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A general formalism is developed to determine eddy viscosities for incompressible Aow of arbi-
trary dimensionality subject to forcing periodic in space and time. The dynamics of weak large-
scale perturbations is obtained by a multiscale analysis. The large-scale behavior is found to be for-
mally diffusive (first order in time, second order in space) whenever the basic Aow is parity invari-
ant, that is, possesses a center of symmetry. The eddy viscosity is in general a fourth-order tensor,
for which a compact representation is provided. Explicit expressions of the eddy-viscosity tensor
are given (i) for basic Aow with low Reynolds numbers, and (ii) when the basic Aow is layered, i.e.,
depends only on one space coordinate and time. A special class of layered Aow is two-dimensional,
time-independent parallel periodic flow, an example of which is the Kolmogorov flow. Such paral-
lel flow acquires a negative-viscosity instability to large-scale perturbations transverse to the basic
flow when the molecular viscosity becomes less than the rms value of the stream function of the
basic flow. For flows presenting less symmetry than the Kolmogorov flow, the first large-scale insta-
bility is usually found not to be transverse, thus breaking the spatial periodicity of the basic Aow.
Such nontransverse instabilities, observed in a lattice-gas simulation on the Connection Machine,
are reported in the companion paper by Henon and Scholl [following paper, Phys. Rev. A 43, 5365
(1991)].

I. INTRODUCTION

The idea that molecular transport can be enhanced by
turbulent motion is at the very core of turbulence model-
ing. It has been used since Ludwig Prandtl's time in very
diverse fields, including, for example, astrophysics (mix-
ing length theory of energy transport in stellar interiors)
and engineering (k-e modeling of complex fiows).

Transport of scalar quantities on scales much larger
than the (energy) scale of the turbulent flow, indeed, typi-
cally, leads to enhanced diffusion. However, transport of
vector quantities, such as momentum or magnetic fields (i)
need not be diffusive [instances of nondiffusive behavior
are the a effect governing large-scale instabilities in mag-
netohydrodynamics' (MHD) and its hydrodynami-
cal counterpart ' j, (ii) may result in depleted rather
than enhanced diffusion, possibly leading to negative-
viscosity instabilities, as found for the Kolmogorov
now''

Eddy viscosities, which control the large-scale trans-
port of momentum, are mostly introduced in a phenome-
nological way or derived within closure approxima-
tions. ' A systematic theory is needed to define the
frame of validity of the concept and to specify the steps
involved in evaluating eddy viscosities.

Various instances of systematic theories exist already
for special time-independent Aows. This includes parallel
periodic Aow ' ' and two-dimensional periodic Aow with
vanishing nonlinearity. ' ' " Generalization of such ap-
proaches involves, as we shall see, at least one novel con-

ceptual difficulty, connected with parity invariance.
To bring out this difficulty we define now the frame-

work of our investigation. We assume that there is a
basic incompressible fiow (p, u), where the pressure p and
the velocity u are periodic in the space variable x and in
the time variable t. ' This Aow is a solution of the D-
dimensional incompressible Navier-Stokes equations with
a force f,

B.u=0,

B,u+(u. B)u= —Op+vs u+f .

The force depends only on space and time and is periodic
in all the variables. Its space-time average over the
periodicities, (f), vanishes, and so does (u). ' Note
that spatial gradients are here denoted by the symbol B.

Our interest is to find the way the Aow is modified
when subject to a weak large-scale perturbation (P, W).
Before engaging in systematic studies of asymptotic ex-
pansions we provide some heuristic insight, using a
mean-field argument in the sense of Moffatt. ' The
(periodicity-averaged) Reynolds stresses R; = ( u;uz ) of
the basic Bow are modified through the perturbation by
an amount 6R; which contributes to the large-scale
momentum fIux. In the linear approximation, it can be
expanded in a gradient Taylor series:

M, = —a,,iW, —v, i BtW +O(B W).

When only the second term on the right-hand side is
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present, the change in the Reynolds stresses is linearly
proportional to the large-scale velocity gradient. Thus
there is an (eddy-diffusive) modification of molecular
transport of momentum. However, the presence of the
first term, directly proportional to the large-scale veloci-
ty, cannot in general be ruled out. Indeed, the presence
of the force driving the small-scale Aow breaks the Galile-
an invariance, so that a uniform large-scale Aow with
vanishing gradient may induce nontrivial changes in the
small-scale dynamics. This effect, known as the aniso-
tropic kinetic alpha (AKA) effect, is the hydrodynamical
counterpart of the a effect of MHD. ' ' In order for
the large-scale dynamics to be dominated by eddy-
viscosity effects, the AKA effect must vanish. There are
a number of special cases where this happens (see Sec. II
and Ref. 3). Previous systematic studies of eddy viscosi-
ties (see, e.g. , Refs. 5, 6, 9, and 10) used Ilows for which
the AKA effect vanishes. One exception is Kraichnan's
integral equation technique for eddy-transport coef-
ficients. ' He noticed the importance of parity invariance
in avoiding AKA-type terms. We shall comment on this
work at the end of Sec. II D.

For general multidimensional time-dependent flow, the

simplest assumption which guarantees the absence of an
AKA effect is parity invariance, i.e., the presence of a
center of spatial symmetry. Indeed, it is clear that the
entries of the tensor cx; I are pseudoscalars which change
sign under space reversal. Thus parity invariance rules
out first-order space derivatives in the large-scale dynam-
ics.

The paper is organized as follows. Section II contains
the general theory of the eddy viscosity. It is divided into
several subsections. Section II A presents useful notation
and properties of the linearized Navier-Stokes operator.
The asymptotic multiscale formalism is presented in Sec.
IIB. It is an adaptation of a formalism developed for
transport of scalars and magnetic fields. ' The assump-
tion of parity invariance is used for the first time in Sec.
II C. The general expression of the eddy viscosity (ten-
sor) is given in Sec. II D together with some comments on
the derivation. Section III treats the special case of low-
Reynolds-number Aow for which the eddy viscosity can
be obtained perturbatively. Section IV is devoted to lay-
ered Aow for which explicit results are available without
the low-Reynolds-number restriction. Detailed results
for parallel time-independent Sow (including variants of
the Kolmogorov (low) are given in Sec. IVA. Conclud-
ing remarks are made in Sec. V.

II. MULTISCALE FORMALISM
FOR THE EDDY VISCOSITIES

small parameter g. Note that we reserve the notation e
to denote the separation of scales (Sec. II B). Substituting
(2) in (1), we obtain to order il the following linearized
Navier-Stokes equations

a.W=O

a, W, +a, (u, W, +u, W, )= —a, P+va'II, .
(3)

Except for some remarks in the conclusion, we shall limit
our investigations to the linearized Navier-Stokes equa-
tions. Technically, this means that the limit g~Q is tak-
en before the limit of large-scale separation (e—+0).

An operator formalism will permit compact notation
in subsequent developments. Equation (3) is rewritten as

r

P &n &pe P
A W

—
W 0~ (4)

WP W8'

A w w =(8,—vB )6, +dk(5, uko+5k~u, ~ )
t J

Here, the bullet symbol o indicates that uk and u, act
multiplicatively.

When the linearized Navier-Stokes operator A. is re-
stricted to functions which have the same space-time
periodicity as the force, it will be denoted by A (and
similarly for its matrix blocks such as Apw).

We now discuss some useful properties of the operator
A.

We define the parity operator P as simultaneous rever-
sal of position and velocity with no change in the pres-
sure:

Px= x, Pu= u, Pp =p

When P(p, u)=(p, u) the basic flow is said to be parity in
Uariant. (This may require a change of the origin of coor-
dinates. ) For parity-invariant basic Aow, the linearized
Navier-Stokes operator has the following transformation
rules [an immediate consequence of the definitions (5)]:

&~tw= ~~w, &~wi = —~w~ P~ww=~ww

In the sequel we shall have to solve various problems of
the form

The D components of the velocity field perturbation W
and the pressure perturbation P have been lumped into a
( D + 1 )-dimensional vector (P,W ). [Capital Greek
letters such as iII will also be used to denote (D+1)-
vectors. ] The linearized Navier-Stokes operator A in (4)
is made of operator-valued matrix blocks defined by

ApI, =O, Ap~ =8, , A~p=B;,

A. The linearized Xavier-Stokes operator

p ~p +gP, u~u+ gW, g~O. (2)

The strength of the perturbation is controlled by the

Let (p, u) denote any solution, called the basic JlolJ, of
(1) with the same periodicity as the force f (say, 2m) and
with vanishing space-time average.

We introduce a perturbation by the following substitu-
tions: (C ) =0. (9)

Note that this is equivalent to stating that @ is orthogo-
nal (in the sense of the L inner product on periodic func-

(8)

where 4 is a prescribed (D +1)-dimensional vector field
which is space-time periodic. Since all entries of 3 given
in (5) begin with space or time derivatives on the left, it
follows that a necessary condition for solvability of (8) is
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e= 2 'e+(I —2 'w )(e), (10)

where the mean value ( )II ) can be taken arbitrary.
In particular, taking @=0,we obtain a general repre-

sentation of the nullspace of 2 in the form

with arbitrary =.

tions) to constants. The latter are obviously in the null
space of the adjoint A of A. To make (9) a necessary
and sufficient condition of solvability of (8), we shall as-
sume that the restriction J of the operator A to periodic
functions of zero mean value is invertible It. s inverse will
be denoted A . We observe that for large viscosities,

' may be constructed perturbatively, starting from
the (8, —vB ) ', the inverse of the heat operator, which
is uniquely defined on periodic functions of zero mean
value. Using 3 ' we can give an explicit representation
of the general solution to (8). We assume that the solva-
bility condition (9) holds; we write 4= ( )Il ) + )Il, and sub-
stitute into (8). Operating with A on the left, we ob-
tain the general solution of (8):

and

Cw, w,
=. (dT &—V'»„.

Bpw, =Bw,.I =&
I

I I (18)

We look for a solution of (14) which can be expanded
in powers of e,

p p(O) p(1) p(2)
(0) +e (i) +e (2) +O(e ). (19)

We substitute (19) into (14) and require that the result
vanishes to all orders in e. This leads to a hierarchy of
equations of which we shall need only the first three,
namely,

p(O)

Since B is linear in slow space derivatives, it may be fur-
ther decomposed as

B=B V

B. Asymptotic analysis
=0, (20)

We now consider solutions of (3) which do not have the
same periodicity as the basic How. The perturbation
(P, W ) is assumed to have nontrivial spatial variations on
a scale O(e '). If diffusive behavior is present on large
scales, it will take place on a time scale O(e ). It is thus
appropriate to use (as in Ref. 16) a multiscale formalism
with the "fast" variables t and x and the "slow" variables

T=e t, X=ex. (12)

In the multiscale technique, the perturbed flow (P, W) is
considered to be a function both of fast and slow vari-
ables which are independent (see, for example, Ref. 18).
The basic flow (p, u) depends only on fast variables.
Space-time periodicity is assumed for all the dependences
on fast variables. The appropriate dynamical equations
are obtained by applying the decomposition rule for time
and space derivatives:

p(1) p(O)
~ W(" +B W( (21)

p(2) p(1) p(0)
(2) +B (1) +C (o) =0. (22)

p(0) ( p(0) )—1 w) (23)

We now proceed to solve these equations. The key is
that the operator A depends only on fast variables, so
that any of the above equations has the form (8) discussed
in Sec. IIA, provided we consider the dependence on
slow variables as being parametric. Averaging is from
now on understood to be only over fast variables.

From (20) it follows that (P' ', W( ') is in the null space
of 3; therefore by (11),

0, +6 0, 8 8+EV, (13) Using this in (21), we obtain

P
(A+eB+e C) W =0, (14)

where V denotes partial derivatives with respect to X.
Use of (13) in (3) leads to

p(1) ( p(0) )
(i) +B(I—A & ) (W(())) (24)

This equation for (P"',W'") will be solvable provided
the second term has vanishing average:

where A which depends only on fast variables, has al-
ready been defined (5) and B and C are given by

( p(0) )
B(I c4 A )

( (0)~ =0. (25)

C=
Bws Bw~ '

Cww
(15) C. Parity invariance

The various blocks in (15) are given by

2vf „a„V—„+V„(n„u„i+f„u,~ ),

The condition (25), which expresses solvability to order
e, is a major source of difhculty in the eddy-viscosity
analysis. To understand this, we perform a block decom-
position of (25). We observe that (i) only the block Bww
in the operator B involves fast variables [see Eq. (16)],
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and (ii) that the average of any quantity having an opera-
tor 2 ' on the left vanishes since A maps zero mean-
value functions onto zero mean-value functions. It fol-
lows that (25) may be rewritten

v (w'"') =o,
V(P' ')+(B~ii,(I—A A )~~(W' ') ) =0.
Here, the notation (O)~iv is used to denote the WW'

block of the operator O. We now decompose further, us-
ing the fact that B is linear in slow derivatives [cf. (18)]
and that the slow gradient V commutes with operators
depending only on fast variables. We thus obtain

v ( w'") =o

v', (p"'& —a...v, ( w,"I)=o,

where

ct I
= —(B$ (I—A 'A ) ).

and

v (w'")=o
J J

v, (P' ') =0.

(30)

(31)

It follows from (31) that (P' ') is constant in the space
variable. Since the pressure always appears with a gra-
dient, this constant will be taken zero without loss of gen-
erality.

From now on, we assume that the basic fiow (p, u) is
parity invariant. This ensures the vanishing of the e; I
tensor. Indeed, by the definition (6) of parity, it follows
that the operator matrix block Bf ~ given by (18)

i n

changes sign under parity. By (7) (I—A
'

A ) ii
n I

remains invariant under parity. Hence the average in the
right-hand side of (28) vanishes.

Thus, for parity-invariant basic Aow, the solvability
condition associated with (21) reduces to

In (28) we have introduced a new notation: Given any
operator M, its average (M) is defined as an operator
acting only on functions which are independent of the
fast variables by

(29)

It may be checked that 0.;-& is the same third-order tensor
as considered in the Introduction. When this tensor is
nonvanishing, the conditions (27) prevent us from choos-
ing the leading term (W' ') of the large-scale perturba-
tion in an arbitrary way at T=0 and the analysis breaks
down. The physical reason for this breakdown has been
discussed in the Introduction: when an AKA effect is
present the large-scale dynamics is of first order in space
and in time, so that the appropriate scaling of the slow
time is not as in (12), but instead T =et (see Refs. 2 and
3).

D. General expression of the eddy viscosity and comments

To obtain the eddy viscosity, we must proceed to order
O(e ). For this, we solve (21), using (10):

p(1) ( p(0) )
(i) = —A 'B(I—A A )

( (o))

(p(1) )+(I A A)
&

(i)) (32)

where (P"') and (W'") are so far arbitrary functions of
the slow variables.

We now express the condition of solvability of (22),
considered as an equation for (P' ', W' '): the sum of the
averages of the second and third terms must vanish. Us-
ing (23) and (32), we obtain

( PIo~) (p(&) ) ( p(o) )
(BA B(I A A)) (W(0))

—(B(I AA)) (W—(/))
—(C(I—A 'A))

( (o)) =0. (33)

and

v & w'"&=0
J J (34)

v (w "&=o

'&=v;., V.V, &
W"'& —V, &p"'),

where

v,,i =v515; +([B~A 'B'(I —A 'A)]ii ~ ).

(36)

(37)

We finally separate (33) into its P and W components.
The simplification of the second term is done just as be-
fore for the second term in (25). We also use the fact that
averages of the form (Bpii A ' ) and ( CA ' )
vanish because 8~~ and C have no dependence on fast
variables. We thus obtain

The system of Eqs. (35) and (36) will be referred to as
the mean geld etIuations It is forma. lly a (pressure-
modified) diffusion equation with an eddy Uiscosity ten-sor
v,~, given by (37). Note that (35) has been repeated from
(27): Indeed, in the mean-field equations, the divergence-
free condition (30) stems from solvability to order O(e),
while the eddy-diffusion equation emerges to order O(e ).

A number of comments are now in order. Equation
(37) gives the eddy viscosity in compact form, but not in
explicit form, since it involves the inversion of the linear-
ized Navier-Stokes operator A, an inversion which can
be performed explicitly only in special cases (see Secs. III
and IV).

In the general anisotropic case, the eddy viscosity is a
fourth-order tensor, as is to be expected since it linearly
connects the large-scale velocity gradient and the result-
ing momentum Aux, which are both second-order ten-
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sors. ' In general the eddy-viscous term in (36) does not
have a vanishing divergence (in spite of the vanishing of
the divergence of (W' ') ); hence there is a nontrivial
large-scale pressure field ( P"' ) .

In the isotropic case, we have vijIm ~eddy~j(~im and
(35) and (36) reduce to

a, &W"')=v„„V'(W"'), V &W"')=0,

where &eddy D vpjj~ is the usual eddy viscosity. Isotro-
py is obtained when the basic Aow is random, isotropic,
homogeneous, and stationary, rather than deterministic
and space-time periodic. Our formalism remains essen-
tially valid in the random case, provided averages are
reinterpreted as ensemble averages. Even in the deter-
ministic case, isotropy is possible if the basic Aow has a
discrete invariance group ensuring the isotropy of
fourth-order tensor. Similar questions have been investi-
gated in connection with lattice gases. Here, we men-
tion only that in two dimensions, a basic Aow invariant
under rotations of 60' has an isotropic eddy viscosity.
This is the case for example of the system of triangular
eddies considered in Ref. 10.

Eddy diffusivities, which characterize the diffusion of
passive scalars, are easily shown to be positive. ' Noth-
ing similar holds for eddy viscosities, even in the isotropic
case, although in the latter case no specific example is
known with a negative eddy viscosity (we shall come back
to this in the conclusion). A simple instance of an aniso-
tropic How which can have a negative eddy viscosity is the
Kolmogorov fiow (see Sec. IV A). Physically, the
difference between eddy diffusivities and eddy viscosities
comes from the observation that, contrary to a passive
scalar, large-scale momentum is not just advected by the
basic Aow, but can be enhanced by shear.

In order to satisfy the solvability condition (25) which
arises to order O(e), we have assumed parity invariance.
Other conditions may suffice for special cases, such as
layered fiow (Sec. IV). A well-known class of three-
dimensional helical flows, which are clearly not parity in-
variant, are the Arnold-Beltrami-Childress (ABC)
Aows. ' Still, it may be shown that the solvability con-
dition (25) is satisfied as a consequence of the fiows hav-
ing the Beltrami property (vorticity and velocity are
parallel).

Finally, we observe that Kraichnan has proposed an al-
ternative strategy to derive exact formulas for eddy-
transport coefficients. ' Instead of performing a multi-
scale expansion on the basic equations (say, the linearized
Navier-Stokes equations), he derives an exact integral
equation which is then solved perturbatively, assuming
separation of scales. In the scalar case his technique

leads very quickly to an expression for the eddy-
diffusivity tensor which is identical to one derived by
multiscale techniques in Ref. 16. In the vector case, to
obtain the correct eddy-viscosity tensor, it may be neces-
sary to iterate Kraichnan's integral equation to the next
to leading order to capture all the relevant terms.

III. LOW-REYNOLDS-NUMBER FLOW

When the Reynolds number of the basic How is small
or, equivalently, when the viscosity is large, the linearized
Navier-Stokes operator 3 is very close to the heat opera-
tor 0, —vB . Thus the inverse of its restriction 3 to func-
tions of zero mean value can be calculated perturbatively
in powers of 1/v. For large viscosities, the basic Aow

may have a rapid variation with the fast time variable, on
a time scale O(1/v). This will be the case if the force f
in the nonlinear Navier-Stokes equation (1) itself involves
the time scale O(l/v) or smaller. We shall thus intro-
duce a new fast time variable

w=vt. (39)

From now on, in this section, it is understood that u is a
function of w and x. As before, u is assumed parity in-
variant.

Our first aim is to perturbatively calculate the inverse
of A. To avoid proliferation of indices, we shall here use
vector notation. We still use the block decomposition in-
troduced in Sec. II A. A, given by (5), is here rewritten as

0 a.
a v%+(au) +ua +u a (40)

where

Jv a~ a (41)

is the heat (equation) operator and (au) is defined by

((au)'w), = w, a, u, . (42)

Here it is understood that partial-derivative operators (in
fast or slow variables) such as a, V, and & act on any-
thing to the right unless immediately preceded by an
open parenthesis, in which case they act only within the
corresponding parenthetical group. The centered dot ~ is
used to denote a scalar product of the vector (or
operator-vector) entity immediately to the left with the
first vector entity encountered on the right; the rightmost
scalar products are to be performed first.

The inversion of A is done by solving the equation
after block decomposition, perturbatively in

powers of v '. After simple algebra, we obtain

—va-'m+ o(vo) a a +o(v ').
v-'m-'(I —a-'aa )+O(v-') (43)

We can now calculate the eddy-viscosity tensor, given by (37). As an intermediate step, we evaluate the vector0, , 0= (BA 'B(I AA ))— (44)
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where Q= (W' '). Note that, in view of (37), the first term on the right-hand side of Eq. (36) for the mean large-scale
field is (the ith component of ) vV Q+S. In our compact notation, the operator 8, given by (15) reads

0 V.
V —2va V+u. V+uV. (45)

It is now straightforward but somewhat tedious to perform the various block matrix multiplications involved in (44). In
this process, simplifications result from using the conditions a u=O and V (W' ') =0. We finally obtain

S=v-'( —&u Va-'aV X-'Q au) —&uV. a-'aV X-'Q au)+2&u VX-'a VQ au&+2&uV X-'a VQ au&

where

+(u V& 'Qu VQ&+&uV & 'gu VQ&)+O(v '), (46)

y —= I—a-'aa. (47)

is the operator of projection on divergence-free functions.
Identifying the coefficients of Vjvi(W' '), we obtain the following low-Reynolds-number expansion for the eddy-

viscosity tensor:

v... =v5, 5,, +v '( —2&ugf 'a 'a, a u, ) —2&u, & 'a 'a, a u, &+&u,W 'u, &5, +(u, & 'u, &5,

+2&u,m-'a, a.u, &+2&u,m-'a, a.u, &)+O(v-'). (48)

Obviously, this eddy viscosity is always positive (in the sense that it cannot lead to large-scale instabilities), since it is
dominated by the molecular contribution. If we assume isotropy, as explained in the discussion of Sec. II D, we can sim-
plify the final expression, using identities implied by isotropy and incompressibility, namely,

&u, & 'u„&=—5,„&u,yj 'u, &,

(u;& 'a a a, u„)=N[5; 5„,+5;,5,„(D+1)5;„—5, ](u & 'u ),

&u, m-'a, a, u„&=N[5; 5„,+5,,5„(D+1)5;5, ]—(u & a u ),
1X=

D(2 D D)——

(49)

Using (49) and V ( W~ ') =0 in (48), we obtain

v,dd =v 1+ [(2+D —D )(u & 'u )

+4(u & a u )]+O(v ) (50)

Let us now specialize to the case where the basic Bow u
is time independent or, equivalently, where it varies on a
time scale slower than 0(v '). The heat operator
reduces then to &= —a; hence

Veddy

(u a ~u)+O(v ) for D=2,
2v

1 — (u a u)+O(v ') for D=3.
15v

(51)

Since the Laplacian and its inverse 8 are negative
operators (as may be seen by noting that their Fourier
representations are —k and —I /O, respectively), it fol-
lows that in the low-Reynolds-number isotropic case, the
(small) correction enhances the molecular viscosity.

IV. LAYERED FLOW

By layered Aow, we understand the case where the
basic Aow u depends only on one space coordinate, say
x, , and on time. The general assumptions used
throughout this paper (incompressibility, periodicity,
vanishing mean value) are kept. As for parity invariance,
it may not be needed, as we shall see. Since (u) =0, the
first component of the fIow vanishes and we can write

u=(O, ui(x „t) ), (52)

a1 0

0 (53)

0 aiuj

where ui is a (D —1)-dimensional vector. Note that we
do not restrict the (slow) space dependence of the large-
scale perturbation: it may depend both on X] and on
transverse slow coordinates X~. For the layered case, it is
convenient to use a decomposition in which we single out
not only the pressure component but also the first vector
component, so that the operators are represented as three
by three matrices. For example, the linearized Navier-
Stokes operator (5) becomes

0
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where

ai y @i at v'ai
8

Bxi
(54)

aua o

0 (55)

Here, ai ' is defined as the (unique) inverse of ai for func-
tions of zero mean value, namely,

(a, 'f)(x)—:J f(x')dx'+ f x'f(x')dx',
0 27T 0

(56)

and 0& is the square of 0& '. In our block notation, the
operator B given by (15) reads

The meaning of the notation is as explained after (42) in
Sec. III.

An equation of the form A%=& can now be solved
explicitly and non-perturbatively, although it involves
partial differential operators with non-constant
coefficients (through ui). This is easily seen to be a conse-
quence of incompressibility. The inverse of 3 is given by

—a, 'O, a, ' o

where Vi and V~ are slow space derivatives with respect
to X, and X~, respectively.

The general theory of the eddy viscosity, developed in
Secs. II B—II D can now be worked out in fully explicit
form. This requires somewhat lengthy matrix multiplica-
tions; the intermediate steps are not very enlightening
and so will not be given.

The solvability condition, discussed in Sec. II C can be
put in the following form for layered Aow:

&u V q[(y, ') —O, ']a,u )=0, V V q, (58)

where O, is the heat operator defined in (54) and (O, ')t
is the adjoint of its inverse. This condition is of course
satisfied for parity-invariant Aow. It is noteworthy that
when the basic fIow is layered and time independent, the
condition is also satisfied. Indeed, the heat operator
reduces then to —VBi, which is self-adjoint, so that the
left-hand side of (58) vanishes.

Rather than writing the explicit form for the eddy
viscosity (37), we shall now give the explicit form for the
mean-field equations (35) and (36). With the notation

&W'"&=(q, Q, ), &P'"&=P,

we obtain

B= V) —2vd)Vi+Uq-Vq

Vq UgV i

V~

0

2vB i V i +Ui' Vy+ UyVy

Vi, +Vi Qi=o

arq= —V,P'+vV q
—&ui Vi@, 'ui Viq),

a TQi = ViP '+ vv—Qi+ Si,

(57) where

(60)

SJ & uiviiPli ui Viq & + & ui ViOi 'aiui@& 'ui Viq & + & ui Vg&i 'ui V'Q, ) +2v& ui. v,@i 'aiuiViq )
—&u, V,O, 'u, .V,qo, 'a, u, ) —&u, V,O, 'u, o, 'a, u, .V,q &+&u V .@ 'a u O 'u .V q &

+ & lliVi'Oi ui'ViQi ) + 2v& u, V, @ a, uiV, q ) —
& uiVi @, 'ui Viqo, 'a, u, )

—
& uiVi. o, 'ui@, 'a, ui. Viq ). (61)

Note that all the q and Qi factors could be taken out of
the averages, since they do not depend on fast variables.
This would, however, make the mean-field equations even
more cumbersome, because it requires the use of indices.

Many special cases can be worked out in detail from
the above general mean-field equations (60). In the next
section, we shall be able to carry our investigation further
and obtain explicit stability results by restricting the class
of layered Aows.

ui=0, ui=up= ail//, (62)

where the stream function g is an arbitrary 2m-periodic

A. Parallel time-independent flow

Parallel How is the subset of layered Aow which has
D =2, so that the stream lines of the basic How are all
parallel. In the time-independent case, the basic Aow has
the form

Viz+ V2g 0

2 A 2
Tq = —V iP'+ VV q

——V2q, (63)

a,g = —V,P'+ vV'g+ V',g — ", V',q.
7k 2 6P

v

function with zero mean value. A special case is the Kol-
mogorou ffow, for which P=cosx, .

Parallel time-independent Aow is a solution of the
Navier-Stokes equations (1) with a force f = (0,fz ),
where f2= —vaiu~. Note that, for this case, only the
viscous and force terms are nonvanishing in (1).

The eddy viscosity of parallel flow can in principle be
obtained using a stream function formalism simpler than
our general D-dimensional formalism. Here, it suIIIices,
however, to specialize the analysis of Sec. IV. For paral-
lel time-independent fiow, the mean-field equations (60)
take the following form:
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&=(it2), p= —,'(it' &. (64)

The eddy viscosities can be read off (63). A particular-
ly simple result is obtained when the large-scale perturba-
tion is transverse to the basic flow: Q =0 and q and P' de-
pend only on X2 and T. Thus (63) reduces to

BTq = V ——
& g2) V22q.

1
(65)

Hence the transverse eddy viscosity is given by

Here, q and Q denote the X, and X2 components of the
mean field (W' ') and

the quartic equation F(a, 1)=0 have a double root.
When p=O the double root is at o. =O. Hence, for small

p, the critical viscosity may be obtained perturbatively by
ignoring higher than quadratic terms. The result, ex-
pressed directly in terms of the moments of the stream
function t)'j of the basic flow, is

(71)

The direction of the wave vector (a„p, ) for v=v, is
given by

(66) p,
(72)

a result obtained, for example, in Refs. 25 and 9. Note
that the eddy viscosity changes sign at

i ( q2) 1/2 (67)

For the Kolmogorov flow v, =3/1/2.
Before discussing the case of general nontransverse

perturbations, we observe that the eddy diffusivity
governing the large-scale behavior of scalars is easily ob-
tained for parallel time-independent Aow using the tech-
nique of Ref. 16. The result is

(68)

q=QA, Q=QA, P'=P'=A,

A =exp(s T+i aX, + iPX2 ).

This leads easily to the following dispersion relation:

F(a,P)
a+p

where tt is the molecular diffusivity. Note that (66) has a
minus sign where (68) has a plus sign: for scalars, eddy
motion can only enhance transport. In contrast, the
transport of vector quantities, such as momentum, can be
depleted by eddy motion. In the special case under inves-
tigation, the discrepancy between (66) and (68) can be
traced back to a pressure effect.

We now turn to nontransverse perturbations. We look
for solutions of (63) of the form

It follows from (72) that when the Kolmogorov flow is
modified, for example, by adding to P =cosx, a small
perturbation o. cos2x&, then the first large-scale instabili-
ty obtained when the viscosity is decreased is no more
transverse but tilted (by an angle proportional to o for
small o ). Indeed, the perturbation breaks one of the fun-
damental symmetries of the Kolmogorov Aow, the sym-
metry with respect to the line x i

=n/2.
More generally, it is shown in the companion paper

that when perturbations of arbitrary functional form
(respecting the periodicity) and of arbitrary strength are
considered, the tilt angle can take any value between
—30' and +30'.

We observe that all the stability results in this section
can be extended to layered time-independent Bow with
D)2 components: if e& and k are the unit vector of the
x i axis and the wave vector of the perturbation (assumed
to be a plane wave in the coordinates other than x, ), then
the projection of the perturbation w on the two-
dimensional space spanned by e& and k decouples from
the D —2 perpendicular components, the latter behaving
as passive scalars.

An example of a nontransverse large-scale instability of
parallel time-independent Aow, obtained by direct numer-
ical simulation, is shown in the companion paper by
Henon and Scholl.

V. CONCLUDING REMARKS

F(a,P) = —va — 2v+4 7A

2ap+ ——v p'.6p 3 A,

v v
(70)

The stability of the basic flow to weak large-scale pertur-
bation is controlled by the sign of F(a,p) It is seen that, .
for large enough v, the function F is negative for arbi-
trary a and P, which implies stability. When
v(v, =&X, the function F is positive for a=O. Hence
there is a critical value v, of the viscosity where stability
is lost for some direction of the perturbation wave vector
(a,P). This value may be obtained by demanding that

We begin by summarizing the main results. The cen-
tral assumption needed for a systematic theory of the
eddy viscosity is a wide separation between the scale of
the basic fILow and that of the perturbation. Parity invari-
ance has been identified as a key constraint on Aow with
space-time periodic forcing. It allows a (leading-order)
diffusive response to weak large-scale perturbations. The
eddy viscosity is a fourth-order tensor with a compact ex-
pression (37). This expression involves (i) a fully explicit
operator 8, given by (15) and (16), and (ii) the operator

, the inverse of the linearized Navier-Stokes operator
(4) restricted to periodic functions of zero mean value.
The latter does not in general possess a closed-form ex-
pression and may have to be evaluated numerically or
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perturbatively (Sec. III). An important exception is the
class of layered Jhow of arbitrary dimensionality (Sec. IV).
For these a fully explicit (but not so compact) expression
of the eddy viscosity is provided by Eqs. (60) and (61).
For layered Aow, the constraint of parity invariance may
be replaced by time independence. Detailed results are
given for the special case of parallel time-independent
Jhow (Sec. IV A). Such fiow generally undergoes a
negati Ue-Uiscosity large-scale instability for a critical
value of the viscosity.

The only Aows known so far possessing a negative eddy
viscosity are highly anisotropic. It is an open question
whether isotropic fiow (in the sense of the discussion at
the end of Sec. II D) can have a negative eddy viscosity.
In the isotropic case, results are available only in the
low-Reynolds-number case (Sec. III); the eddy viscosity is
then dominated by its molecular value which is positive
and the small correction stemming from the eddy motion
is itself positive. As the Reynolds number is increased
this trend need not persist. A numerical search for nega-
tive eddy viscosities could be done by an optimization
strategy within the class of time-independent two-
dimensional Aow with sixfold rotational symmetry, a con-
dition which implies isotropy of fourth-order tensors.

Flow regimes presenting negative-viscosity large-scale
instabilities cannot be studied within the restricted frame-
work assumed in this paper, because a negative diffusion
equation constitutes an ill-posed problem. A correct
theory should include dissipative and nonlinear terms as
well. Actually, such a theory has already been worked
out for the Kolmogorov Aow. ' ' ' ' We summarize
some salient qualitative features. When the Reynolds
number is just slightly above the critical value &2, the
appropriate asymptotic equation has been obtained by
Nepomnyachtchyi and is a special case of the Cahn-
Hilliard equation. ' ' This equation includes second and
fourth-order space derivatives and a cubic nonlinear
term. The second-order derivative term, which has a
negative-viscosity coe%cient, is destabilizing, while the
fourth-order derivative term is stabilizing. Their balance
determines the wave number of maximum linear growth
rate. Nonlinear mechanisms then produce a succession
of long-lasting quasiequilibrium states; eventually, in a
finite system, a stable steady equilibrium emerges with
the dominant excitation at the minimum available wave
number. The Kolmogorov Aow has very special sym-
metries. For example, it is parity invariant and symme-
trical with respect to x& =~/2. For other parallel time-
independent Aow, the nonlinear large-scale dynamics is
quite different: the leading order is governed by a
Korteweg —de Vries (KdV) equation, while amplitudes
are selected by the next order.

We now make some comments on possible applications
of the results obtained in this paper. Experimentally,
two-dimensional Aow subject to spatially periodic forcing
can be realized by magnetic action on a thin layer of an
electrolyte. As discussed in Refs. 6 and 32, the stan-
dard analysis for the Kolmogorov Aow must then be
modified to include a (usually strong) linear friction term
coming from the interaction with the bottom of the con-
taining vessel. This does not affect the result that the first

large-scale instability to appear, when increasing the Rey-
nolds number, is transverse to the basic Aow. Modified
Aows with less symmetry should also be investigated ex-
perimentally and may display interesting nonlinear re-
gimes.

We turn to issues of theoretical interest. Very few
rigorous results are available for the three-dimensional
Navier-Stokes equations (see, e.g. Ref. 34). Global (for all
times) existence, regularity, and uniqueness results are
available only for small Reynolds numbers. There is no
such result for Aow in an unbounded domain and with
infinite energy. Consider the special case of unbounded
Aow driven by a space-time periodic force, and such that
the Reynolds (or Grasshof ) number, based on the spa-
tial periodicity, is small. Proving existence, regularity,
and uniqueness within the class of solutions with the
same spatial periodicity is easy. Without that restriction,
it may not even be true. Indeed, if the force is chiral (not
parity invariant), a large-scale instability of the AKA
type is possible. ' lf, however, parity invariance holds,
then our analysis indicates that large-scale instabilities
are ruled out and that existence, regularity, and unique-
ness will hold irrespective of the size of the domain.
Indeed, large-scale perturbations should be diffusively
damped, since at low Reynolds numbers, the eddy viscos-
ity is dominated by its molecular contribution. A
rigorous proof of this result could be based on homogeni-
zation techniques. '

The concept of eddy viscosity plays a central role in
the renormalization-group (RG) theory of turbulence.
The usual approach borrows heavily from the theory of
critical phenomena developed by Wilson. Our theory of
the eddy viscosity can be used to construct an alternative
approach which is more in the tradition of applied
mathematics. This requires an iterated multiscale expan-
sion which takes advantage of the observation that, in
RG problems, the dominant interactions are between
widely separated scales. Details will be discussed else-
where.

The main field of application of eddy-viscosity ideas, as
mentioned in the Introduction, is in turbulence modeling.
In the so-called large-eddy simulations, the effect of
sub grid-scale motion is often modeled by an eddy-
viscosity term. It is natural to ask if our systematic
theory of the eddy viscosity provides some justification
for such procedures. Consider, for example, the some-
what idealized case of turbulence which is homogeneous
and parity invariant (in a statistical sense). Let us denote
by u the (unknown) subgrid-scale velocity field, i.e., the
contribution to the velocity field of the Fourier com-
ponents having a wave number greater than the cutoff
K „imposed by the coarseness of the numerical grid.
The effect of u on weak perturbations at scales much
larger than K,', may be represented by an eddy viscosity
(tensor). In reality there is usually neither the required
separation of scales nor of intensity. Furthermore, the
eddy viscosity need not be positive, especially so when
the small-scale Aow has a quasilayered structure. If the
eddy viscosity is negative, higher-order derivative terms
will have to be included as we11. If, however, the
subgrid-scale eddy viscosity is positive, then its strongest
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effect will be on contiguous supergrid scales having wave
numbers just less that K „,so that the use of the eddy
viscosity becomes questionable. Still, the concept of eddy
viscosity has been probably the most fruitful idea in tur-
bulence, as far as practical calculation of turbulent fIow is
concerned. A reasonably complete and systematic theory
of the eddy viscosity is now available. It is a bit paradox-
ical that such a theory becomes inapplicable just where it
may be most useful.
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