives the glass transition point y, .
(b) Solid circles show (1/t )

' (left scale) and open circles
(1/t' )' ~ (right scale) vs y as obtained from the experimental
data. The theoretical predictions in (6a) and (7b) are indicated
by solid and dashed lines, respectively. The intersection with
the abscissa gives the critical packing fraction y, .
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FIG. 5. The solid lines show P (t) =exp( —t /to) vs t, with to
given in Fig. 4, for y=0.480 and 0.542, respectively. The sym-
bols refer to the experimental data in Fig. 2. The horizontal
thin line indicates the level f'.
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tional to t~. The master functions Nq are not universal
and so far they have not been calculated for the hard-
sphere system. But for t /r « 1 the scaling result
reduces to the von Schweidler behavior (7a), which thus
appears also as the short-time part of the a process. A
test of the a-relaxation scaling law is shown in Fig. 6.
The experimental results are shifted parallel to the abscis-
sa, so that all Pq(t) versus r/r agree for Pq(t)=0. 3. If
the u-scaling law were valid, all relaxation curves should
fall together for P (t) &f'. The data verify the a-
relaxation scaling law only for t )&t, corresponding to
Pq(t) &0.5. For short times in the /3-relaxation region
there is a clear deviation from the a-relaxation scaling
law. These occur for times much longer than the micro-
scopic transient time to. The time t marks the center of
these deviations. Also included in Fig. 6, as a solid curve,
is a Kohlrausch function P (t) =f 'exp[ (t/r )~)—with
P=0.88. This value for the Kohlrausch exponent was
also found by Bengtzelius for a Lennard-Jones system at
q =q . ' The value of P is expected to depend strongly
on wave vector, and for q =0.86q Bengtzelius found
P=0.68. The value of P is, however, sensitive to the time
window in which the time decay is analyzed, and the
present value is somewhat uncertain. The data for the
largest cp value in Fig. 6, for instance, can be fitted for a
longer time interval by a Kohlrausch function using a
lower value of P.

The predicted asymptotic power-law behavior for the
scaling function in (4a) and (4c) is illustrated in Fig. 7,
where we show log, c[ Pq(t) fq ~ ] versus —log, c(t) for
@=0.542 and 0.565. The former case gives the function
g (r) while the latter gives g+(r). The power laws
which are straight lines with slopes —a and b, respective-

ly, are shown as solid lines in the figure. For the glass
side we see that g+ (q.) after an initial microscopic decay
follows the critical decay law (4a) closely, but not perfect-
ly, and then goes over to a constant for long times. An
unbiased fit of the data would give a line with some slope
a' & a. The reason for this is that the true master curve
in Fig. 1 di6'ers in the region under discussion, from the
short-time asymptotics 1/t . On the liquid side the criti-
cal region is not very well separated from the microscopic
region. However, there is a clear approach to the von
Schweidler law for long times, and this decay can be seen
for more than one decade. The exponents a and b can
also be obtained by plotting log, c(hqc ) versus
log, c(1/t ) and I og, (c1/ 'r), which is shown in Fig. 8(a).
According to the theory we should find straight lines
with slopes a and ab/(a +b), respectively. The theoreti-
cal slopes given by the straight lines are reasonably
obeyed. There is some discrepancy for the two values of
cp closest to qo„but these points are sensitive to the pre-
cise choice of fq used above. With more data points
around y=y, one could find a more optimal value for
this parameter. A third cross check is given in Fig. 8(b)
where we plot log, c(1/t' ) versus log, c(1/t ). The data
should fall on a straight line with slope 1+a/b, which is
approximately the case. In this case the dependence on
the microscopic time to drops out, and this may explain
why the points fall closer to a straight line than in Fig.
8(a). To demonstrate the sensitivity of the preceding tests
of the various fits to the correct choice of the exponents,
we have added the relaxation curves for A, =O. 70 and 0.82
as dotted lines in Fig. 9. The scales t and h c are ad-
justed so as to match the data for y=0. 542 for the zero,
P (t *

) =f ', and for P (100t*). Obviously, the tested 8%
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-2 -1 0 1

log, o(t)

FIG. 6. P, (t) vs r/r for cr &0. The various symbols refer to
those in Fig. 2. The horizontal thin line is drawn at f . The
solid curve represents a Kohlrausch function Pq( t)
=fqexp( F~) with /3=0. 88. —

FIG. 7. log&o[~gq(t) fq ~] vs log&o(t) for y=—0.542 and 0.565
with symbols as in Fig. 2. The straight lines show the predicted
slopes —a = —0.301 and b =0.545, respectively.
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change of k is quite incompatible with the data. We
therefore conclude that the analysis confirms the predic-
tion for A, =0.76 (Ref. 14) with an accuracy of +4%,
which corresponds to an accuracy for the exponents a, b,
and y of about +10%.

There are also some data for other q values available. "
According to (lc) they should be related trivially to the
ones discussed above. We have checked the behavior for
y=0. 542 at q =0.63q and 1.56q, and find good agree-
ment with the predicted values. However, there is no
agreement with the data for y=0.494 for reasons which
are presently not clear.

0
V

CO

bQ
O

-1.5

log. o(1/t ), log lo(1/tg

1.0—

The analysis above shows that there is a quantitative
agreement between the theory and experimental data on
an accuracy level of 10%%uo for q at the position of the
structure factor peak. This holds for the exponents, the
master function and the parameter f~. It should be
stressed that to obtain these results only two parameters
need to be adjusted, namely, f~ and the product hqc
Once the former is chosen the time scale t, which in-
cludes the unspecified value to, can be read o6' from the
intersection of p (t) with the level f'. The adjusted
values f' and h c can afterwards be compared with ac-
tual calculated values. Obviously it would be very
worthwhile to extend the experimental work to get data
for more q values and also for more values of cp. It is
rather surprising to find that the von Schweidler law can
account for the data even for very long times where Pq(t)
have decayed to a rather small value. Conventionally
this region of the curves would be fitted with a
Kohlrausch decay law exp[ (t I7 )—~], as in Fig. 6. This
decay is consistent with (7a) for short times provided one
chooses P=b, but the whole a region cannot in general
be fitted by using the exponent b in the Kohlrausch law,
as is clear from the data in Fig. 6. The von Schweidler
region defines the overlap between the a and the P pro-
cesses, and it appears as a short-time region of the n pro-
cess, and as a long-time region of the P process. The
length of this common time interval, t « t « t ',
diverges upon approaching the critical point. Within this
time interval a useful picture of the relaxation process is
provided by the cage efFect. In a concentrated system a
particle is, at any instant, surrounded by a shell of nearest
neighbors which constitutes a cage. These cages
represent metastable states with a partially arrested
structure, which can have a very long lifetime. For o )0
the /3 process describes the motion within an arrested
structure which is about to break down. In the liquid,
o. &0, it describes the motion where the cages are almost

0.5— I I I I I I III I I I I I I III I I I I I I III I I I I I I III I I I

)0~ x

0.0—

-0.5— 0.5—

log, o(1/t, ) 10
I I I I I III I I I I I I I I I I I II I I I I I IIII I I I

]0' ]P' ~0' qp'

t (s)
FIG. 8. (a) log, o(Aqc~) vs loglo(1/t~) (solid circles) and

log&o(1/t') (solid squares). The solid straight line through the
former points has slope a, while the dashed line has slope
ab/(a +b). (b) log, o(1/t' ) vs log&o(1/t ). The solid line has the
predicted slope 1+a /b.

FIG. 9. The symbols show P, (t) vs t for y=0. 542, and the
solid curve is the theoretical result for X=0.758 as in Fig. 2.
The dotted curves correspond to scaling functions for A, =0.72
and 0.80.
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but not yet completely closed. For t « t, these two
types of motion cannot be distinguished as seen in (4a),
the liquid appears as frozen. But for t » t and 0. &0,
the von Schweidler law signals the instability of the ap-
parently arrested structure. The 0, process describes the
complete decay of the structure which appears arrested
for I; « t . On scale t one cannot decide whether or not
the motion is ergodic. This picture of partially trapped
particles in metastable states leads directly to the waiting
time statistics for the time between events, or lifetimes of
the metastable states. The exponents a and b are fractal
dimensions of Cantor sets for the event times. ' '

The theoretical results used are based on approxima-
tions, which treat the glass transition as an ideal one.
Necessary extensions of the simple picture alter the tran-
sitions to a continuous crossover. ' For y —+y, and

y & y, the long-time decay is ruled by hopping processes;

they prevent the divergence of the time scales and alter
them to finite numbers, essentially to an Arrhenius law. '

The data discussed for the colloidal system do not show
any sign of such efFects yet. Since the colloidal particles
will continuously exchange momentum and energy with
the surrounding solution it is not surprising that barrier
hopping processes may be strongly suppressed. In this
context it might be interesting to mention that the scaling
law analysis of P relaxation in a polymer also was not
complicated by the hopping mechanism.
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