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Linear viscoelasticity of semidilute hard-sphere suspensions
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We study the linear viscoelasticity of semidilute suspensions of spherical Brownian particles. We
consider a simple model in which hydrodynamic interactions and direct interactions apart from
hard-sphere repulsion are neglected. We calculate the dynamic viscosity for this model system ex-

actly to second order in the volume fraction. It turns out that the infinite-frequency shear modulus
does not exist because the dynamic viscosity falls off with the inverse square root of the frequency.
The relaxation-rate spectrum has corresponding inverse-square-root behavior. We find exact ex-

pressions for the spectral density and the time-dependent stress-relaxation function. Qualitatively
our results resemble those found experimentally for dense hard-sphere suspensions.

I. INTRODUCTION

Dilute polymer solutions exhibit a marked viscoelasti-
city due to the flexibility of the individual polymer mole-
cules. In the linear regime the viscoelasticity is mani-
fested in the frequency dependence of the shear viscosity.
The viscosity of a dilute suspension of rigid hard spheres
does not depend on frequency, and is given by the Ein-
stein expression. However, at higher concentrations, the
viscosity becomes frequency dependent due to relaxation
of the relative configuration. The effect has been mea-
sured experimentally by van der Werff et al. for dense
suspensions with volume fractions between 0.3 and 0.6.
They found an interesting inverse-square-root depen-
dence on frequency. This indicates a broad spectrum of
relaxation times, similar to that for the Rouse model of
dilute polymer solutions. Earlier measurements by
Mellema et al. were explained in terms of a single relax-
ation time.

In this article we study a simple model of a hard-sphere
suspension in which hydrodynamic interactions and
direct interactions, besides the hard-sphere repulsion, are
neglected. We calculate the dynamic viscosity exactly to
second order in the volume fraction and show that the
asymptotic dependence on frequency is similar to that
found in the experiments by van der Werff et al.

We also discuss an excluded shell model with a radius
of hard-sphere repulsion larger than the hydrodynamic
radius. The dynamic viscosity for this model may be ob-
tained from that for the hard-sphere model by simple
scaling. The model may give a fairly realistic picture of
the behavior of suspensions of charged polystyrene
spheres. For such suspensions, hydrodynamic interac-
tions are relatively unimportant, since these are deter-
mined by the actual hard core radius, whereas the
spheres are kept apart by electrostatic interactions. The
resulting structure resembles that of a hard-sphere system
with an effective radius equal to the actual one plus the

Debye length. If the latter is sufficiently large, the hydro-
dynamic interactions are small.

II. LINEAR VISCOELASTICITY

We consider a spatially uniform suspension subjected
to an oscillating shear Aow with time dependence
exp( —icot). For small-amplitude oscillations, the local
stress and rate of strain are related by a frequency-
dependent viscosity ri(co). The imaginary part of the dy-
namic viscosity

rl(co) =g'(co)+i g"(co)

is related to the dynamic shear modulus 6 (co) by

6 (co)= i cor)(co) =—G'(co) —iG "(co) .

(2. l)

(2.2)

6
g(co) = r) +

l Icos
(2.3)

More generally, one must consider a spectrum of relaxa-
tion times and write the dynamic viscosity as

g(co ) = r)„+G „f d ~,
0 1 lcd'

(2.4)

where P(r) is the normalized distribution of relaxation
times. It is convenient to introduce a characteristic time
scale ~o. In dimensionless units we may then write (2.4)
in the form

r1(co) =r) +G„rof do,~ crP(o )

l /h)0
(2.5)

with the dimensionless relaxation time o. =~/~o, the di-

The infinite-frequency value 6 =G'( co ) is called the
high-frequency modulus.

In the simplest model, due to Maxwell, the dynamic
viscosity is characterized by a single relaxation time and
takes the form
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mensionless frequency Q=co~p, and with normalization

f P(o. )do. =1 . (2.6)

p(u)i)(co)=rI +G„ro du,
0 u z

with the variables

(2.7)

Alternatively, we may use a distribution of relaxation
rates and write

Correspondingly, the asymptotic behavior of the imagi-
nary part is given by

q"(co ) = . G„roco ' + '~" as co~ co . (2.17)
2p sin(vr/2p, )

Asymptotic behavior of the form (2.16) and (2.17) has
been found for dilute polymer solutions. ' The exponent
p takes the value 2 in the Rouse model.

III. VISCOSITY OF HARD-SPHERE SUSPENSIONS

1 +0
Z —lS —1$7p,

and distribution function

p (B)=P(1/B)/B

which is normalized to unity

f p(u)du =1 .
0

The mean relaxation time ~ is given by

oo A, oo

=rof oP(o)do. =ra.f —p(u)du .
0 0 u

(2.8)

(2.9)

(2.10)

(2. 1 1)

We study specifically the dynamic viscosity of a sus-
pension of hard spheres. We consider identical hard
spheres of radius a immersed in an incompressible Quid of
shear viscosity g. We neglect hydrodynamic interactions
and assume that each sphere performs Brownian motion
with a bare di6'usion coeScient D0 given by the Stokes-
Einstein expression k~T/6~pa. We also assume that
there is no direct interaction besides the hard-sphere
repulsion at diameter 2a. We consider a macroscopically
uniform system of mean number density n. Due to the
neglect of hydrodynamic interaction, the infinite-
frequency value of the viscosity is given by the Einstein
expression

The dynamic viscosity may also be expressed as the
one-sided Fourier transform of the stress-relaxation func-
tion

il(co) =g + f e' 'V(t)dt,
'Tp 0

(2.12)

where g is the viscosity of the solvent. By comparison
with (2.7) we find that the relaxation function may be re-
garded as a linear superposition of decaying exponentials

G ~0
%(t) = — f p (u)exp

7j 0

—ut
du (2.13)

The long-time behavior of the relaxation function is dom-
inated by the behavior of the spectral function at small u.

In the following, we encounter a situation where the
high-frequency modulus 6 is not defined, because the
dynamic modulus G'(co) does not tend to a limit at
infinite frequency. In analogy to (2.7) we write the dy-
namic viscosity as

r/„=il(1+ —,'(t ), (3.1)

il(co) =i/„+ai (co)P r/, (3.2)

with a dimensionless coeflicient ccrc, (co) which may be
evaluated from a solution of the two-sphere Smolu-
chowski equation. In an imposed oscillatory shear How

vo (r)=E r, with rate of strain tensor E, the perturba-
tion of the pair-distribution function takes the form

where $=4nna /3 is the volume fraction occupied by
spheres.

On the time scale seen in light-scattering experiments,
the dynamics of the system of interacting Brownian parti-
cles is governed by the generalized Smoluchowski equa-
tion incorporating independent diftusion and hard-
sphere repulsion. The dynamic viscosity may be calculat-
ed by applying linear-response theory to the Smolu-
chowski equation. ' To second order in the volume frac-
tion, one finds '"

g( )co= „i)G+, rfodu .p(u)
0 u z

(2.14) 5P(R, co)= 3'/3ga n E:R—Rg(R)f (x,co), (3.3)

We consider the situation, where the spectrum has the
asymptotic behavior

p(u)= —u " as u~~—1+ 1/

p
(2.15)

with exponent p) 1. The spectral density p(u) can no
longer be regarded as a probability distribution, since the
normalization integral in (2.10) diverges. We call G, the
relaxation strength.

It follows from (2.14) and (2.15) that the asymptotic be-
havior for large cu of the real part of the dynamic viscosi-
ty is given by

ccv(co)= ', f (l, co) . — (3.4)

The radial function f (x, co) satisfies the diff'erential
equation

where R=R2 R& is the distance between centers of a
pair of spheres, P=1/k~T, and g(R) is the equilibrium
radial distribution function. The radial function f (x, co)
is expressed in terms of the dimensionless variable
x =8 /2a. For a dilute system of hard spheres,
g(R)=e(R —2a), where e(R) is the step function.
With neglect of hydrodynamic interactions, the
coefficient in (3.2) is given by the simple expression.

il'(co) =rj„+ G„r,co
'+ "& as co

2p cos(m. /2p )
(2.16)

d 2dfx " 6f —cc x f=0, —
dx dx

(3.5)
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where for positive co

a=(1 i—)(coa iDp)'

7I'( —co) =7)'(co), 71"(
—co) = —7)"(co) .

(3.6) At zero frequency,

(3.13)

f'(1)=—4, f~0 as x —+co . (3.7)

The first condition expresses the hard-sphere repulsion.
The solution of (3.5) with the boundary conditions (3.7)

is given by

The diAerential equation must be solved subject to the
boundary conditions'

av(0)= —", . (3.14)

This result was found earlier by Russel. ' For large posi-
tive frequency,

18
7I'(CO) =7)„+

Corp

f (x,co) = — k2(ax),4

ak~(a)
(3.8)

18
'g (co) 7I as co~ ~

QCO7p
(3.15)

where k2(z) is a modified spherical Bessel function. Sub-
stituting in (3.4) we find

This shows that the viscoelastic spectrum is of the
power-law type with exponent p =2. By comparison with
(2.16) and (2.17) we find for the relaxation strength

36 a +3a+3
a +4a +9a+9 (3.9) 36&v, ~

57r rp
(3.16)

In the present problem it is natural to use the time scale
~0=a /Do. Correspondingly, we define the dimension-
less frequency

CO C07 0, 'To —Q /D o (3.10)

For positive co, we find for the real and imaginary parts of
the dynamic viscosity

It is of interest to introduce the reduced functions

AC +BD
71(0)—7I

71"(Co ) /I D BC—
q(O) —q„C'+D'

(3.17)

36 /IC+BD
7I Co 7J + 7J

„( )
36 AD BC~2-

( 2+D2

with the abbreviations

A =3+3(co)', B=2co+3(co)'

(3.1 1)

(3.12)
C = —2co +9(co)' +9, D =2co +8co+9

For negative co, the viscosity follows from the symmetry

In Fig. 1 we plot these functions versus log, ohio. The func-
tions vary over a remarkably wide frequency range. The
imaginary part I(co) takes its maximum value 0.3025 at
co,„=5. 8269. At this point R (co ) takes the value
0.5957.

In Fig. 2 we Plot log&pcoR(co) and logipcoI(co) versus
log&oco. These functions are related to the dynamic shear
modulus by Eq. (2.2). Plots of this type are familiar from
the theory of polymer solutions. '

In Fig. 3 we plot the real and imaginary parts of the ra-
dial function f (x, co) at a frequency corresponding to
co „=5.8269. For comparison, we also plot the radial
function at zero frequency given by f (x, O) =4/3x 3.

0.8 "

iogio ~&(~)

iogio ~1(~)

0.6-

0.4-

0.2-

00 I
' -4 -2 6

10gyp M

4 //////
/-6- / /

I

6
10gI 0 Ld

FIG. 1. Plot of the reduced functions R (co) (drawn curve)
and I(co) (dashed curve) as given by (3.17).

FIG. 2. Plot of loglocoR(co) (drawn curve) and logiocuI(co)
(dashed curve) as given by (3.17).
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IV. SPECTRUM AND RELAXATION FUNCTION

In this section we investigate the spectral density and
the relaxation function corresponding to the dynamic
viscosity given by (3.2) and (3.9). We may perform an an-
alytic continuation by assuming (3.2) and (3.9) together
with (3.6) to be valid everywhere in the complex frequen-
cy plane, and choosing the square-root branch cut along
the negative imaginary axis. This shows that the dynam-
ic viscosity may be written in the form (2.15) with spec-
tral density

5/2
p(u)=

38u —8u +18u+81
(4.1)

FIG. 3. Plot of the real and imaginary parts of the radial
function f(x, cu) at frequency co=5.8269 (real part, dashed
curve; imaginary part, dotted curve). We also plot

f (x,0)=4/3x' (drawn curve}.

I I I I I E 1 I I

'-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

log10

FIG. 4. Plot of the spectral density p(u), as given by (4.1).

(4.6)

This may be written as

'I'(t) = P P(tlap),
18&&,
5' (4.&)

with the function

Qo 8x' SXt(t(s)= 6 4 2
e ' dx .—~ 8x —8x +18x +81

Separating into partial fractions, we obtain

(4.8)

By use of (3.16) and (4.1), we find the complete expression

@(
144&2

~p
~ u

8u 3 —8u2+18u+81
—ut

Xexp du .
TQ

One may verify this expression by considering the limit
co= —iy+e, with y positive and e infinitesimal. For
small u, the spectral density behaves as

1/2

g(s) =
S

Ap A1f +
X up X u1

2 2

p(u)= —,', u ~ as u —+0 . (4.2) +
x u2

2
e '" dx, (4.9)

This determines the long-time behavior of the relaxation
function. For large u,

where uo, u1, and u2 are the roots of the cubic equation

p(u)= —,'u '" as u (4.3) u —u +—'u+ —", =0, (4.10)

By use of (3.16), (4.3), and a theorem on Laplace trans-
forms, ' we hence find that %(t) has the short-time be-
havior

1/2
18 2 2 ~p

'p(t) =
5

' 1/2

as t~O . (4.5)

This corresponds to the high-frequency behavior shown
in (3.15) and also determines the short-time behavior of
the relaxation function. In Fig. 4 we plot the spectral
density p (u ).

In analogy to (2.13), the relaxation function is given by

%(t)= f p(u)exp du .
'g 0 Tp

(4.11)

3uo
Ap=

(up —u, )(u~ —up)
3

u2
A2=

(u2 —up)(u, —u2)

u 1A1=
(u, —u2)(up —u, )

(4.12)

and the amplitudes Ap, A „and A2 satisfy

Ap+ A, + 32= —(up+u, +u~)= —1,
(ui+u2)Ap +( u2+pu)A ] +(up+u, )A2

(upui+uiu2+u2up)—

u1 2AO+ 2 QA1+ 0 1A2 upu1u2 8

Solving for the amplitudes, one finds
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The roots are given by

u o
= —1.589 98, u i

= u i + iu 'i',

u ', = 1.294 99, u i' =2. 165 87 .

u2=u )
(4.13)

(s)=
S

w(iQ~uo~s )

uo/

The first term in (4.9) yields the short-time behavior
found already in (4.5). The integrals in (4.9) may be ex-
pressed in terms of the complementary error function.
We find

1/2

This is to be compared with the long-time tail of the
stress-relaxation function in dense liquids found in
molecular-dynamics simulations. ' In that case, the
long-time tail decays as t, and has an amplitude
much larger than that predicted by mode-coupling
theory. ' For interacting Brownian particles, Hess and
Klein' have predicted a t tail from mode-coupling
theory.

The relaxation function shows quite remarkable behav-
ior, both at short and at long times. As we have shown,
the spectral density has corresponding features at large
and small relaxation rates.

+2~1m w (Qu, s ),
Qu,

(4.14)

where

z2w(z)=e ' erfc( —iz) . (4.15)

and a second theorem on Laplace transforms. ' From
(3.9) we find for small co

In the last term in (4.14), the square roots are taken to
have a positive imaginary part. The frequency It(s) was
also encountered in the theory of self-dift'usion. ' We plot
the function g(s) in Fig. 5.

The long-time behavior of qI(t) is obtained most easily
by use of the expression

e'"'4 t dt = ~oav co (4.16)

V. EXCLUDED SHELL

v( co ) —, x',f ( x „co)— (5.1)

So far we have neglected direct interactions besides the
hard-sphere repulsion. In experimental systems, direct
interactions are often important. In particular, in sus-
pensions of charged polystyrene spheres, the particles ex-
perience a strong repulsive interaction with a range of the
order of the Debye length. In this section we consider a
simple model in which the direct interaction is approxi-
mated by a hard-sphere repulsion at a radius b larger
than the hydrodynamic radius a. It is fairly easy to see
that the dynamic behavior is essentially the same as for
b =a, but evolves on the longer time scale
r, =(b la )rp=b /Dp.

It follows from the linear-response theory that the di-
mensionless coefficient a v(co) in (3.2) is now given by

&gw 2 ~ r 5/2+O(w3)
V

(4.17)

where x& =b/a is the ratio of radii. The radial function
f (x, to) again satisfies the differential equation (3.5), but
now with the boundary condition f '(x

i ) = —4x, . Hence,
instead of (3.8), we find

Hence we find that the long-time behavior of the relaxa-
tion function is given by

7/2

q(t)=
3&7r

f (x, oi) =— 4x)
k2(ax ),

akim(ax, )

and (3.9) is modified to

(ax, ) +3ax, +3
av(co) ——x i (ax, ) +4(ax, ) +9ax, +9

(5.2)

(5.3)

In particular, at zero frequency,

iI(0) = iI + —", x, p ri, (5.4)
5-

a result found earlier by Russel. ' By comparison with
(3.6) we verify the time scaling mentioned above. The
high-frequency behavior of the viscosity is given by

3"

2-

i)'( co ) = i)„+—", x, —

+oiro

g"(co)= —",x, ri as oi~~ .
Pco7p

(5.5)

From (5.4) and (5.5) one finds for the relaxation strength

S.o 0'.i
I I

0.2 0.3
I I I I I

0.4 0.5 0.6 0.7 0.8 0.9 36&2
G, x,

7T To
(5.6)

FIG. 5. Plot of the function g(s) defined in (4.8). This is re-
lated to the stress-relaxation function by (4.7). The scaling of the remaining quantities is easily deduced.
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VI. COMPARISON WITH EXPERIMENT

The theoretical results found above appear to be close-
ly related to a recent experiment by van der Werff et al.
Unfortunately, at the present time it is difficult to do ex-
periments at volume fractions less than 0.1. The experi-
mental data have been taken for concentrated suspen-
sions with volume fractions between 0.3 and 0.6.
Nonetheless, there is a remarkable qualitative agreement
with the results found above for semidilute suspensions.
Van der Werff et al. find that the real and imaginary
parts of the dynamic viscosity show co

' behavior over
a wide frequency range. The authors have analyzed their
data in terms of a discrete relaxation spectrum, for which
2)'(co) and ri"(co) take the form

R(z)
I(0 )

1.0

0.8-

0.6-

0.4-

0.2-

N j
21'(co ) = 21„+G, g

~
—i j +CO 7i

(6.1)

00 I
' -4 -2 6

logio &

CO7&
2)"(co)=G, g

J +CO 7i

with N large. For the Rouse model of dilute polymer
solutions, the dynamic viscosity takes the same form.
At large frequencies, (6.1) may be approximated by

FIG. 6. Plot of the reduced functions R(x) (drawn curve)
and I(x) (dashed curve) as given by (6.9).

G 1/2 —1/2

G 1/2 —1/2
1 1

(6.2)
K (0)= 1, L (0)= 1,

1K (x)=, L (x) = — as x —+ 0o .
v'2X ' x

(6.8)

which is of the form (3.15). By comparison with (2.16),
we find the relaxation strength

G, =(w)/ro)' G, . (6.3)

p (u) =-,'u -'"e(u —u, ), (6.4)

with u
&

=Qro/r&. This corresponds to the dynamic
viscosity

The discrete spectrum is somewhat unrealistic for
hard-sphere suspensions, and we shall use instead the
continuous density

Clearly, the frequency dependence scales with 7, . In Fig.
6 we plot the scaling functions

R (x)= —,
' [K (x)+L (x)],

I(x)= —,'IK(x) L(x)] . — (6.9)

2)(0) =2)„+G, r, (6.10)

The function I(x) takes it maximum value 0.3152 atx,„=2.8182. At this point R (x,„)=0.6218. There is
a remarkable similarity with Fig. 1. If we determine the
relaxation time 7& by equating

2)'(co) =2) + —,'G, 0.
, K +L

Di 0i

2)"( co ) = —,
' G, r, K

Qi

CO—L
Qi

with the functions

1 &2XK (x)= arctan
2x 1 —x

1
1

( 1 +x )

&2X 1 —&2X +x
These functions have the properties

Qu,
2)(cu)=q„+ —,'G, r, — du .

u (u —z)

Hence we find for the real and imaginary parts

(6.5)

(6.6)

(6.7)

with 2)„+(12/5)0)p and using (3.16) and (6.3) we find

r& = (n /18)ro. For this relaxation time the reduced
functions defined in (3.17) practically coincide with those
found from (6.6).

Van der Werff et al. have determined the relaxation
strength Gi and the relaxation time 7& by fitting the ex-
perimental data with the expressions (6.1). Alternatively,
one could fit with the expressions (6.6) arising from the
more plausible spectral density (6.4). From the discus-
sion above, it follows that one could equally well use the
spectral density (4.1) of the dilute system and scale with
the two parameters 6& and 7&. Conversely, we conclude
that the diffusion mechanism studied in the theory of
semidilute suspensions may be held responsible for the

behavior observed in the dynamic viscosity of
dense suspensions. We recall that the ~ ' behavior of
the dynamic viscosity at high frequency corresponds to
t ' behavior of the stress-relaxation function at short
times.



43 LINEAR VISCOELASTICITY OF SEMIDILUTE HARD-SPHERE. . . 5411

VII. DISCUSSION

We have shown that the dynamic viscosity of hard-
sphere suspensions may be calculated exactly to second
order in the volume fraction if hydrodynamic interac-
tions and direct interactions in addition to the hard-
sphere repulsion are neglected. The dynamic viscosity
shows an interesting co ' behavior at high frequency, in
agreement with experimental data on dense suspensions.

It will be of great interest to investigate the influence of
hydrodynamic and direct interactions. We have shown
that for an excluded shell potential, the dynamic viscosity
may be obtained by scaling from the hard-sphere model.

In future work we intend to study a wider class of direct
interactions. It has been shown by Russel and Gast
that the dynamic viscosity decays in proportion to co

' at
high frequency if hydrodynamic interactions are includ-
ed. This does not exclude the possibility that the viscosi-
ty exhibits co

' behavior in a wide frequency range. To
settle this question, a more elaborate analysis is required.
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