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Shear flow distorts the microstructure of fluids if the Deborah number X becomes comparable to
1. In complex fluids, exotic hydrodynamics eft'ects are often seen in this regime. We compute
within Landau theory the structure factor S(q) of a sheared nematic liquid crystal close to the
nematic to smectic-A (X—Sm-A) phase transition. As a function of increasing Deborah number,
the pretransitional smectic-3 fluctuation clusters become increasingly geometrically restricted,
evolving from their usual three-dimensional ellipsoidal shape for 2) « 1 to an extremely anisotropic
one-dimensional shape for Xl »1. We discuss the predictions of Landau theory for x-ray difl'raction
experiments for various orientations of the nematic director. The suppression of pretransitional
critical fluctuations by shear flow is found to raise the transition temperature T& s „,and peculiar-
ly, T~ s ~ is found to depend on the orientation of the director. The presence of the microscopic
fluctuation clusters under the shear flow is also reflected on the macroscopic level. The classical
theory of the hydrodynamics of nematic liquid crystals, due to Ericksen, Leslie, and Parodi (ELP), is
found to be incomplete. We compute the new fluctuation-induced forces that must be added to ELP
nematic hydrodynamics and we discuss their consequence, in particular for large 2), the analog of
shear-thinning for liquid crystals.

I. INTRODUCTION

The intellectual fascination of scientists with the mac-
roscopic Aow behavior of Auids and its relation to the un-
derlying nonequilibrium microscopic structure goes back
a century to Reynolds. ' In principle, the microscopic
density-density correlation function g(r) describing the
structure of a Auid should experience significant distor-
tions if the Deborah number 2)=y r becomes comparable
to one. Here, y is the shear rate and ~ the longest
characteristic structural relaxation time. However, sim-
ple fluids (such as water) consist of small molecules with
exceedingly fast relaxation times, related to translational
and rotational diffusion. The required shear rate would
be of order 10' —10' sec ' which is experimentally not
feasible.

High Deborah numbers can be readily achieved in ma-
cromolecular liquids (complex fluids) which are liquids
with characteristic length scales larger than about 50 A.
This was first demonstrated by Reynolds himself in his
studies of the effect of shear Aow on a Quid filled with
(macroscopic) spheres. Under shear flow the spheres re-
pel each other and order in layers. More recently, Clark
and Ackerson have demonstrated the distortions of g (r)
in more controlled experiments consisting of charged col-
loidal suspensions under shear Aow where large Deborah
numbers can also be reached. Perhaps the best-known
case where large Deborah numbers can be realized is that
of the Aow of polymer Auids. When a rotating rod is in-

serted in an open beaker containing a concentrated po-
lymeric Auid, the highly "non-Newtonian" Quid is ob-
served to more inwards and to actually climb the rod.
This is in contrast with the behavior found for a simple
Newtonian Quid, even one which is very viscous such as
glycerol, where the Quid surface is depressed near the rod
due to centrifugal forces. Polymeric Auids are called
non-Newtonian because their shear viscosity is a function
of the shear rate; that is, they exhibit either shear thin-
ning or shear thickening. Hydrodynamic descriptions of
polymeric Auids exhibiting non-Newtonian behavior must
include new terms, the "normal stresses, " to account for
their rather bizarre macroscopic Aow behavior. The mi-
croscopic physics of polymer Auids under large Deborah
numbers is rather complex, but these non-Newtonian
effects are undoubtedly a consequence of complicated
structural deformations of the polymer network by the
shear Aow.

The basic feature of polymeric Auids under shear Aow
which produces large Deborah numbers and non-
Newtonian behavior at low shear rates is the large
characteristic length scale for the underlying microscopic
structure. For example, the radius of gyration RG of a
polymer is typically of order 100—500 A. The associated
relaxation times ~ range between 10 and 10 sec for
dilute solutions, while they are even larger for concen-
trated entangled polymeric Auids in the semidilute re-
gime. For a single polymer the characteristic relaxation
time r for chain deformation is of order gRG/k& T (with
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g the solvent viscosity), so large RG implies large ~. For
the same reason, non-Newtonian effects at experimentally
accessible shear rates are also expected for microemulsion
spheres and Aexible tubes, biological vesicle membranes
or tubules, or any complex Auid system with large length
and time scales.

An alternative way in which large characteristic length
scales can be achieved in Auids occurs spontaneously
upon approaching a continuous phase transition where
large spatial correlations are built up as a consequence of
pretransitional Quctuations. Near the transition, the
order-parameter correlation length g diverges as
(T T, )

—", with T, the critical temperature. The order-
parameter relaxation time r diverges as P (critical slow-
ing down). The exponents v and z depend on the nature
of the transition. We thus expect non-Newtonian Qow
behavior for, say, a binary Quid near its consolute point
because of the divergence of ~. Conversely, shear Aow
should be expected to affect the microscopic structure of
a Quid close to its critical point. Because our understand-
ing of physical systems near critical points is often quite
complete, we may think of Auids close to their critical
point as simple model systems for the investigation of
non-Newtonian behavior in complex Quids. The effect of
shear Qow on critical behavior has been thoroughly ex-
plored by Onuki and Kawasaki for binary Auids and
among their conclusions were that (i) shear Sow
suppresses Quctuations, which leads to mean-field critical
behavior, and (ii) the spatial correlation function is ex-
tremely anisotropic and is quasi-long-ranged along the
Qow direction. Experimentally, ' while the mean-field
character of the transition has been verified in binary
Iluids, the quantitative features of S(q) and its evolution
with y~ remain unexplored.

We will discuss in this paper the effect of shear Aow on
the phase transition between the nematic (N) and the
smectic-A (Sm-A) phases of liquid crystals.

Liquid crystals can condense in many phases with vari-
ous degrees of orientational and spatial order of the rod-
like organic molecules" (see Fig. 1). In the nematic
phase the molecules exhibit long-range uniaxial orienta-
tional order and short-range positional order. The
nematic director n, shown schematically in Fig. 1(b), is a
unit vector describing the average direction along which
the molecules point. By reducing the temperature a tran-
sition takes place at T~ s „,into the Sm-A phase. This
transition corresponds to the onset of a one-dimensional
mass density wave along the director. The Sm-A phase
can be thought of as stacks of layers where the molecules
are free to difFuse within each two-dimensional sheet [Fig.
1(c)].

Deborah numbers of order 1 have recently been shown
to be experimentally accessible, ' close to the nematic to
smectic-A phase transition where we have a detailed un-

derstanding of the nature of the pretransitional Auctua-
tions. ' ' In addition, even away from the critical point
the microscopic length scale which is the molecular
length is large (of order 30 A). Thus liquid crystals are
suitable systems for investigating the distortions of g (r)
by shear Qow and the relation with non-Newtonian flow
behavior. In particular, liquid crystals could serve as a
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FIG. 1. Schematic representation of three liquid crystalline
phases. (a) The isotropic phase of the rod-shaped molecules. (b)
The nematic phase exhibits long-range orientational order with
the molecules pointing on average along the nematic director n.
(c) In the smectic-A phase the molecules segregate into (liquid)
layers which are stacked with mean spacing d.

"laboratory" for developing a microscopic understanding
of shear thinning and normal forces.

Several authors' have theoretically discussed the effect
of shear Aow on various liquid crystalline phases and
phase transitions. de Gennes studied the smectic-A to
smectic-C phase transition and found that Aow resulted
in an interesting anisotropic reduction of the order-
parameter Auctuations. Ramaswamy considered the
effects of shear flow on the smectic-A phase and found
that Aow suppresses the order-parameter phase Auctua-
tions and stabilizes the smectic-A phase. In another
liquid crystalline system of block copolymers, Fredrick-
son considered the eff'ects of flow on S(q) in the isotropic
phase close to the ordered layered phase which has the
same symmetry as the smectic-A phase. He found that
for large Deborah numbers, S(q) is highly anisotropic
and suppressed. The theory gives an expression for S(q),
which when compared to experiments should provide a
direct measurement of relaxation times for diblock melts.
In a separate study of the isotropic to the lamellar
(smectic-A-type) transition in a binary surfactant system,
Cates and Milner found that the suppression of Quctua-
tions raises the transition temperature and makes the
transition less weakly first order. Olmsted and Goldbart
studied the isotropic to nematic transition and discovered
remarkably that under Qow the transition becomes
second order. Larson has considered the steady-state be-
havior of the nematic director in the nematic phase of
Aowing liquid-crystal polymers. He finds that in addition
to tumbling and steady regimes of the director orienta-
tion, a wagging regime may also exist.

The microstructure of liquid crystals can best be
probed by x-ray diffraction because x rays couple to den-
sity Quctuations. In particular, just above the N —Sm-A
transition there are pretransitional Sm-A Auctuations in
the nematic phase in the form of correlated clusters with
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anisotropic correlation lengths
g~~ (along the director) and

gi (perpendicular to the director) [Fig. 2(a)]. The recipro-
cal space scattering spectrum due to these fluctuations is
shown schematically in Fig. 2(b). The fluctuations appear
as di6'use scattering spots centered around the points
+qo=+qon. Here, 2n /qo =d is the layer spacing of the
smectic layers.

The x-ray-scattering structure factor S(q) is propor-
tional to the Fourier transform of the density-density
correlation function g(r). The x-ray structure factor of
the N —Sm- A transition has been studied extensive-
ly'3' ' at equilibrium, and it has been found that S(q) is
given by an anisotropic Ornstein-Zernike form

S,(q)=S(q, )/[I+/II(q, -q. ) +g,(q. +q, )]

where we assumed n=z. If t=(T—T~ s ~)l&~ s
is the reduced temperature, then

g~~
and gt diverge near

t=0, respectively, as t II and t ' with vII) v~. In most
systems vII takes values close to 0.7 and vII

—v~ is of order
0.15. The anisotropy in the exponents which was initially

observed more than a decade ago appears to persist in
most systems studied to date. ' The actual values of v

II

and v~ are theoretically not entirely understood and for
the sake of simplicity this anisotropy will be neglected in
the present work. '

For typical N —Sm- A transitions, the correlation
lengths can be quite large, of order 1000 A at a tempera-
ture t =10 (corresponding to T T~—s A- 30—mK).
The corresponding order-parameter relaxation times are
also expected to be greatly increased, and according to ul-

trasonic absorption and nuclear-magnetic-resonance
(NMR) measurements' r should be in the range of 10
to 10 sec for t =10 . Therefore, close to the transi-
tion, large Deborah numbers could be achieved for shear
rates of about 10 sec ', which is indeed accessible in the
laboratory. ' Thus liquid crystals should present suitable
systems to study the effect of shear flow on S(q).

There are a number of fundamental differences betwe=-n
the N —Sm-A phase transition and the phase separation
transition in binary Auids which require special attention.

(i) The nematic phase is an anisotropic fiuid with bro-
ken rotational symmetry as characterized by the director
n. Associated with this broken symmetry are gapless
orientational fluctuations" ("Goldstone modes") which
are responsible for the strong light scattering of nematic
liquid crystals.

(ii) The smectic-A phase is at its lower critical dimen-
sion in d=3; that is, for d (3 thermal Auctuations des-
troy the smectic order. "' Thermal fluctuations in d =3
significantly depress the ordering temperature below the
mean-field value. This is not the case for binary Auids in
d =3.

(iii) The smectic-A order parameter does not obey a
conservation law. In the binary-Quid case, the order pa-
rameter is a conserved quantity.

(iv) In binary fluids yr is the only control parameter
for Bow e8'ects to become important. In the N —Sm-A
system, because of the large internal length scale d there
are tuo relevant parameters whose relative importance
depends on the orientation of n. When the director
points in a plane normal to the How, j'~ is again the only
control parameter; whereas when n is along v, yrqog be-
comes the relevant parameter.

Our aim is to understand the N —Sm-A phase transi-
tion and how the theory difFers from the one described by
Kawasaki and Onuki in view of (i)—(iv). We now discuss
our results, which can be summarized by first considering
the correlation function S(q) and then its eff'ect on the
macroscopic response parameters.

We find that for small Deborah numbers (yr ((1), the
efFect of shear Aow on the structure factor can be de-
scribed as a shear of' the Auctuation clusters. More ex-
plicitly if v=yyx is the Aow velocity, we find that

S(q) =So(q, q»+ j'r(q)q, q, ), yr(q) ~ 1 (1.2)

FIG. 2. (a) Real-space schematic of pretransitional smectic-3
fluctuation clusters in the nematic phase. Because of the molec-
ular length anisotropy, the domains exhibit anisotropic correla-
tion lengths

g~~ (along n) and gi (perpendicular to n). (b) The
diffuse x-ray scattering in reciprocal space resulting from the
fluctuation clusters. The peaks are centers at +2~/d.

where r(q)=(y3/k&T)So(q) is the q-dependent order-
parameter relaxation time (y3 is a viscosity). Equation
(1.2) corresponds to a shear of So(q) in the q -q» plane by
an amount yr(q). The effect of larger shear rates on S(q)
is best discussed by first recalling the dynamical scaling
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argument. This will also highlight the importance of
conservation laws mentioned earlier for the response to
shear Aow of a critical system.

According to dynamical scaling, the wave-vector-
dependent order-parameter relaxation rate co(q ) obeys

co(q) =q'Q(qg) . (1.3)

co(q, )=j (1.4a)

For a nonconserved two-component order parameter,
z = —,

' and the function Q(x)- I/x' for x « 1 while Q(x)
goes to a constant for x »1. We expect that when
cv(q) & j', the fluctuations wiH dissipate thermally before
the imposed Aow field can distort them, while for
co(q) & y the fluctuations are distorted before they decay.
It follows from Eq. (1.3) that cv(q)~1/P for qua&&1
while tv(q) ~q' for qg&&1. Figure 3 is a schematic plot
of co(q) versus q for a nonconserved order parameter. We
see that if j & cv(0) (dashed line), we are in the small De-
borah number regime for all q since co(q)&y. Little
effect is expected on S(q) in this regime. On the other
hand, if )' & co(0) then there will be a range of wave vec-
tors for which y &co(q). Therefore, for j &co(0), we can
introduce a length scale q, (see Fig. 3):

(1.5)

Equation (1.5) signifies that for extremely large Deborah
numbers, the density-density correlations along the Aow
are qualitatively different than at j' =0, and exhibit
quasi-long-range order. We can now apply Eqs. (1.2) and
(1.5) to the fluctuations ( I l(l ) of the smectic-2 order pa-
rameter in the nematic phase:

finite shear rates, there is always a range of wave vectors
for which y & co(q) and shear has an effect.

While the preceding argument is correct for a noncon-
served order parameter with isotropic order-parameter
Auctuations, we shall see that for the N —Sm-3 transition
with anisotropic Auctuations, q, will be anisotropic in all
three directions. We find that in the distorted regions in

q space, the spatial density-density correlations exhibit
quasi-long-range order along the Aow direction and are
cut off in the plane normal to the Aow. That is, the Auc-
tuation clusters which are ellipsoidal at y=0 now be-
come elongated and oriented along the Aow.

In momentum space, this elongation leads to a power-
latv behavior for S(q) in the distorted region:

yz » 1, &iv
S(q) ~ I/(y q„)' for

yrqogi»1, ft Ilv .

or, using the large x behavior of Q(x), (Ilail') = J d'qs(q) . (1.6)

(1.4b)

The wave vector q, defines a sphere in q space, such that
Iql & Iq, (j')I, S(q) must be undistorted while for

Iql & Iq, (y)l, S(q) should be distorted. Thus all order-
parameter fluctuations with g& q,

' are expected to be
distorted due to shear Aow. The condition that y should
exceed co(0) in order for us to see significant distortions in

S(q) is actually just our previous criterion that the De-
borah number y~ must exceed 1. For a conserved order
parameter cv(q)~0 for q~O, so that for all small but

FIG. 3. The order-parameter decay rate co(q) vs q for a non-
conserved order parameter plotted schematically at a tempera-
ture T& T~ s „so that g is finite. If j (co(0) (dashed line),
then j &~(q) for all q and shear will not eFect S(q). On the
other hand, if j') co(0) (bold line) then j ) co(q) for all q & q, ( j')
and are e6'ected by shear. Note that for a conserved order-
parameter system (e.g., binary Quid) co(0)=0 so that for any
finite y there is a range of q's that are aff'ected by Qow.

For yr«1, (Ilf I ) is unaffected by shear flow but for
yr »1, ( lgl ) vanishes as y . Because of this
suppression of thermal Auctuations, d =3 smectic liquid
crystals are in fact no longer at their lower critical dimen-
sion for jWO. As noted, the suppression by shear flow of
Auctuations also occurs in binary Auids.

We now turn to the macroscopic physics. A number of
macroscopic response parameters can be expressed in
terms of S(q) and are thus strongly affected by the
suppression of $(q) for yr(q)»1. Also, as expected
from our experience with non-Newtonian Auids, we find
surprising dynamical effects.

(I) The classical equations of motion of the nematic
director coupled to Aow were constructed based on a
macroscopic theory of anisotropic Auids by Ericksen, '

Leslie, and Parodi (ELP). An alternate description,
which emphasizes correlation functions, was later
developed by Foster et al. and by Martin, Parodi, and
Pershan. According to ELP nematic hydrodynamics,
the director is (nearly) aligned along the flow (x) direc-
tion when the Leslie viscosity parameter a3 ( ~gb) is
negative —which is the case far above T& s z. (Figure
4 shows the nematic geometry for the three viscosities g„
g„, and g, : gb is for n parallel to v and g and g, for n
perpendicular to v. ) For a3 positive (which is true
closer to T~ s z) n precesses around the z axis lneutral
direction, see Fig. 4(a)]. It was demonstrated by McMil-
lan and by Janig and Brochard that in the presence of
smectic Auctuations, ELP nematic hydrodynamics retains
its validity for low shear rates if we renormalize the
viscosity parameter o.3.

We find that even for reasonably small Deborah num-
bers (i.e., y7. &1) ELP nematic hydrodynamics is incom
piete. The flow distortion of S(q) creates a "normal"
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a3(y=O), yr«1, n=z

a3, y~)) 1, n =z (1.9a)

a& (y =0), yrqog « 1, n=x

a&, yrqog)) 1, n=x .
(1.9b)

~ ~

~ ~ ~ e
~ ~ ~

I(I l

I

Tl
a

(o)
C

(c)

FIG. 4. Three fundamental geometries for the nematic
viscosities. (a) g, is the viscosity with the director perpendicu-
lar to the shear Aow (x-y) plane. (b) gb is the viscosity with the
director along the velocity (x) direction. (c) g, is the viscosity
with the director along the velocity gradient (y) direction.

Here, a3 is the "bare" value of the Leslie viscosity param-
eter [a3 &0 (Ref. 32)] while a3 (y =0) is the renormalized
value in the absence of shear fiow [a3 (y =0))0 close to
T~ s „]. Shear fiow reduces the viscosity from
a3 (y =0) to a3. A similar suppression of the renormal-
ized elastic constants K2 and K3 is found. The anisotro-

py of cx3 has surprising consequences. According to Eq.
(1.9), there is for qog))1 (i.e., close to T~ s „)a range
of shear rates (I/qadi& ye& 1) where a3(y) is positive
for n along the z direction but negative for n=x. This
means that both the n=x and n=z orientations are
stable in this range. We thus expect that in this range the
director texture will contain domains with n =x and n =z
separated by domain walls.

(III) For v=yyx, the so-called "first normal-stress
coefficient" N, is defined as N& =(o„—o )/y, with
o.

,- the stress tensor. We find that near TN s
torque nXh, with h—= (y, /r~—)n„x on the director
which cannot be absorbed by a redefinition of the Leslie
parameters (y f is again a viscosity). For small yr, N, ~ k~T. (1.10)

+N qpk~ T .
96m y ~~(„

(1.7)

This normal torque is intimately related to the effect of
shear Aow on the Goldstone modes of the nematic phase.
Shear Aow destroys the rotational symmetry so the
dispersion relation co of the orientational fluctuations ac-
quires a gap. For n =z, we find for the mode spectrum

2 1/2
1

co
—(q) =i ++ . Kq 1

yi 27N
+ COp

2 (1.8)

where too = ( y /y, )( —a2a3 )' . The (negative) quantity
o,2 is another Leslie parameter and K is a Frank stiffness
constant. According to Eq. (1.8), both the real and imag-
inary parts of the spectrum have a gap for y&0.
Redo(q)=+coo with coo the precession frequency of the
director for y~O, while Imago(0)= 2~& if the precession
is underdamped.

(II) At zero shear rate, the nematic bend and twist elas-
tic constants ' ' K2 and K3 as well as the viscosity
coefficient ' ' ' '

g& diverge near TN s z because of
the Auctuation renormalization effects.

Because shear flow reduces thermal Auctuations the
Auctuation corrections are also eliminated at high shear
rates. The suppression of Auctuations is found, however,
to be very dependent on the angle between the Aow direc-
tion (along x) and the nematic director. As a conse-

quence, the response coefficients ilb, K2, and IC3 must de

pend strongly on n in shear flow. For instance, for the
Leslie parameter a3 (which is proportional to i)b) we find

that

Within mean-field theory, X& diverges as
1/(T T& s z )' —. The appearance of normal stresses
is one of the characteristics of non-Newtonian liquids.
We saw already from Eq. (1.9) that shear flow leads to
shear thinning in the a3 viscosity (the other characteris-
tic). We thus conclude that near T~ s ~, a nematic
liquid crystal may show the Aow behavior of a non-
Newtonian Auid.

(IV) For low shear rates, shear fiow increases the
phase-transition temperature Tz s „(y). Defining the
reduced temperature t(y)=[T~ s „(y)—T& s z(0)]/
T„, „(0),we md

t(y)" (yr)'/g

for n=z. Because of Aow-induced mixing, shear Aow
reduces the critical temperature of binary mixtures. Simi-
lar to our results, Cates and Milner' have found that in
lyotropic systems the isotropic-to-lamellar phase-
transition temperature increases as well under shear flow.

The plan of our paper is as follows. In Sec. II we
derive a number of results from a simple geometrical ar-
gument which can predict the qualitative features of the
x-ray structure factor for smaller Deborah numbers. In
Sec. III we present a time-dependent Landau theory of
the N —Sm-A transition under shear Aow. The results ob-
tained through the geometrical arguments of Sec. II are
derived quantitatively and S(q) is derived for large De-
borah numbers. In Sec. IV we consider nematic hydro-
dynamics in the presence of fluctuations (i.e., critical hy-
drodynamics) and Sec. V discusses our conclusions.
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II. SHEARED FLUCTUATION CLUSTERS

(a) (b)

We will discuss separately the three director orienta-
tions n =z, n =y, and n =x. First consider a Auctuation
cluster with n =z, so the director is perpendicular to the
x-y shear plane. The Row direction is presumed to be
along x and the fiow gradient along y [Fig. 4(a)]. For
zero shear, a fiuctuation domain has a circular cross sec-
tion in the x-y plane with a radius of order g~ [Fig. 5(a)].
If we switch on the shear Aow then the Aow will shear the
circle into an ellipse [Fig. 5(b)]. Since the fiuctuation
domain has only a finite lifetime ~, the domain will be
sheared by only a finite amount. If y=BU /By is the
shear rate, then over the lifetime ~ imposed on the clus-
ter, the relative sliding motion of x-z planes imposed by
the Aow will result in a shear strain of the cluster of the
order of e =y~ along X. Therefore the flow field
translates each point (x,y) in the circle to a new point

(x',y')=(x+ey, y). The sheared cross section of the
domain will thus be given by

(x j—ry ) y
$2 g2

(2.1)

This describes an ellipse whose long axis makes an angle

(()=—,'tan '(2/jr) (2.2)

with the x axis [Fig. 5(b)]. The long and short axes g+
and g are

(2.3)

A shear Aow may be described by a strain-rate tensor
which can be decomposed as a pure vorticity
co =

—,
'

( V X v ) and a symmetric part 3;~ =
—,
'

( BU; /Bx~
+BU /Bx; ). The only nonzero terms in 2," are
~~„=A~„=—,

' j' and this causes an elongation in the x-y
plane along an angle of vr/4 with the x axis. At low shear
rates the elongation dominates over the rotation so (t
should be m/4, while, with increasing y, P should be re-
duced due to the vorticity to /=0. We indeed have from
Eq. (2.2) that as yw~0, P~vr/4. In the opposite limit
(y~ ac ), $~0 and

(2.4)

//~=1/yr . (2.5)

(c)

Qy (IIVv) qy

qz =go

qx (Ilv)

() ''
1 /g+

FICx. 5. (a.) Isotropic cross section of a fluctuation cluster in
the x-y plane with the director along z under static conditions
with y =0. (b) The same cluster under simple shear flow
(v =yyx, y is the shear rate) with the Deborah number
2)(=y~) & 1. The flow field shears the cluster resulting in an
elongated elliptical cluster with long and short axes g+ and g
and orientation angle P as discussed in the text. (c) and (d)
Schematics of the x-ray diffuse scattering in reciprocal space re-
sulting from the cluster at rest (c) and the cluster under shear
flow (d). The effective sizes of the x-ray-scattering regions in re-
ciprocal space are the inverse of the sizes in real space.

We plot, in Fig. 6, the alignment angle (t and the correla-
tion lengths as a function of the shear. For large y~, the
fluctuation cluster is an extremely elongated ellipse
oriented along the x direction, with extended correlation
lengths along the fiow direction ( g+ ))gz), and
suppressed correlations along directions perpendicular to
the fiow direction (g ((gj) as expressed by Eqs. (2.4)
and (2.5). This enhancement of correlations along the
Aow direction is an analog of the shear ordering
discovered by Reynolds. '

We should point out two basic assumptions that went
into this argument. We assumed (i) that the relaxation
time ~ was a constant independent of the amount of shear
distortion, and (ii) that the fiow field is always that of sim-
ple shear undistorted by the fluctuation clusters. The
limiting angle (() for large yr is only zero if r is indeed in-
dependent of y. We expect that actually ~ will decrease
substantially for large y~, since the diffusion of molecules
out of the cluster into the nematic background would be
facilitated by elongation. It is also important to realize
that fluctuation clusters in a nematic matrix are not to be
considered as drops with a finite surface tension. In that
case, the elongated cluster would break up into smaller
clusters due to the surface tension. The Auctuation clus-
ter is a region where one has locally increased smecticlike
correlations; the cluster has no sharp boundaries.

We now turn to x-ray diffusion. For y=0 and n=z,
there are two diffuse scattering maxima at qoz [Fig.
2(b)]. However, because the clusters are anisotropic with
f

~j

) Pz the structure factor S(q ) (which is proportional to
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Flax. 6. The alignment angle P and the correlation lengths g+ and g of the cluster [Figs. 5(a) and 5(b)] as a function of the De-
borah number X. The regime of interest corresponds to 2) & 1 which describes the evolution of the cluster from an isotropic shape to-
wards a highly distorted elongated ellipse aligned along the flow direction.

the Fourier transform of the density-density correlation
function) is also anisotropic and given by Eq. (1.1) [see
Fig. 2(b)]. The S(q)=const contour is an ellipsoid in re-
ciprocal space centered about +qoz. The short axis is of
order

g~~

' while the two long axes are of order gt '. The
size of the scattering ellipsoid in q space is roughly the in-
verse of the size of the cluster in real space and the q-
space ellipsoid is rotated over m/2 about the z axis as
compared to the real-space cluster. For y&0 the cluster
has an elliptical cross section in the x-y plane, as dis-
cussed previously, with dimensions g+ and g and orien-
tation P [Fig. 5(b)]. Therefore we expect that the
S(q)=const contour lines define an ellipse in q space
with long axis (g )

' and short axis (g+) ' oriented at
an angle P+~/2 with the flow (x) direction. Alternative-
ly, since the sheared fluctuation cluster in real space [Fig.
5(b)] is created by shearing by an amount y~ along x we
expect that in momentum space we should find S(q) by a
shear of —y~ along the q direction. (This is because the
shear operator yB/Bx in real space acts as —q„B/Bq in
momentum space. ) The result of such a shear in momen-

turn space is shown in Fig. 5(d). The argument thus pre-
dicts that

S(q).~o=S. o(q„,q +yrq„q, ), (2.6)

2

(2.7)

as shown in Fig. 7(b). The axes of the ellipse are

which indeed describes an ellipse in q space rotated by
m/2 compared with the ellipse in real space. The impor-
tance of Eq. (2.6) lies in the fact that it would provide us
with a very direct way of measuring the Deborah number
by x-ray diffraction. At present, we do not have a very
reliable way of measuring the Deborah number. In the
following section we will show that Eq. (2.6) should
indeed be valid at small Deborah numbers when ~ is re-
placed by ~(q).

Next, we take n along the y axis as in Fig. 7(a). A fluc-
tuation cluster, sheared along x by y~, can then be
defined by

2

1 1 y~
2 4

+2
kt

2
1 1 1 1

2 1/2

g2

(2.8)

In reciprocal space, Eq. (2.7) defines an ellipse centered at
qoy, elongated (roughly) along the q» direction. The
correlation lengths g and g in the limit y~~ac are,
from Eq. (2.8), as before

(2.9a)

while P —+0 as yr~ cc.
In the limit of small shears we find

1+ (2.10a)

(2.9b)
(2.10b)
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FIG. 7. (a) and (b) Schematic of an anisotropic cluster with
the nematic director n along y, at rest (a), and under shear Aow

with 2)) 1 (b). (c) and (d) Schematic of the diffuse scattering in

reciprocal space arising from the anisotropic cluster at rest (a),
and under shear Aow (b).

while p~m/2. (In the limit that /II =pi for small shears,

kil I+(i&)/2) ')

Finally, consider a fluctuation cluster with n =x,
aligned along the liow direction as in Fig. 8(a). This
configuration has very interesting features. For y =0, the
smectic layers of course are parallel to the y-z plane and
spaced by 2'/qo [Fig. 8(a)], but after shearing the cluster
[Fig. 8(b)], the layers are rotated over an angle

FIG. 8. (a) and (b) Schematic of an anisotropic cluster with
the nematic director along x (the Bow direction) at rest (a), and
under shear How with g)&1 (b). For this orientation of the
director the smectic layers are tilted which results in a decrease
of the mean interlayer spacing. (c) and (d) Schematic of the
diffuse scattering in reciprocal space arising from the anisotrop-
ic cluster at rest (a), and under shear Row (b). The tilting of the
layers in real space shifts the peaks from their equilibrium posi-
tions along the x axis at +qox, to off-axis peaks running off to
+~ as') tends to ~.

Aow, the tilt of layers means that the peaks move off the
q axis and acquire a q component with q = —qoy~.
Consequently, the new peak positions q" will be [Fig.
8(d)]

9=arctan(yv) . (2.11)
q*=+qo(1, —yr, O) .

The long and short axes are found from Eq. (2.8) by ex-
changing /II and gi. ~ith n fixed along x, this rotation
means that the layer spacing is reduced to (2'/qo)cos8.
The shear How has severely distorted the internal struc-
ture of the fluctuation cluster. Obviously, this
configuration will be energetically more costly than the
two previous configurations. We thus expect that the
director will feel a torque trying to twist it out of this
configuration. We will discuss this torque in detail in
Sec. IV. The shape of the fluctuation cluster under Aow

in the x-y plane is again an ellipse [Fig. 8(b)],

2 2
(x —

july

) y (2.12)

We now turn to the diffraction spots. For y=0, the
scattering maxima are at +qox [Fig. 8(c)]. Under shear

(2.13)

Since under shear Aow these pretransitional fluctuations
are energetically costly, we expect that the diffraction in-
tensity will be very weak in this configuration.

In summary, the orientation with the nematic director
n along the Aow direction should lead to diffraction inten-
sities which are very different from those where n is per-
pendicular to v. With n parallel to v, the smectic Auctua-
tions are strongly suppressed, and the scattering max-
imum is greatly displaced. With n perpendicular to v,
the scattering maximum should not be much affected by
shear Aow, while S(q) should acquire a quasi-one-
dimensional character for nonzero q .

For general orientations of n, we would expect that for
nlv, there is a scattering maximum in S(q) at qon in the
q -q, plane. Along the q direction S(q) is expected to
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have quasi-one-dimensional behavior for large j ~. If n is
not perpendicular to v, then for large y~, the scattering
maximum will move to infinity and Auctuations are again
suppressed.

III. TIME-DEPENDENT LANDAU THEORY

The Landau theory of the continuous transition be-
tween the nematic and smectic-A phases in the absence
of shear Aow was constructed by de Gennes and McMil-
lan. It predicts a pretransitional increase in certain
elastic constants of the nematic phase which indeed has
been observed. Similarly, pretransitional Auctuations
renormalize the viscosities of the nematic phase.
This is due to the fact that, as we saw, Auctuation clusters
prefer the orientation with niv. The nematic viscosity
with n parallel to v (ilb } indeed exhibits a pretransitional
increase while the viscosities along y and z (71, and il„
respectively) do not (see Fig. 4). By applying linear-
response theory McMillan found that within mean-field
theory i)& should diverge as r/g. If we use dynamical
scaling, then r is proportional to g so q~ is proportion-
al to g'~ . Similar results were found by Janig and Bro-
chard.

In this section, we will examine how, within mean-field
theory, the structure factor S(q) behaves as we go to
large Deborah numbers; that is, we will extend
McMillan's theory beyond linear response. Use of
mean-field theory is in part justified by the result of
Onuki and Kawasaki that for nonzero Deborah number
we should expect mean-field critical behavior (the
X—Sm-A phase boundary under shear Aow is, however,
still expected to deviate from mean-field theory). As was
emphasized in the Introduction, large changes in S(q)
will change the macroscopic properties of a Auid and in
particular the equation of motion of the director. The re-
sults of this section will thus serve as input for a discus-
sion of the macroscopic properties in the following sec-
tion.

The free energy associated with smectic Auctuations in
the nematic phase is

F= ,' f d r[—A~g~ +C((~(n V —iqo)@~

are g~~=(C~~/A)' and gz=(Ci/A)', respectively, so
both

g~~
and gi diverge as ( T Tz—s „) ' within Lan-

dau theory. We are assuming here that the nematic
director is spatially uniform.

In the absence of shear fiow g tries to minimize F by
going to zero, while thermal Auctuations push it away
from /=0. Shear fiow will exert an additional force on

The complete equation of motion is the time-
dependent Ginzburg-Landau equation in the presence of
Aow:"

y3 +v Vg = — +h(r, t) .8 5F
at

(3.3)

By neglecting spatial variations of P in Eq. (3.3), it fol-
lows that ~=y3/A is the order-parameter relaxation
time (in the absence of fiow). Equation (3.3) assumes that
order-parameter Auctuations relax dissipatively towards
equilibrium. The actual relaxation of a Auctuation clus-
ter is by diffusion of molecules across smectic layers so y3
is of the order of the liquid viscosity. The Aow field v is
assumed to be that of simple shear:

v=yyx (3.4)

(h(r, t)h(0, 0)) =2y3k~T5(r)5(t) . (3.5)

By using Eqs. (3.1) and (3.4), the equation of motion be-
comes

y +yy = —[AP+C (n V iqo)'g—
5

+Ci(nXV) Q]+h(r, t) . (3.6)

After applying the Fourier transform

p(r) = f d q gze'~',1
(3.7)

as in Sec. II. The Gaussian random variable h(r, t) de-
scribes the coupling to g to thermal noise. Its correlation
function is determined by the Auctuation-dissipation
theorem:

+C ~(nXV}g~ ] . (3.1) the equation of motion in momentum space turns into

p(r)=po[l+Re(g)] . (3.2)

The correlation lengths parallel and perpendicular to n

The complex order parameter g describes a density wave
associated with a fluctuation cluster. In the nematic
phase P must be zero on average so A )0. We will as-
sume that A is proportional to T—T~ s ~ . The second
and third terms in F are the energy costs associated with
spatial variations of the order parameter. The second
term is the cost of variation along n, the third of varia-
tion perpendicular to n. Assuming we have a Auctuation
cluster, Eq. (3.1) predicts that the cluster with the lowest
cost in energy has a spatial variation proportional to

iqO(r-n)
e ', as should be expected for a density wave along n
of wave vector qo. The density modulation associated
with the cluster is

5—yq„= —10(q)g +h (t)/y3 .
Bt "Bq (3.8)

The function

A+C~~(n q
—

q ) +C~(nXq)r (q)= (3.9)

is the equilibrium (wave-vector-dependent) order-
parameter decay rate and is proportional to So '(q), the
structure factor in the absence of flow. For y=O the
solution of Eq. (3.8), P is straightforward:

g (t)= f dt'exp[ —(t t')10(q)]h (t')/y3 . —(3.10)

The mean square of g~ is
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( Iitr (t)I ) = f dt' f dt"exp[ —(2t —t' —t")1 o(q)] definitions of I o(q) then leads to our central result for
S(q):

(3.12)

X(h*(t')h (t"))/y23. (3.11)

In the t~ ~ limit, (Igq(t)I ) should be proportional to
the equilibrium density correlation function ( Ip&I )
which in turn is just So(q). From the equipartition
theorem and Eq. (3.1), we have that

I'), = Vk~ T
2' y31 o(q)

S(q) =

with

3
k~T

2K y3

X f dt expI —[ro(q)t+a(q)t +p(q)t ]]

(3.19)

ro(q)So(q) = k, T/y3 (3.13)

(Here, the volume element V arises due to the usual sub-
stitution f d q~[(2') /V]g . For simplicity, we shall

set V equal to unity. } This is consistent with the

fluctuation-dissipation relation of Eq. (3.5) which when
inserted in Eq. (3.11) gives for zero flow

3

a(q) =yq. [Cf,(q n q—o)+C ( n—,q n+. q, )]/y3,

p(q) =
—,
'
y q„[Cf n +Ci(n +n, ) ]/y3 .

(3.20a)

(3.20b)

The structure factor assumes two different limiting forms
depending on whether we are in the low- or high-
Deborah-number regime. We first treat the low-shear-
rate regime.

in agreement with Eq. (3.12). In Eq. (3.13) we have set
the nematic density po=1, so that So(q):—(Ip(q)I )
=(Iq, I')„=(Iq',(

Now, we turn on the flow. The solution of Eq. (3.8) is
then given by an operator equation:

t

g (t)= f dt'exp —(t —t') I o(q) —yq

A. Small Deborah numbers

For y~&1, we can expand the exponential in Eq.
(3.19) in powers of a and P. The vahdity condition for
such an expansion is that 1o))I3 and I o))a. The
condition I o))13 reduces to yrq g « 1 with
g= [g'~~n +pi(n„+n, )]' and q close to qon. The condi-
tion I 0«o. leads to a similar condition. To second or-
der in yrq (,

Xh, (t')/y, . (3.14}

Although this is not obvious, it can be checked that in
computing S(q) we may simply treat the operator 8/Bq
as if it was an ordinary number. Repeating the calcula-
tion which led to Eq. (3.13) then gives a partial
diff'erential equation for S(q):

S(q)=
3

k~T 1

ro(q)

+ 8a (q)
ro(q}'

2a(q) 6/3(q)

ro(q}' ro(q}'

(3.21)

I o(q) —yq, S(q) =k~ T/y3 .a

Bqy

The differential equation

(3.15)
Note that since

ar,
a(q) =

—,
' yq

Bqy
(3.22)

+a(x)f(x)= 1
dx

(3.16)

has, for an arbitrary function a(x), the particular solu-
tion

we can include the first-order correction in Eq. (3.21) as

3 k~T
1 o '(q„,q~ +yr(q)q„q, )

2m y3

f(x)= f dx'exp —f dna(x —g)
0 0

(3.17)
with

+0((yr) }+ (3.23)

if f o dna(x —g) = ~. If we apply this to Eq. (3.15) then
the corresponding solution is r(q) = I o '(q) (3.24)

X f dt exp —f dg 1 o(q, q +yq„g, q, )

(3.18)

Homogeneous solutions to Eq. (3.15) are not included be-
cause they would lead to S(q)= co at q =0. Using the

the equilibrium q-independent order-parameter relaxa-
tion time. Note that r(q=nqo)=~. This result is the
same as Eq. (2.6) if one replaces ~ by r(q). For q close to
nq0 this replacement is not a very important effect. The
diff'erence is important for large Iq —qonI and is discussed
in the following section.

One may readily verify from Eq. (3.23), that while for
n=z or n=y, S(q) peaks at (0,0, qo) or (O, qo, O), respec-
tively, for n=x the peak in S(q) is at q=qo(1, —yr, O),
implying a finite tilt of the layer normal with n (as we
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found earlier in our geometrical model of Sec. II).
It is interesting to ask about the relaxation rate for

order-parameter fluctuations under shear flow. At equi-
librium the order-parameter relaxation rate is given by
I o(q). Thus one expects that for yr «1,
I 0(q, y) = I 0(q„,q +y~q, q, ) so that

C~ Cq
I o(q, y)=10(q)+2(yr) q, qy+(y~)' q' . (3.25)

y3 y3

Therefore, to lowest order in (yr), the lifetime of order-
parameter fluctuation modes normal to the shear plane,
i.e., with q =q =0, is unaffected by shear, whereas fluc-
tuation modes with wave vector along the flow direction
(i.e. , with q, AO) are strongly affected and decay more
rapidly. This is consistent with the simple geometrical
picture of Sec. II where we found that fluctuation clusters
with the director aligned along the flow direction lead to
a tilting of the smectic layers [Eq. (2.11)] which tends to
reduce the layer spacing and is energetically costly. A
smectic fluctuation with this orientation will therefore
dissipate more rapidly.

Before proceeding to high Deborah numbers, we first
calculate the overall magnitude of the smectic fluctua-
tions for y&0 using ( ~i'~ ) = fd qS(q) The r.esult will

be used later in our calculation of the nematic —smectic-3
transition temperature and of the nematic elastic con-
stants and viscosities under shear fiow. From Eq. (3.23)
we find that (Appendix B)

k~T (yr)'+ . +O(y~)'
192vr Cigll

(yr~O) . (3.26)

Since the second term is negative definite, it follows that
t

fluctuations are suppressed by shear flow. The same
trend was noted by Onuki and Kawasaki in their study of
binary fluids under shear flow.

a='YCiq, qi /y3,
p= —,'Y Cjq„/3 3,
r,=[a+cll(qll qo) +Ciqi]/y3 .

(3.27)

We first look for the region in q space where the per-
turbation result for S(q) [Eq. (3.21)] still applies. As can
be seen from Eq. (3.23), the validity condition is

yr(q)q, «q . For q gi comparable to 1, this means that
the small parameter of the perturbation series is

y~(q)q„gi. This parameter is small when q ~0. If
q « I/gi, so that yrq„&q~, the perturbation result is
still valid as long as q„& 1/(yr)gi. (This is readily seen if
one sets q~ =0, but still demands that I 0)p. ) We refer
to this small q„ limit as regime I. In fact, it follows im-
mediately from Eqs. (3.19) and (3.20) that for q„=O, S(q)
is independent of the shear rate y since a=p=0. This
means that S(O,q, q, ) =( I/2') ks T/I 0(O, q, q, )y3.

For large q, r(q) goes to zero and perturbation theory
becomes valid once again. This q range, which we call re-
gime III (see below), is obtained by requiring that I 0 & a
and I 0)p for large ~q

—qoz~. Thus the two regimes
where the perturbation result of Eq. (3.23) is valid can be
summarized:

B. Large Deborah numbers

For larger Deborah numbers, y~ ) 1, we have three
different regimes in q space. We will discuss these for the
case n=z, which is most relevant for experiment. ' In
that case we have

S(q)=
3

ks TI 0 '(q„,qy+yr(q)q„, q, )+O((yr) ) .
2'

~q„~
& (yogi) ' (regime I)

2/3

) (
1 )i/3 3 x

q
2

1 /2

(regime III), (3.28)

I ( —', ) r,—
3p2/3 o 3p

S(q)=

where [q]=—[qi+(Cll/Ci)(qll —qo) ]' is a rescaled ~q~

(with Cll )Ci). For a typical value of q„on the order of
I /gi, the boundary of regime III is

[q]) (1/gi )[(yr/&3) —1]' . Perturbation theory
thus remains valid in a thin sheet around the q =0 plane
and outside an anisotropic regime in q space defined by
Eq. (3.28).

The most interesting case is what happens inside re-
gime II where both inequalities in Eq. (3.28) are violated.
Now, the integral in Eq. (3.19) is dominated by the term
f3(q)t in the exponent and S(q) is highly distorted. For
large p, one finds that (Appendix A)

'k~T I ( —,')
2n y3 3P'/ 3P

1/3

(p(x)p(0)) ~ — &(y)5(z)
1

(3.30)

Here I (x) is the gamma function and the q-dependent
functions 10, a, and p were defined earlier. Equation
(3.29) is actually an expansion in 1/(yr)'/ which con-
verges very slowly.

In the limit yr~ oo, S(q) thus has a power law depe-n
dence on q„: S(q)=(1/y q )' while it is independent
of q and q, . We thus predict for y~)& 1, sheets of
scattering parallel to the q =0 plane. Sheets of scatter-
ing are indicative of one-dimensional correlations. The
fluctuation clusters thus must consist of very long strings
lined up along the flow direction as we already argued in
Sec. II. In real space, the density-density correlation
function drops off as a power law:

+ o.'I +0

(regime II) . (3.29)
for ~x

~
& yogi and yr && 1.

To physically understand the boundaries of regime II
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which is meaningful only for y~) 1. When q is of order
I/g1 and yr ) 1, the boundary in q space between regimes
II and III defined in Eq. (3.28) agrees qualitatively with
the dynamic scaling result of Eq. (3.31).

We point out here that Eq. (3.31) [or Eq. (3.28)] pre-
dicts that there is a threshold Deborah number (yr),
such that for (yr) ) (yr), =0(1) the cutoff wave vector
[q], grows rapidly. That is, the onset of distortion in
S(q) occurs rapidly over a small range of (y~). This be-
havior is a direct consequence of the nonconserued nature
of the smectic-2 order parameter for this transition as
discussed in the Introduction. For a conserved order pa-
rameter (e.g. , binary fiuids), the growth in [q], starts im-
mediately for j ~~0.

If we consider n oriented along the Aow direction
(n=x), then the boundary between regime II [where S(q)
is distorted] and regime III [where S(q) is essentially
unaffected] is given by

2/3

[ ] (])1/3 3 0
g

—2

[(])1/3(yrqg)2/31]1 /21 (3.32)

The rapid onset of distortion where [q], grows then
occurs around yrqogi ) 1. Since normally qadi)) 1, S(q)
with n~~v is suppressed significantly earlier than S(q)
with nlv as the temperature is reduced in approaching
the nematic to smectic-3 phase transition.

To understand the boundary between regimes I and II,
we recall our geometrical argument where we found that
the effective correlation length along the Aow direction
g+ =yrg for yr)) 1. Furthermore, S(0,q, q, ) is un-
changed by shear Aow. For length scales q

' large com-
pared to the correlation lengths this should remain the
case. Consequently, ~q„~ =1/g+ should mark the bound-
ary where distortion starts.

where S(q) is highly distorted we recall the dynamical
scaling argument presented in Sec. I. From this scaling
law, we expect that the shear rate y determines a thresh-
old q, [ ~ y

' ', Eq. (1.4b)] such that for q (q, we expect
S(q) to be distorted, but for q )q„ the order-parameter
Auctuations relax so fast that shear has little effect. We
now show that q, in fact separates the distorted regime II
from the undistorted regime III.

From Sec. I [see Eq. (1.4a)], we found that q, is defined
through the condition co( q, ) =y, where co( q ) is the
order-parameter relaxation rate I o(q) given by Eq. (3.9).
Therefore the condition co(q, ) =y gives

' 1/2

( y r 1)'/—, (3.31)

crystal close to the transition temperature. Shear Aow

must change the macroscopic behavior since for large
Deborah numbers the Auctuation clusters, which
inAuence both the static and dynamic properties of the
nematic liquid crystal, are deformed and suppressed. A
smectic cannot support, twist, or bend in the director be-
cause it changes the interlayer spacing. It follows that
the corresponding stiffness constants E2 and E3 of the
nematic liquid crystal must diverge at the transition tern-
perature as the size of the fluctuation clusters
diverges. ' ' In the same way, the viscosity of the b
orientation of the nematic phase, gb, must diverge at
T& s ~ since shear Aow would alter the layer spacing of
clusters which have their layer normal along the Aow
direction

The presence of the sheared Auctuation clusters leads
to a Auctuation torque which tries to orient n in a plane
perpendicular to the flow direction to avoid changes in
the interlayer spacing. This new torque is analogous to
the "normal forces" encountered in the rheology of po-
lymeric Auids. Shear Aow also reduces the magnitude of
the correlation volume, as we saw in the preceding sec-
tion. This will be shown to lead to a reduction under
shear Aow of E2, E3, and gb analogous to the shear thin-
ning of polymeric Auids.

A. Nematic hydrodynamics

The classical equation of motion for the nematic direc-
tor is given by the Ericksen-Leslie ' equation of nemat-
ic hydrodynamics:

(4.1)

where

I f=nXh (4.2)

BnN= —a) Xn
Bt

(4.4)

and with co =
—,
' V' X v the vorticity. The symmetrized

shear rate tensor A is

is the torque on the director due to the molecular field"
h= —6F/6n, and where I, is the viscous torque. The
molecular field is due to the torques on the director creat-
ed by the Auctuation clusters, which we refer to as the
Auctuation torque, and by a splay, bend, or twist in the
director field; that is, the elastic torque. We consider the
fluctuation torque in the following section.

The viscous torque (per unit volume) exerted on the
nematic director by an imposed Aow field v is

I,= —nX(y]N+yzA n) (4.3)

with N the total rate of change of n:

IV. CRITICAL NEMATIC HYDRODYNAMICS

In the preceding sections, we discussed the effect of
shear fiow on the microscopic structure factor S(q). We
will now use the results to investigate the effect of shear
Aow on the macroscopic properties of a nematic liquid

+
2 Bx~ Bx-

(4.5)

y& and y2 are viscosity coefficients which control nematic
Aow alignment and are related to the Leslie a parameters
by
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If v=yyx then Eq. (4.1) becomes

(4.6a)

(4.6b)

The value of h for this orientation is calculated in Ap-
pendix B. For low Deborah numbers y~ & 1, we find

2 2

h= — (yr) k~T5n„y — (yr) k~T5n x
1 . qo 1 . 2qo

8m.
((

9&r

Bn
il X 1 i + 7 (lX 21ly CX3n„,O) —h =0

Bt
(4.7)

2

+ (yr) ks T5n„y+0(y~) (4.12)

We see from Eq. (4.7) that a3 is proportional to the
Miesowicz viscosity i)b measured with n=n x (see Ap-
pendix C).

In Appendix C we show that Eq. (4.7) predicts that for
h=O, the n=z orientation is unstable if +20,'3&0 and
marginally stable if a2a3&0. Since +2&0, ' we expect
the n =z orientation (the a orientation) to be marginally
stable if a3)0. When +3&0, we show in Appendix C
that the a orientation is unstable and that there is a stable
solution with the director in the x-y shear plane with n
pointing almost along the flow direction (the b orienta-
tion).

The elastic torque in Eq. (4.7) is due to a spatial varia-
tion of n. In the one constant approximation
K=K =K =K

1 2 3~

(4.13)

In Eq. (4.13)
2

a =a + k T[1—
—,', (yr) + . ]

8m
(4.14a)

qoka T (4.14b)

If we include Eq. (4.12) in Eq. (4.7), we find

y, 8,6n+ ya25n~+ 6n„,yo, , 5n =XV 5n .
+N

h=KV n. (4 8) and

(4.14c)

B. Fluctuation torque

Close to TN s ~, a new torque appears associated
with the above-mentioned How deformation of the Auc-
tuation clusters.

From Eq. (3.1) if follows that for a uniform director
field the average molecular field h= —J d r5F/5n is

given by

h= —2 d q Cqn. q —
qo

co (q) =i — ++ . Kq 1

y) 2%N

1

2+N

2 1/2

(4.15a)

where

The origin of the renormalization of y, is discussed in the
following section. Looking for solutions to Eq. (4.13)
proportional to e' ~'+"'~" we find, for the mode spec-
trum co(q),

+Ci(nq —q(n q))]~/ ~
(4.9) (

R )1/2
Coo — a2O. 3

y&

(4.15b)

This integral is dominated by the region in q space
around q=nqo. This means that the term proportional
to C~~ in Eq. (4.9) can be dropped as it has a zero at
q=nqo. Furthermore, since the torque on the director is
given by n Xh, we also may drop terms in h proportional
to n. The result is

h=2Ci f d qq(n q)~g ~
(4.10)

h=2Ci f d qq(n q)S(q) (4.11)

is the first moment of S(q) under shear flow (with
q=nqo). In Secs. I and II we discussed the effect of shear
flow on S(q) so we are now in a position to compute this
fluctuation torque.

1. Fluctuation torque: The a orientation

We start by considering the a orientation, i.e., with n
close to the z direction.

In the spirit of mean-field theory, we now replace ~Pz~ by
its expectation value S(q) so

(i) Uniform precession To discuss .this mode spectrum,
we first restrict ourselves to q=0. We can then rewrite
Eq. (4.13) as a single equation for 5n (t ):

825n„+~N'8, 6n +co~~6n =0 . (4.16)

This is the equation of motion of a damped harmonic os-
cillator provided ~o is real, i.e., provided o;2a3 &O. If
cx2(x3 )0 then 6n increases exponentially in time. The
damping rate of the oscillator is r&' If (2w&) ' (.coo, the
oscillator is underdamped while if (2&&) ) coo it is over-
damped. The oscillation corresponds to a precession of
the director around the z axis. The + sign of co*(q) cor-
responds to the helicity of the precession. If +2'~ &0,
the angle of the precession cone decays to zero while if
0.20.'3 & 0, the angle increases in time.

We thus conclude that for yAO, the z orientation is
stable if a2a3 &0 and unstable if o.2cx3 )0. The point
a3 =0 marks the textural instability for yXO. It is clear
from Eq. (4.13) that we can consider a3 as a renormalized
Leslie parameter. If we follow the temperature depen-
dence of a3 on approaching TN sm ~, then for y =0, a3
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&T, (j ) = —
—,', ( jr)' in(r/g„)

a
T T

(4.18)

We now turn to the damping rate ~N '. The appearance
of this damping mechanism for the precession around the
x axis represents a violation of conventional nematic dy-
namics: unlike h we cannot adsorb h into a redefinition
of the Leslie parameters. By analogy to the theory of po-
lymeric fluids we will call the new term a "normal"
torque. It had not been noted in previous studies ' of
the dynamics of nematic liquid crystals since those were
restricted to the linear-response regime while 7 z ' ~ (y7 ) .

The effect of the new term is, as we saw, to stabilize the
a orientation. For ( 1/27.7v ) ) coo, the Precession is
suppressed since co( q = 0) becomes purely imaginary.
There is thus a threshold shear rate j' when 1/2&N=co0
beyond which there is only relaxation. Using Eqs. (4.14)
and (4.15) we find that y is given by

1/2
24 ( ~2)~3 1

(X

(
R )2 g7/0

(4.19)

Thus, since g- ( T T7v s z ), the tem—Perature at
which the director mode becomes overdamped scales
with shear:

d~~erges at T7v sm „as 7./g~~. Since, in dynamical scaling,
7. is proportional to g ~, a3 must be proportional to g'
Because a3 &0, this result predicts a sign change in a3 at
a temperature T, close to TN s~ ~. For j'~&&1, e3 =0
at T, where, using Eq. (4.14a),

q'ok T r( )/gll(T )
1

(4.17)3
g

0 8 t

This sign change of a3 appears to be documented in
the experimental literature. ' Typically, T, is at a tem-
Perature where t, =(T, —Tz s „)/T7v s ~ =0.01. As
we saw, Tt must also mark the stability limit of the a
orientation (i.e. , the a orientation is stable for
Tx-s -~ + T + T~).

Now consider the contribution of the term proportion-
al to (y7) in Eq. (4.14a) [which comes from the third-
order (yw) term of Eq. (4.12)]. This reduction of a~ with
shear flow is an example of the shear-thinning effect men-
tioned in the Introduction. Equation (4.14a) shows that
for y~ of order 1, the renormalization of a3 is suppressed.
Note that we need to go to rather large Deborah numbers
( jr=3) before the shear-thinning effect really becomes
significant. Because of this shear thinning, the critical
temperature of the textural instability is affected by shear
flow. If we set a3 =0 and use Eq. (4.14a) with j&0, we
find that T, is reduced by an amount ETt (y ) given by

co
—(q) =+coo+i ++ . 1 Eq

27N
(y«y) . (4.21)

The precession relaxes but the damping rate does not go
to zero for q=0. The two helicities have the same damp-

ing rates. For ~N' &&j ))y, on the other hand, there is
no more precession. The mode spectrum

Kq 1co+(q) =i +
+N

CO (q) —i ~ +CO o77v

Kq 2

V1
(y»y) .

(4.22)

2 2
qo 1 qo

ll —c2 kg T5n y c3 k T6n„x
I rrl

(4.23)

with c2 and c3 constants. The "one-dimensional"
power-law regime II contributes terms to h of order
(I/(~~pi)kii T(y7) which will become important at De-
borah numbers of order (gi/d ) with d the layer spacing.
This, however, is far outside the experimentally accessible
regime near T~ s „. If we compare Eq. (4.23) with Eq.
(4.14a), then we see that the renormalization of a3 is
much smaller for large Deborah numbers than for small
Deborah numbers:

q0kI, T
a3 —CL3= (jr))1) .

k„j~l
(4.24)

Shear flow has, for j'~))1, destroyed the fluctuation
clusters and, as a consequence, the renormalization of a, .
In essence, we are back in the regime of conventional
nematic dynamics for very large Deborah numbers.

The two helicities now have different damping rates be-
cause of the symmetry-breaking effect of shear flow. The
damping rate of co+ grows with j' as j' while co has a
q =0 damping rate co0~& which is independent of y. Near
T~ s~ „,coo7.7v ( —a2)/y, 7 which vanishes at T~ sm „.
We thus conclude that near TN s ~ and for y)&y, we
recover the original gapless mode for one of the two heli-
cities while the remaining helicity is strongly damped.
We now consider the fluctuation torque for large De-
borah numbers.

For large Deborah numbers, we saw from Sec. III [Eq.
(3.28)], that there are three different regions of momen-
tum space for S(q). The integral in Eq. (4.11) cannot be
performed analytically. The dominant contribution at
moderately large Deborah numbers is from region I with

( p7 gi ) since it contains the maximum of S(q ).
The contribution of region I to the molecular field is of
order (Appendix B)

aT =(T—T„, (4.20) 2. Fluctuation torque: The b orientation

(ii) Finite q modes For y=0, th. e mode spectrum
co(q) =iraq /y& of the orientational fluctuations is purely
imaginary and —as expected from Cxoldstone modes—
gapless. A perturbation in n(r) thus relaxes diffusively.
For 0 & y « j', the mode spectrum is

We now turn to the b orientation with the director
aligned along the flow direction. Let a3(b) be the a3
viscosity along the b direction. We start by noting that
we should expect the shear-thinning effect to be consider-
ably more pronounced for the b orientation. Recall that
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distortions in S(q) become noticeable if P(q) I o(q).
For n =1, we see from Eqs. (3.9) and (3.20b) that distor-
tions are expected for the b orientation if yr(q)qog 1

since q =qo. Since qog)) 1 near T~ s „,we apparent-
ly enter the regime of high shear rates much earlier than
for the a orientation where we saw that yr(q) ) 1 was the
required condition. For yrqog«1, perturbation theory
applies and

a3(b)=cx3+ gokBT (yrqok«1)R 1 + 2

8m.
gii

(4.25)

as before. In Appendix D we show that for yrqog)) 1

1 /3
1 r p v3

a3 (b) =a3+ —qok~ T6' yreok

v'3
Tc=

eokir ~qok~ T

—3

(4.27)

We found previously that along the a orientation, a3
remains positive until yw is considerably larger than 1

[Eq. (4.14a)]. Apparently, over a considerable range of
Deborah numbers both the a and b orientations are
stable. We will dub this effect "textural hysteresis. " The
dependence of the textural stability on shear rate is thus,
for T~ s ~ & T T, (i.e., where a3 is positive),

Deborah number

yr « 1/qo
1 «yr«1

9o
yr»1

a orientation

Stable

Stable

Unstable

b orientation

Unstable

Stable

Stable

We have restricted ourselves to shear thinning in this
section. The other signatures of non-Newtonian liquids
are "normal-stress" effects. They are present as well in
our case, as discussed in Appendix F.

1 «yrqog «qog (4.26)

using the method discussed in the preceding subsection.
The stability condition for the b orientation is a3 (b) &0.
Assume that T~ s „&T & T, so a3(b))0 for ye=0.
According to Eq. (4.26), a3(b) &0 for yrqog))1. The
shear flow apparently restabilizes the b orientation. The
critical shear rate j', marking the restabilization is given
by a3 (b) =0 or

+0(yr)', (4.29)

where co =j'z. The proper "covariant" generalization is

qoka T ~Woke T dNh-= N+, (4.30)

where N=Bn/Bt —r0Xn. Using Eq. (4.30) in Eq. (4.28)
gives the renormalization

0
2 2

y, =y, + k, T (4.31)

from which Eq. (4.14c) follows. The covariant correction
deriving from the dN/dt term in Eq. (4.30) leads to an
effective inertial term. More precisely, we must general-
ize Eq. (4.28) to

nX RN —IR dN
dt

=0 (4.32)

with

~ ~ qok~TIR (4.33)

acting as an efFective moment of inertia. However, as
long as the precession rate coo is small compared to the
shear rate j', these induced inertia terms can be neglect-
ed. Near T& s ~ as well as near T„coo vanishes so the
assumption coo/y «1 is valid in the most interesting
temperature regimes. We thus will retain Eq. (4.13) with
h the static normal torque, except that we always must
obey Eq. (4.14c) for y&.

D. Stiffness constants under shear How

For Kn/Bt=r0Xn, the term in large square brackets
must vanish as it corresponds to rigid-body rotation.
This means that h also must be a function of
Bn/Bt —coXn for a pure vorticity. We can now find the
dynamic corrections to h by computing h as a function of
co Xn for Bn/Bt =0 and then everywhere replacing m Xn
by co X n —Bn/Bt.

The calculation of h for a pure vorticity,
v=y(y, —X,O), follows the same steps as for a pure shear
flow with the result

m ~qok~ T ~2 ~ qo
2 2 2 2 2

(c0 X n)+ k~ Tro X (co X n)
12

C. Viscosity renormalization

BnnX y&
—coXn —h =0.

at
(4.28)

In Sec. IV 8 we computed the molecular field h assum-
ing n to be independent of time. For (r)/Bt)n&0, there
are actually correction terms which produce the renor-
malization of the dynamic viscosity y, . To calculate
these dynamic corrections we assume, for the moment,
that we have a pure vortex flow, i.e., A.n=0. The equa-
tion of motion then reduces to

The dependence of the a3 viscosity on shear rate and
the appearance of the normal torque were all conse-
quences of the spatially averaged fluctuation torque. If
we want to know the efFect of shear flow on the stiffness
constants then we have to consider the wave-vector
dependence of the molecular field. We first recall that,
formally, a nematic liquid crystal near Tz s ~ can be
mapped onto a normal metal close to a phase transition
into the superconducting phase. The smectic order pa-
rameter P turns into the complex Ginzburg-Landau or-
der parameter for superconductivity and the director
field into the vector potential ~ More precisely, if we as-
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n=z+M(r),
g(r) =y(r)exp(iqoz )

(4.34a)

(4.34b)

sume that on average n=z (a orientation) and that
4'(r) ~ exp(iqoz ), we can expand

h, (k)= —K3k 5n,

+Ciqo Jd q(q. &q' q' ~)

—q,5n. & ~q, ~')+c.c. ) . (4.40)

and use Eq. (4.34) in Eq. (3.1). This gives the free-energy
cost Fof a Auctuation:

= J r C„+C ~ iq—5n)y~ +A ~y~
Bg

+ —,'K, (V 5n) + —,'K~[z (VX5n)]

We replaced pqyq z by its expectation value (qrqyq i, ).
If we expand h (k) in powers of k then the lowest-order
(k =0) contribution to Eq. (4.40) was already considered
in Eq. (4.9). The next-order term is proportional to k
and can be absorbed into a redefinition of K3.

82K3K3CJqo&Jdqq„((qqqrqz)+c. c. )
(jk2 86n

+ —,'K3(VX5n) (4.35) (4.41)

where we added the usual Frank free-energy cost of a
nonuniform director field. We will choose
5n( r ) =5n( k )e '"'. Under the mapping

2e A
Ac

:.q 6n, =-C
2fPl

(with C~~ =Ci =C) b,F is transformed into the Ginzburg-
Landau free energy of a superconductor.

The molecular field h= —6F/6n is given by

h (k)= —[K (k„+k )+K3k, ]5n (k)

+CJ qo J d'q[q q'qq'q —k qolpql 5n (k)+c c ]

c}I (q) —yq„
Bqy

(q'qq'q —k)

=2qoC&5n q S(q —k+qoz)/y, , (4.42)

It is now immediately clear from the preceding sections
that K3 =K3 for j~~ ~ since fluctuations are
suppressed in the regime of large Deborah numbers.

We are thus required to compute the "vertex"
(y~yq k). The calculation follows the same steps as dis-
cussed in the calculation of S(q) and is discussed in Ap-
pendix E. Like S(q), the vertex obeys a diff'erential equa-
tion:

(4 36) where

4 2

(4.37)

where o;=x,y and where y is the Fourier transform of
y(r). Under the mapping fij/2e:qo 'h it transforms
into the diamagnetic current j= —cBF/0 A given by

I (q) [~+C q +C (q +q )]/
For y =0, the solution of Eq. (4.42) is obvious:

2qoC~6n q 1 k~T
&q' q' —w)o )3y~ I(q) I(q —k)

(4.43)

(4.44)

In the absence of shear Aow, one can now directly exploit
this relationship to find the renormalization of the
stiffness constant. The diamagnetic current of a super-
conductor is of the form yd V X ( V X A). The diamagnet-
ic susceptibility diverges at the critical temperature by an
amount proportional to the superconducting correlation
length. In the same way, the molecular field, for j=0,
has the form

so

2qo C~q„kz T
Bk' ~5n. ' ' (2~)' y31(q) aq,' l (q)

& V,q,*-k)o=

(4.45)

If we use this in Eq. (4.41), we can find the twist elastic
constant for y =0:

h(k)- Kk 5n(k)— (4.38)

with K diverging at T& s ~ by an amount proportional
to g. For y =0 the mapping gives

K (0)=K +
2C jqoka T

J(2~)3y3~ Bq, I (q)q qx

'2

(4.46)

K3 ~ qok~ Tg~~ . (4.39)
The twist elastic constant is, as expected, enhanced by
shear fiow. Using Eq. (4.46) gives

We now would like to know the effect of shear Aow on
Eq. (4.39). The operator yyB/Bx has, unfortunately, no
direct analog in the theory of superconductivity. Howev-
er, we can still employ the same method used by
Schmid in computing gd to find K3 under shear Bow.

Assume, for simplicity, that n=z+x6n e' '. Then,
from Eq. (4.30),

1
K3 (0)=K3+ qoka Tk~~ .

24m
(4.47)

This is the well-known result of de Gennes according to
which K3 diverges as

g~~
at T& s

The first-order correction in yr to (qrqpq i, ) is odd in
q and does not contribute to the integral in Eq. (4.41).
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The second-order term gives, after a tedious calculation
(Appendix E),

K~3() ) =K, (0)—0.016q',k~ Tg,~(yr) (4.48)

Comparing Eqs. (4.48) and (4.47), we see that the twist
stiffness constant "softens" under shear flow, in particu-
lar when j'~ approaches 1. We did not consider other
orientations for n or k but we expect that in the b orien-
tation the softening of K3 will start when j~qog is of or-
der 1, just as for a3. The K2 stiffness constant can be
treated similarly.

The correction terms in Eq. (4.40) are not necessarily
only renormalizations of K2 and K3 because the shear
flow breaks the rotational symmetry. The remaining
symmetry operations require that the free energy is in-
variant under simultaneous reflection in the x =0 (or
y=0) plane and "time reversal" y~ —j. This allows
new terms in h of the form A(jr)k k n (k) with A(x)
an odd function of x. We will not, however, pursue this
question in the present paper.

consequence. The integral is finite whenever P is
nonzero. This means that S(q) can onty diverge for
q„=o. The condition for a divergence in Eq. (3.19) is
then

I'0(0, qy*, q,
*

) =0 (5.4)

while the divergence is at

q*=qo(0, 6n, l) .

The critical temperature is then

(5.6)

Cjq05n

(5.7)

with, in the definition of I 0(q), A everywhere replaced by
2+28( lgl ). As we lower T, the highest temperature
where Eq. (5.4) is satisfied is, for n=z+6n,

(5.5)

V. PHASE DIAGRAM

We now turn to the mean-field phase diagram of the
Sm-3 —X transition under shear flow. We will deduce
the critical temperature from the condition that at
T& s z, S(q) must diverge for some q '. This of course
assumes that the transition remains continuous under
shear, which appears to be the case experimentally.

The first thing to note is that in the presence of shear,
T& s „must depend on the orientation of the director
with respect to the flow field. Since, as we saw, the direc-
tor can assume more than one orientation, this leads to
some indeterminacy in Tz s „ if in a given sample more
than a single orientation of n is realized. The next impor-
tant issue is the fact that we are at the lower critical di-
mension of the smectic phase. Thermal fluctuations,
which at zero shear reduce T& s „, are suppressed so
T& s ~ is expected to increase under shear flow towards
the mean-field transition temperature T

To compute this increase, we must include a fourth-
order I/I term in the free energy:

+= fd'r[ & lpl'+& I@I'+C„(n &—iso)gl'

Ciqo2

5n„. (5.8)

For 6n„=0, shear flow increases the transition tempera-
ture by an amount proportional to (yw) . It should be re-
called here that Onuki and Kawasaki found, for shear
flow in a binary-fluid mixture, a reduction in T, due to
fluctuation corrections to mean-field theory. The reduc-
tion was proportional to e (y) with @=4 d. Similar—
corrections are expected for our case as well.

Even if n is oriented perpendicular to the flow direc-
tion, there is still a contribution from the last term in Eq.
(5.8) due to thermal fiuctuations of the director. In the
spirit of mean-field theory, we can estimate this effect by
replacing on by its thermal average (5n ), and using
Eq. (3.26):

From our limiting expression for S(q) for small De-
borah number we find, using Eqs. (5.2) and (3.26),

k~ T(y v. )
Tx s g(7)=Tiv sm w(0)+ -96

+c, l(n x v)ql']+ (5.1)

The fourth-order term will be included through the
Hartree approximation, i.e., we replace it by
28 I/I ( lg I ), with ( Pl ) the average of lgl . In the ab-
sence of fiuctuations A (T)= A'(T T"). The actu—al
transition temperature for j =0 in the Hartree approxi-
mation is

(5.2)

In terms of the structure factor S(q),

(5.3)

We now turn to the transition temperature in the pres-
ence of fiow. From Eq. (3.19), we can draw an important

Cqo
, (bn,') . (5.9)

We will not compute the shear-rate dependence of
( 5n„~ ), but only speculate on the qualitative behavior.
For )' ~ ((1, ( 5n ) should decrease with shear rate be-
cause of the shear-induced gap in the fluctuation spec-
trum of the director. For y~ 1, the z orientation desta-
bilizes [Eq. (4.14a)] while the stiff'ness constants are re-
duced according to Eq. (4.48). We thus expect that
(5n ) starts to increase around jr= 1 since the fluctua-
tions in 6n are becoming large.

Returning to Eq. (5.9), since both ( I PI
~ ) and ( 5n 2 )

initially decrease with j' for y ~((1, we expect
T& s „(y) to indeed be an increasing function of shear
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rate. For yr) 1, ( ~g~ ) will have become very small
while (5n ) is growing. This leads us to expect that
T& s ~ will decrease with j for y~) 1, so we predict a
reentrant phase diagram. For temperatures T slightly
above Tz s „(0) we encounter, with increasing shear
rate, the smectic phase at T=T& s z( j ). For larger
shear rates (yr) 1) we should return to the nematic
phase.

VI. CONCLUSION

In this paper we have studied the effect of shear Aow
on the nematic phase near the nematic to smectic-3
phase transition. We found that when the external flow
rate y exceeded the order-parameter decay rate ~ ', the
imposed Aow field altered the spatial nature of the pre-
transitional smectic-3 Auctuation clusters. Therefore, by
measuring the dimensions of the distorted cluster
through the x-ray structure factor, one can obtain the
dynamical relaxation time r(y) of the fluctuations with
use of an inherently static probe. Because of the internal
length scale of the smectic density wave, namely, the lay-
er spacing d, we found that the condition for the onset of
the distortion of the microscopic Auctuations depends on
the relative orientation of the director with respect to the
shear plane. We first discuss the case for the a (n=z)
and c (n=y) orientations with the director n normal to
the x Aow direction. The gradient velocity direction is
taken along the y direction.

For large Deborah numbers j'~) 1, we found a regime
in reciprocal-q space where S(q) (the Fourier transform
of the density-density correlation function which de-
scribes a cluster) is highly distorted. Outside of this re-
gime S(q) is not affected. The bounds of this regime
form an anisotropic surface in q space (q=q, ) which is
determined by both the shear rate y and the reduced tem-
perature t =( T Tz s~ „)/Tz sm

—„. Physically, this re-
gime consists of those order-parameter Auctuations
whose wave vector q lies inside this surface, and satisfies
the condition j r(q) ) 1; these fluctuations are sheared be-
fore they dissipate thermally. (Alternatively, one may say
that shear Aow will distort those clusters for which the
equilibrium correlation length g exceeds this new length
scale ~q, ~

', because they will live long enough to feel the
effects of shear. ) We found that for yr) 1, ~q, ~

grows
rapidly, and the onset of distortion in S(q) sets in over a
narrow temperature range in the vicinity of T~ s
This sudden onset of distortion is due to the nonconserved
nature of the smectic-A order parameter for this transi-
tion. Onuki and Kawasaki found that for the binary-Auid
phase transition, which is described by a conserued order
parameter (the concentration), the growth in q, begins at
ye=0, and therefore the distortion of S(q) as a function
of temperature occurs gradually over a larger tempera-
ture range.

For y~)) 1 in the distorted regime, the Auctuations be-
come extremely anisotropic possessing an effectively very
large correlation length =yes along the flow direction.
In this novel limit, for length scales less than yrg, the

density-density correlations are extended and decrease
algebraically (that is, they exhibit quasi-long-range order)
along the flow direction, while they are cut off in the
plane normal to the Aow direction. The real-space struc-
ture would correspond to one-dimensional strings of dis-
torted clusters.

For the b orientation when the director (n=x) lies
along the Aow direction, the internal length scale d -qo '

(which has no analog in the binary-fluid problem) be-
comes important. In this case, we found that the distor-
tion in S(q) starts when yrqog is of order 1 (rather than
our previous condition of jr= 1). Thus we predict that
the onset of distortion of the clusters occurs significantly
earlier as one approaches Tz s ~ from the nematic
phase, because qog is much larger than 1 over most of the
temperature range in the nematic phase. ' ' In general,
we found that the distortion always results in a suppres-
sion of Auctuations by shear Aow and that the magnitude
of the order-parameter fluctuations —f d q S(q, y&0)
tends to zero as j~))1. This was also found by Onuki
and Kawasaki in their studies of binary Auids under shear
flow. Thus we expect that fluctuation domains with the b
orientation are suppressed earlier than those with the a
and c orientations. A similar orientational dependence in
the suppression of Auctuations was also found by Cates
and Milner in their analysis of the isotropic to the lamel-
lar I. phase-transition in surfactant systems. '

Aside from the effect of shear on the microscopic pre-
transitional fluctuations associated with the transition, a
number of macroscopic static and dynamic properties of
the nematic phase are also affected by shear. These in-
clude both the elastic and transport coefficients of the
nematic phase in the vicinity of the nematic to smectic- A
phase-transition temperature. At equilibrium, the pres-
ence of the Auctuation clusters results in a renormalized
stiffening of the nematic bend and twist elastic constants
K3 and K2 ~ This is because a bend or twist mode of the
nematic director results in a change of the layer spacing
of the cluster which is energetically costly. Additionally,
the viscosity coefficient a3 (proportional to gb) measured
in the b orientation with the director along the Aow is in-
creased in the presence of the domains since shear Aow
will tend to tilt the layers, which changes the layer spac-
ing and is unfavorable. We found that shear flow leads to
a reduction of the renormalized elastic constants K2 and
K3 towards their bare high-temperature nematic values.
Similarly, a3 is also reduced by shear flow for yugo/ 1.
This is the analog of shear thinning that is commonly en-
countered in polymeric Auids and signals the onset of
non-Newtonian behavior. What is interesting is that we
are able to directly correlate the underlying microscopic
mechanism (that is, the suppression of the fluctuations
due to shear), responsible for the thinning of the macro-
scopic transport coefficient.

The shear thinning of a3 has an important consequence
regarding the director orientation under shear Aow. At
low Deborah numbers near T~ s „, the fluctuation re-
normalized o.3 is positive, and the director chooses the a
orientation (normal to the flow). We found that any devi-
ation away from this direction results in a Auctuation
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torque which tends to reorient the director back along
the a orientation. However, when shear thinning sets in,
around yrqog=l, a& is reduced to its bare negative
value, and the b orientation becomes a stable solution.
The stability of the a orientation is unaffected so we pre-
dict a regime of coexistence for the a and b orientations
which sets in for y~qog = 1 and extends to y~= l.

The temperature —shear-rate phase diagram also shows
interesting behavior. At equilibrium, the nematic to
smectic-3 transition is at its lower critical dimension. "
Thus thermal Quctuations should be very important
which will tend to reduce the transition temperature
T& s „substantially below the mean-field transition
temperature for the phase transition. First, because shear
Qow suppresses Quctuations which are primarily responsi-
ble for a reduced T& s A at zero shear, we find that for
increasing shear rates, T& s A increases towards its
mean-field transition temperature. Cates and Milner'
also found a rise in the isotropic-to-lamellar L transition
temperature due to the suppression of Quctuations under
shear Qow. This is in contrast to the binary-Quid prob-
lem (where fiuctuations are not as important for y=0),
where shear Qow always favors the mixed phase and so
reduces the transition temperature. However, at very
high shear rates, our analysis suggests that the nematic
phase is favored to the smectic phase, and so we expect
an eventual reduction of T& s A for high shear rates.
Thus, for temperatures just above Tz s „(y=0), we ex-
pect a reentrant behavior from nematic to smectic 3 and
again to the nematic phase as y increases.

The analogy between nematic liquid crystals and non-
Newtonian polymeric Quids is not restricted to shear
thinning. The unusual Qow behavior of polymeric liquids
is due to normal-stress effects. In Appendix F we show
that normal-stress effects also occur near T~ s A. We
thus predict that close to T& s A, a nematic liquid crys-
tal will also exhibit unusual fiow behavior (such as the
Weissenberg effect ).

On a more fundamental level, we showed that, near
T& s A, the nematic director Quctuations acquire a
"gap" in their spectrum. The appearance of the gap
could be anticipated from general arguments based on

I

symmetry. In the absence of shear Qow, the free energy
of a nematic liquid crystal must be invariant under uni-
form global rotations of the director. This requirement
leads to the familiar splay, bend, and twist terms. This
symmetry is broken in the presence of shear Qow. The
corresponding Goldstone modes must acquire a gap in
their spectrum. In our case this requires a restoring force
on the director even for k=o, i.e., terms in F proportion-
al to 5n . The fact that the rotational symmetry is bro-
ken means that the symmetry arguments used to con-
struct the nematic free energy become invalid for finite
Deborah numbers. This suggests that the theory of
textural defects, thermal Quctuations, and other proper-
ties of the nematic phase all should be reconsidered as
well under shear Qow.
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APPENDIX A: THE STRUCTURE FACTOR
FOR LARGE DKBORAH NUMBERS

&(q)
ks T/(2m. ) y~

PA

J dZ Z exp[ —PZ B(Z'/ —A )]—

PA B2 Zl/3 g 2

dZZ / ~ 1 B(Z'/ —A)+ — +
3 A 2

(A3)

&(q)
ksT/(2~) y~

We point out that the main contribution to the above in-
tegral comes for 1/p & Z ) A . In this range,
B(Z'/ —2 ) ( I for y~&&1 and the expansion in Eq.
(A3) is valid. Collecting terms, we find that

PA
dz z

3 A

I

Here,

C=—1+AB+( AB) /2,
and

D = —g+ A+2

Next, we use the identity (see Ref. 35)
g 2z2/3

x c+Dz'"+
2

(A4) f x 'e ""dx =p I (v, pv) (u )O, Re@)0)
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with

ao
( 1)n a+n

I (a,x):—I (a) —g n! a+n

and I (a) is the gamma function. The three terms of Eq.
(A4) are then easily evaluated, which leads to Eq. (3.29).

APPENDIX 8: THE FLUCTUATION TORQUE
FOR THE a ORIENTATION

To derive Eq. (3.26), it is convenient to first give the re-
sult of a formal perturbation expansion of Eq. (3.15):

2(2y3yC3 ) ks T

(2~)

x fd'r
(1+Irl')' ' (86)

where the second expression is obtained after partial in-
tegration by q ~ After performing the derivative one
finds

2 2

2—(2y yC, )'k T fd'q
I o(q) y3

S(q ) = Sp( q ) +S i ( q ) +S2 ( q )

where

Sp(q): kii T/(277) y31 p( q) (82a)

where we redefined x =giq„, y =piq, and z =
gllq, in the

second step. The integral is straightforward and gives
ir /192. After using y3/A = r, we find Eq. (3.26).

To derive Eq. (4.12), we use Eqs. (82) in Eq. (4.11), but
now with n=z+5n:

Si(q)= ( ),
pq qy

(82b) h=2Ciqo f d q(q —qp5n)S(q+qpz) . (87)

S,(q)=
2

~ ( )
q. ~

o(q»
pq qy

We must compute

&= fd qS(q)

(82c)

(83)

Equation (87) is derived from (4.11) by two transforma-
tions: first redefine q —+q+ qon where n =z+ 5n, then
redefine q~q —qp5n to arrive at (87). (All terms propor-
tional to n are dropped since the torque is n X h. ) We will
use the perturbation expansion of S(q) given by (Bl) to
evaluate (87) term by term. First, it is straightforward to
show that Sp does not contribute to h. The first-order
term h '" is

for n =z. The first term gives ( I f ) . p, the value of
(Igl ) for y=0. Since for n=z

I o(q) =
I A + Cll(q, —qp) + Ci(q +q~ )]/y3

is even, there is no contribution from S, . The contribu-
tion of S2 is

2

&IO'& —&l0'I& =,= fd'q

4C3qpkii T a(q+qoz)
h ' "=—,d'q(q —q, 5n)

(2') I (q+q z)y

where

a(q+qpz)=yCiq q
—(q, +qp)5n + q, 5n

(89)
kBT

2/
(2~)'y3

2
a

d q I p(q) Bq I p(q)

2

and where, to lowest order in 6n,

I.p(q+qpz) =
I ~+C„(q,+5n q, )'

+C3(q3 —(qp+q, )5n)] /y3 (810)

(85) Substituting (89) and (810) into (88), we find

4C~qpkB T
(2ir )

(q —qp5n)q q
—qo5n~+q, 5n~

I i(1+b, /I i )

(811)

where 11=g+Cllq2+Ci qi —qp5n) and 5=25n. qiq Cll Ci). We define z=~llq, '„x (3(q qo5n ), and

y =g (q —
q 5n ). It is easy to see that to lowest order in 5n, only the y component of h '" survives (all other terms

vanish by symmetry):

4qokB Ty3y5n- y2

(2~)'W g, l

(1+ lrl')'

The integral is equal to ~ /4 so

(812)
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—m. q ok~ T(yr )5n„
(813)

The second-order term, using Eqs. (82c) and (87), is
2

h =2Ciqo d q(q —qo5n)(2) a
I o Bqy

Sp, (814)

where I p and Sp are evaluated at q+qoz. The x component is, after partial integration,

2C LqokB T
~ 2 3 2 I 8 1h' '~ = —

3 (y3y) d qq„(q qo—5n„)
(2m )

(815)

Since

BI p C/f
3 2CJ qy qo6ny +q, 6ny 1y y z y C

to lowest order in 6n,

h' '~„=— (y3y) f d q q„
C~ qok~T

x 3 5

(q, —qo5n, ) q~ q—o5n~ +q, 5n —1

I,(1+5/I, )

2

(816)

The remaining integral is evaluated in the same fashion as in Eq. (812) with the result

(817)

Following the same procedure, we find that h' '~ and h' '~, do not contribute at the lowest order. Finally, the third-
order term is

r

h~ ~=2C&qo f d q(q qo5n) I p Bq

The y component gives

'3

Sp . (818)

2Cj.q 0 ( 'Y 'Y 3
)'

3 3
12C, oroh' '~ = k~T f d q(q —qo5n )q,

(2m )' y y3(1 I+~)
6 ~Io

(r+a)7 aq
(819)

where Bl o/Bq is evaluated at q+qoz. Again, we make a similar transformation used in evaluating (812) to obtain

9 k, T
h' '~ = m. qo(yr) 5n„.

640
(820)

To lowest order h' '~„and h' '~, are nonzero.
For large Deborah numbers, the integration in q space in Eq. (87) must be broken up into the regions I—III defined in

Sec. III. We start with region I where ~q„~ 8 1/giyr:

h'=2Ciqo f dq f dq~ f dq, (q —qo5n)S(q+qoz), (821)

where g =guys. Even though So is symmetric in q —qo5n, we do get a contribution from So since the integration is
not over all of q space. Define new coordinates

q =q„—qo5n

qy =qy qp6ny (822)

To lowest order in 5n, h '=b, with

I /g' —q06n k~T
h =2C d d d (, )q q„q q, q, q—I /g —

qo 5n 2 + C)) q, + C~q q

(823)
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Only the integral over q„ is asymmetric so h =0. The integral over q gives

2

h = J dq f dq, CiqoksTln

2+C~~q, +C~ q +

3+C~~q, +Cz q, +

1 —qo6n

1
+qo5n

2 (B24)

In the limit 6n ~0

A~ de
4C i q Oks Ton, lg+

1
3+C~~q, +C~ q +

(B25)

a torque on the director and either the director will
evolve until it finds an orientation where the torque van-
ishes, or it performs some periodic motion. It is con-
venient to first introduce the ELP parameters
a, —a5. ' In terms of the o."s

The remaining integral has a logarithmic divergence. Let
q, =qo be the large q cutoff. Then

qokg T6nx
h = —8~ ln(q, g) (B26)

The first-order correction term S& contributes an
amount h '. Only the y component is nonzero. It is given
by

'gg =—CX4

ilb =
—,'(a3+a4+a6),

il, =
—,'(a4+a5 —az) .

(C2)

If we force the director to lie in the flow plane by apply-
ing a magnetic field H, then the torque I was shown by
Leslie to be

l, =y(a3cos 0—azsin 8) (C3)

', ', f'" dq. f dq, fdq, (q q, Sn), —
(2~)'y33 —

~ ~g" with 0 the angle between n and v. If we look for static
solutions with I,=0 then we must demand—2a(q)k~ T

X . (B27)
I o(q+qoz)

tanO= (a3/ai)'~ (C4)

For n=z
+ 2

(2') y —i~4 I 0

(B28)

APPENDIX C: NEMATIC HYDRODYNAMICS
UNDER SHEAR FLOW

q. ——41X10 'P,
g~ =24X10 P,
g, = 103X 10 P,

(C 1)

so naively one expects to see the b orientation (Fig. 4).
If we now relax the constraints of n then we can study

its evolution for a given shear Row. The shear How exerts

In this appendix, we will briefly discuss some classical
results on the dynamics of the nematic director away
from the critical temperature. In general, the dynamics
is a complex problem because the fiow field v(r) is cou-
pled to the director field n(r). In addition, the viscosity
of the nematic liquid crystal is anisotropic. In the sim-
plest case, we can pin n by the boundary conditions
and/or magnetic fields and impose an external Aow.
Miesowicz first measured the previously defined viscosi-
ties il& (along n) and il, and g, (perpendicular to n) under
the laminar shear fiow defined in Sec. II (Fig. 4). Typical
results for p '-methoxybenzylidene-p-n-butylanaline
(MBBA) are

Measurements of a2 and ~3 show that ~2(0. The sign of
a3 depends on temperature. Gahwiller found that o;3 is
negative close to the nematic-to-isotropic transition and
positive close to T& s z. This was confirmed by Pieran-
ski and Guyon. ' Typically, 0=10' near the temperature
T, where cx3 changes sign. McMillan showed that this
sign change of u3 is related to the appearance of Auctua-
tion clusters near T& s z . In the regime
T& s „&T & T, there is, according to Eq. (C4), no static
solution with n constrained to the Aow plane.

To find the orientation of n for a3) 0, we use the equa-
tion of motion for n [Eq. (4.7)]:

n X y, n+ y(a2n~, a3n„,0) =0,
at

(C5)

where we set h(0)=0, i.e., we assume H =0 and we
neglect smectic fiuctuations. For n=(cos9, sin0, 0), Eq.
(C5) gives

y, 8+y(a3cos j9—a2sin 8)=0 . (C6)

n=(n, n~, 1) (C7)

with n « 1 and n « l. Equation (C5) leads to two cou-
pled equations for n„and n:

p)n +Qcx2ny =0 (C8a)

If we look for static solutions, we recover Eq. (C4). As
mentioned, if o,2(0 then this is only possible if a3 (0 as
well. For a3 )0, the director performs a tumbling
motion, in the x-y plane. Next, try n close to z:
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f )71' +p CX3P1~
=0 . (C8b) harmonic-oscillator equation of motion:

If (aza3) (0, then Eq. (C8) has solutions with n precess-
ing around the z axis:

p1~ y +coo71~ y
=0

with coo=(y/y, )( —az)a3.

(C10)

n„=n„cos ( —a2a3t )'
'Yi

(C9a) APPENDIX D: THE FLUCTUATION TORQUE
FOR AN ARBITRARY ORIENTATION n

n, =n,'sin y
( —a,a,t)'" (C9b)

So if n2o. 3 & 0, then n=z is marginally stable. If o.2a3 & 0,
then n and n increase exponentially, so n =z is unsta-
ble.

Combining the results, we expect a "textural" transi-
tion at T, where o.3=0. For T) T„we expect the b

orientation while the a orientation is unstable. For
T~ s ~ & T & T„ the a orientation is marginally stable
and could be realized. Note that Eqs. (C8a) and (C8b)
can be combined to give the simple second-order

In this appendix we calculate, to lowest order, the
torque for general n on the nematic director due to the
pretransitional fluctuations assuming a uniform director
field. The fluctuation torque I &

= —n X5F/5n is, using
Eq. (4.9),

I ~= —2 f d q(n Xq)[Cll(n q
—qo) —Ci(n q) ]S(q) .

(Dl)

We first evaluate I & perturbatively (I „,). From Eq.

and

(nxq)q [Cll(n'q —qo) Ci(n q)][(Cll Ci)n q n —
Clln qo+Ciq ]

T3'V
[ a +Cll(" q q, )'+ C, (n X q)']'

(D2a)

I' „,= k T(y y) f d q(nXq)q„'[Cll "'q q
2773

Clln +Ci(n +n, )
X

[ W +C (n q —q, )'+ C, (n Xq)']'
6[(Cll —C )n q'n Cll q +C q ]

[A+CII n q qo) +Ci(nXq) ]
(D2b)

The integration range is limited by the validity condition I 0&)a and I 0(q) »p(q) of perturbation theory. To evaluate

„, we first redefine the origin to lie at nqo: qll=n q
—

qo and qi=nx(qxn). The dominant contribution to Eq.
(D2a) is from the region around qll-—qua=0:

k~T (n Xqi)[clln qll+Ci(qj b']
I (&)

(w+c '+c
i

i')'
'g

pg

7T

The integration domain of Eq. (D3) is, for n finite,

I', »a and I,'»P .

Since the term (n Xqi) is odd in qi, only the term proportional to Ci(qi) in Eq. (D3) contributes:

k~T (nxqi)(qi y)
g pg

2 ' ' '" ' " '(~+c '+c~ ')'

D~fi~~ p=nXqg„»d ~ qll~ll~
Then

C2 2 A Ak~ Ty 3y C~n„qo py (nXp)
2m'3 'g, g ( I+ I pl'+~')'

with the boundary condition being the larger value of r—:(p +co )' given by

r )&(yrqogin„)' (i.e. , I o)&a)

(D3)

(D7a)

r )) —y rqogn,v'3

1 /3

(i.e. , I o))P) . (D7b)

Going to polar coordinates
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+11} o
( X ) 2d d( )g

2
dy

r siil 9cos IP
—k T C n 2 2 2

217 c4 g}}/I
" —1 o (1+r2)3

with g =g}}n +pi(n„n—,2).
The new x axis is taken along n Xy and the new z axis along n. After performing the integral over g and p

kII Ty3yn qo(n X y)
dI"

(1+r )

where we used gI =CI /A. Finally, with y3/2 =r we get
r

(D8)

(D9)

I (1)
pert 8' ks Tq on„(n X y )R (y I },X (D10)

where

4

R„(yr)= dr dr(1+r ) o (1+r )

is a dimensionless reduction factor less than 1. We used the fact that the integral

(D 1 1)

f 2 3
dr =31r/16 .(1+r )

For y rqo gn « 1, we choose r given by (D7a),

(D12)

R =1-
n [(yrqogin„) '"]' (D13)

while for j zoon )) 1 we choose r given by (D7b),

R„= 16 1

3Ir [(1/&3)yI.q gn„]'
(D14)

Using Eq. (4.7) together with Eqs. (D10), (D13), and (D14) gives Eqs. (4.25) and (4.26). a3 (b) is defined in the same way
as a3(a ) in Eqs. (4.12)—(4.14).

We now calculate I' „', given by (D2b). Once again we redefine the origin to lie at nqo and look at the dominant con-
tributions around

qual

——q~ =0:

I ', '„=— ksT(y y) C q f dq}}f d q (nXq )(q +q n„)2m' X X

6[C}}n q}}+CI(qI)3']
5ID

(D15)

where I D= A+C}}q~~+CIqi and C=C~}n»+CI(n„+n, ) The inte. gration domain of (D15) is given by (D4). Since
(n Xqi) is odd in qI, we are left with

(yy3) CIq n dq}}dq (nXq )q
(2) B ~ 2 2 C

7T' I4
6[C}~n q~}+CI(qI) ]

ID
(D16)

We can write q„=q~}n +qil„. This leads to two contributions to I ' ' which we will call I „and I II, respectively,
where

kBT 12C}(CIn q}}qIIr„=, (yy, ) CIqon„dq}} dqI(nXqI)q}}n„ r'

k1|IT(l j 3) Ciqon„ f dq}}f dqI(nXx}(qJ )„
VT'

X X

Only even terms in q}} are included and we replaced n X q1 by (n X x)(qI)„because it must be odd in q„.
Starting with I ~, we replace n X qI by (n X y)(qI)» since it must be odd in (qi)»:

I „= k T(y7 ) C C}}qon n„(nxy) f dq}, f d qiq~~(qI) /I D .

Only the term q}}qil» needs to be included since all other terms are even in q}}. The second contribution is

B
I 5

D

(D17)

(D18)

(D19)

Going again to polar coordinates:
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2 2 4 2 2

2 5'm (1+r )
(D20)

Performing the angular integrals

(y~)'qo
I „= k~T n n (nXy)T (yr)n

(D21)

with

T (yr)=f dr 25 f dr
(1+r ) o (1+r )

The function T~(yw) obeys T~(0) =0 while

(D22)

T„(y~) -= 256
577 y ~qogn„

(D23)

for r
Going through the same steps for I ~ gives

k~T(y~) q2n2o. (nXx)r, =— C

8m.g
ii

3

where

4

U„(y )=f "d. ', , f"d.
(1+r ) o (1+r )

The function U„(0)=1 and

n +n +n, U-„(yw) — n +1 T„(y~) ~, (D24)

(D25)

U~(yr) =~ 32 v'3

y~qogn,
(D26)

for r )) l.
Adding I ~ and I ~ gives

kgT(yT) qo 1 C 1 C~~
n, —,'n~n„(nXy)T-„(y~) —(nXx) — U-„(y~) — —n~+1 T„(yr)

77
(D27)

I', —f d'q
I
ql'cS(q), (D28)

Comparing Eqs. (D10) and (D27), we see that the molecu-
lar field h has only x and y components to second order
in y~. The first term in I „,« is of the form of I

p t except
that it contains an extra factor —y~n n . It tends to
suppress the renormalization of cx3. The second term is
the frictional term discussed earlier in Eq. (4.12) in the
text. For y~qog (& 1, the term in square brackets is posi-
tive indicating a positive friction term. For yrqogn„» 1,
however, this term becomes negative. This "negative"
friction suggests that for y~qog)) 1, there could be com-
plicated time-dependent solutions for finite n . Also the
stability range of n=z for yrqog))1 may be very
small for the same reason. As an aside we see that
if we set n=z+5n, I5nI &(1, we obtain I
= —(kiiT/12)~ (y~) qon„(nXx) which is the same as
what we found in Appendix B, Eq. (B17), describing the
second-order contribution to the Auctuation torque.

The region of large distortion, where I o &(Il, contrib-
utes to I an amount I, of order

where S(q)-kBT/(y23y2qzc)1/3 and c-Ci-CII. The
integration is over the region I o «P or

(A+cq ) (y3y qoc . (D29)

If we define q =(y3yqo/c)'/ then

2 /3c 1~T
( 3 )2/3 qm (D30)

so

qok~ T(yr)
PqoP'" (D31)

For yrqog of order 1, this is smaller than I'„, by an
amount of order (1/qog)' and we can neglect I, . For
p 7" of order 1, I, becomes comparable to I pert If we re-
strict ourselves to the regime y~ ( 1, we can thus approxi-
mately set I /= I''„',+I', '„. Just as for n =z orientation,
the second-order term I „,'„does not contribute to the re-
normalization of n3.
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5n( r ) =x5ne '"' . (El)

APPENDIX E: THE VERTEX CALCULATION
FOR A SPATIALLY VARYING NEMATIC DIRECTOR

In this appendix, we compute the vertex &y q&q

We will assume n=z+5n(r) while g=y(r)e ' is the
smectic order parameter. The nematic director is posi-
tion dependent:

&yqpq k&=2qoCi5nq, f dt'exp[ —(t —t')I (q)) ]

x&lq,'„(r)I'& .

For t~ ~,
„&=2q C 5 q„[I (q)] 'S( —k+q ) .

This can be written as a differential equation:

(E9)

We start with the free energy, Eq. (3.1):

+=f d3r 3 ~pi +C„+ +Cj (Vi iq0—5n)yi
BQ

ro(q) —)'q.
&Bq

k&=2qoCi5nq S(q —k+qoz)

(E10)

(E2)

with V=(8„,5,0). The equation of motion for p(r, t) is,
Eq. (3.3),

r

+Ci [Vi iq05—n(r ) ] y +h (r, t ) .

(E3)

After applying a Fourier transform, Eq. (E3) becomes

which is Eq. (4.36).
We can solve Eq. (E10) iteratively in yq, BIBq~:

&q,q, —k&*= X &q,q,*-k&.
n=0

where

q S(q —k+qoz)
& q'qq'q —k &0=2qoCi5" r (q)

and

(El 1)

(E12)

2qo Cx&nqx %q —k
q, = —ro(q)q, +

Bqy

h, (t)+

ajq„&y,q,* k&0. (E13)Io q Bqy

We only need the derivative (a'yak')(axon ) & q
—&p* „&

to compute K3 in Eq. (4.3S). From Eqs. (El 1)—(E13),

where we used Eq. (El) and where k—:kz. Note that
compared to Eq. (3.8), there is a new term due to the po-
sition dependence of 5n(r). In the limit 5n~0, we can
neglect this term after which we recover Eq. (3.14):

qr (t) = f dt'exp[ (t i')I (q)]h—q(t—') ly3 (ES)

with the operator

1=2q Cq g yq„Ioq q

a'
X S(q —qoz) .

ro q Bq,
' (E14)

r(q)=
~ +C„q,'+ C, (q.'+q,')

'Yqx
73 ~qy

Recall that S itself is a power series in y [Eq. (B2)],

(E7)

in Eq. (ES). The matrix element is now, to lowest order,

We can get the lowest-order correction to (ES) by replac-
ing yq z with y k in Eq. (E4) and then replacing

hq(t) —&hq(t)+2qoCi5nq yq k(t)

S(q —qoz)=, g q,(2~)3 „0 I 0 q
'

Bq

Collecting terms of the same order in y gives

k~T
)'3ro(q)

(E1S)

B B ~ qOCJ. kBTqx 1 8 1 (Yqx)
4m. y3I 0(q) ro Bq, ro y3

a'
2 I gq 2 P (jq

a a' 1 a a'
aq, r, aq, qq~r, +aq, qq~ r, aq I,

1 8 I 8 1 0 1

y pq
2 I 3q I" 3q F' +O(y ) (E16)
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The term in yq is odd in q and cannot contribute to
K3. The first term gives Eq. (4.41). The term in (yq, )

gives Eq. (4.42).

Assume that at time t =0, a Iluctuation cluster f(r, t ) ap-
pears with n=z. The time-dependent free-energy density

f(r, t ) of the cluster is

APPENDIX F: NORMAL STRESSES
IN NEMATIC LIQUID CRYSTALS

a2 a2 B2
f(r, r)= A+C~~, +C, z+ zgy~

X&~&(r, i)~'& . (F4)

(Flb)

with P, and g2 the so-called normal-stress coefficients. In
general P, »gz, while they both depend on y. In the
limit y~0, g& and ttj2 go to a constant. These normal
stresses are in fact responsible for the unusual flow prop-
erties of polymeric Auids.

For Auids close to a critical point we can estimate the
singular temperature dependence of cr (or o ') from
dynamical scaling. The components of the stress tensor
have the dimension of a free-energy density. Near
T& s z, the only scaling quantity with those units is the
free-energy density kz T/g~~~gz itself. From dynamical
scaling it then follows that

k~T
o.(y)~, g(yr), (F2)

where g (x) is an unknown scaling function with
g( ~ )=0. Since in the hmit y~O, cr is proportional to
y we conclude that for small x, g(x)-x2 so

k~ Tr
(F3)

4((ki
1,2

Since, within dynamical scaling, r(g)-g ~ one does not
expect a very strong temperature dependence for g, but
this will depend on the precise relation between r and

g~~

and gt, which is not known.
We can check this result with a (heuristic) microscopic

calculation of the normal stresses. Normal stresses are
due to the elastic distortion of the fluctuation clusters.

As mentioned in the Introduction, if a non-Newtonian
Auid is subjected to shear Bow then this inevitably gen-
erates extensional Aow as well. The extensional Aow is
due to the appearance of the normal-stress differences
0 o zz 0

yy
and o' =o.

yy
—o.« in the stress tensor

which are zero for Newtonian Aow. It is common to
parametrize cr and o. ' as

(F1a)

Under shear Aow, the cluster will get distorted. The elas-
tic energy cost 5f(r, r ) of the distortion

5f (r, t ) = f(r+yytx, t ) f(r, t)—=yyt (r, t )
a

(F5)

for small Deborah number. We can think of 5f as the
work done by a force F=df /dx during a displacement
X=yty. The component cr „of the stress tensor is the
average of the restoring force F and displacement X over
all clusters:

«F»& . (F6)

In our case, this gives

o.„~ y ty (F7)

with an average over t and r. The same argument also
gives o.

yy
=u» =—0. After going to momentum space and

averaging over time, one finds that

o„,~ —f dt(yt} f d qq, [(A+C q, +Ciq~)T 0 Bqy

(F9)

If we use the perturbation expansion for S(q) then only
terms of symmetry q„qy survive. In "real sPace" this cor-
responds to the 1=1 spherical harmonic of the density
correlation function which has xy/r symmetry. The
only term of that form in Eq. (3.21) is the one proportion-
al to a(q). The resulting integral reproduces (unsurpris-
ingly) the dynamical scaling result for g, . Within our
heuristic argument, Pz=O.

X & ~q, (l)~'&] (Fg)

with T~~. Using the fact that & ~ g (t)
~ & is propor-

tional to exp —i lr(q) gives

~+CII& +C q )S(q)].(yy3)
Ioq "Bq
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