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Quantum limit for information transmission
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In this paper, we give two independent and rigorous derivations for the quantum bound on the in-
formation transmission rate proposed independently by Bekenstein [Phys. Rev. Lett. 46, 623 (1981)]
and Bremermann [Proceedings of the Fifth Berkeley Symposium on Mathematica1 Statistics and
Probability, edited by L. M. LeCam and J. Neyman (University of California Press, Berkeley, 1967],
preceded by a heuristic argument showing why such a bound must hold. In both approaches, infor-
mation carriers are quanta for some field. The first method resembles the microcanonical approach
to statistical mechanics, where the strategy of overestimating the real number of states by relaxing
the indistinguishability of quanta was adopted. The second is based entirely upon maximum-

entropy methods. Amazingly enough, the results obtained by these physically unrelated premises
turn out to be identical, namely, that the single (noiseless} channel capacity is I,„=E/2M bits s
It is further shown that, in a finite time ~, no information can ever be conveyed unless the energy
threshold 2M/~ is reached, allowing the reinterpretation of the time-energy uncertainty in
informational-theoretic language.

INTRODUCTION

The constant k fixes the units of information; for
k = 1/ln2 it is measured in bits, etc. In the decodification
process, the observer picks up one from all possible
states, gaining an amount of information which is equal
to Shannon's entropy (1).

Whenever information transmission is concerned, the
important question arises, both from the theoretical and
practical standpoints, whether or not the laws of nature
might constrain the Aux of information through a chan-
nel. A first limitation is imposed by causality, since no
signal can travel faster than light. A second and less ob-
vious one is the rate at which any information may be
transferred through a given channel —the channel capa-
city. According to Shannon and Weaver, this capacity is
determined by the noise present in the channel. If this
noise is statistically independent of the signal, then the
channel capacity for a narrow-band channel of band-
width Ace/2m reads2

lmax
hen P
2~

where P and N stand for the signal output and noise
powers, respectively. This equation tells us that in the

Although the concept of "information" might be clear
for the layman s mind, it only acquired a scientific status
in 1948, when Shannon developed the mathematical
theory of information. ' Suppose that the information
mediator is one possible state of a system (a symbol, a
quantum state, etc.) such that the actual state the system
is in is not known a priori but only its occurrence proba-
bility p„. The amount of ignorance concerning a given
message content was defined by him to be'

H = —kg p„lnp„.

absence of noise (which can be achieved, say, by freezing
a channel subjected to thermal noise), no limitation on
the information Aow rate exists. Since the formula was
deduced on purely classical premises, it is quite legitimate
to ask whether similar conclusions translate into the
quantum domain or not.

Quantum channel capacity theory originated in the
early 1960s. Gordon ' gave two early derivations of the
quantum channel capacity for a noiseless channel. Nei-
ther gave the correct coefficient in the quantum channel
capacity, but both gave the correct dependenceI,„~(P/A)'~ . Stern and Marko had a similar mea-
sure of success by other approaches. For a noiseless
channel, there is a thermodynamic derivation of the
quantum capacity due to Lebedev and Levitin, which in-
cludes the effects of thermal noise. The simplest situation
regarding communication or information transfer is when
the steady state is obtained. Physically, the problem is
somewhat analogous to equilibrium thermodynamics,
and, indeed, thermodynamics has played an important
role in the development of steady-state communication
theory. Pendry, following this assumption, and dealing
specifically with a noiseless broadband channel, obtained
the quantum capacity formula

I,„=(~P/3')'~ logze bits s (3)

This result may be criticized from two different as-
pects. First, it is framed by means of the signal's mean
energy. Now, in Bose statistics of one level, the ratio of
mean energy E to energy standard deviation AE is N
where N is the total number of quanta. Thus, when the
system has few quanta, the energy spread is not small
compared to the mean energy itself. Hence, for signals of
modest information (low-excitation configurations), the
mean energy is far from representing the actual energy
employed to encode the message. A second aspect is that
this formula relies upon the steady-state assumption, an
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( 2+ER
Ac

(5)

This bound was originally inferred from black-hole ther-
modynamics, but has since been established by detailed
numerical experiments' and analytical arguments. ' '
Now, by transporting a system with information in-
scribed in it, one has a form of communication, albeit not
the generic one. According to Shannon's information
theory, the peak entropy H „that could be in a system
limits the maximum information I „that can be stored
in it. Because the system cannot travel faster than light,
it sweeps by a given point in time r) R /c. Thus an ap-
propriate "-receiver" can acquire from it information at a
rate not exceeding H, „log2e/r (as usual, logze converts
to bits). Substituting from Eq. (5), we have

~ ( 2' —1I „( log2e bitss

which is quite similar to (4).
A few years later, Bekenstein' reproduced a similar re-

sult based on the canonical approach for signals of finite
duration and mean energy E. In this approach, the quan-
tity H/E is maximized, and the vacuum is excluded as a
legal state for information transmission. At some stage,
some numerical calculations had to be performed, and his
final result was

I,„(0.2279E/A bits s

In this paper we give a heuristic argument based on
very general grounds supporting a linear bound like (5),
which is then followed by two independent and rigorous
proofs.

idealization seldom met in practice. The conclusion must
be that since (3) rests on the characterization of a signal
by its mean energy (canonical theory) and on the steady
state (thermodynamical equilibrium), this formula can
only be trusted on specific regimes and cannot be regard-
ed as a general limit for the information transmission
rate.

An alternative formula on the quantum limitations on
the information Aow rate was proposed by 8remer-
mann, ' '" using an obscure argument, whose crux is to
equate Shannon's noise with the energy uncertainty
5E)A/~ required by the time-energy uncertainty rela-
tion for a signal of duration r. His final result is

I,„= log&(1+4rr) bits s
~ E —1

27'
Bremermann's argument has been criticized for relying

on the classical Shannon formula to get an ostensibly
quantum result, and for the obscurity surrounding the
connection of noise power with the time-energy uncer-
tainty relation, itself a principle that invites confusion.

An alternative road to a bound like (4) was proposed
by Bekenstein' and relies on causality considerations
combined with the bound on the entropy H that may be
contained by a physical system of definite linear size R
and proper energy E

THE HEURISTIC DERIVATION

Let us now give a heuristic argument for a communica-
tion bound which does not rely on the entropy bound Eq.
(5). Suppose the information we wish to transmit is in-
scribed in a bosonic carrying field by populating its ener-
gy levels with quanta; each quantum configuration
represents a diA'erent message. Let ~ and E be the
signal's duration and energy, respectively, c. the lowest
non-zero one-quantum energy level, and EE. the smallest
energy separation between levels beneath E. Evidently
the total number of occupied levels is N ~E/Ac. , while
the total number of quanta is M «E/c. The total num-
ber of configurations is bounded from above by a formula
well known from Bose statistics:

A= (%+M —1)!
M!(X—1)!

All these configurations are a priori equally likely so that
the peak entropy of the signal is bounded according to

H, „(ln[(N +M —1)!]—lnM! —in[(% —1)!] .

Assuming X and M are large, the logarithms may be ap-
proximated with Stirling's formula. Substituting the
bounds on 2V and M, equating H, „with the peak infor-
mation, and converting to bits, we get

1/2
E Ac

log2 1+
Ac

max-
cAc.

1/2

log2 1+ bits . (10)

& 0.925EI „& ' bitss

which is of the same form as (6) and (7), although the nu-
merical factor is diAerent.

This argument, appealing as it is, suft'ers from two
drawbacks: it is only valid for large X and M, where
Stirling's approximation may be trusted, and it makes use
of the popular but nonrigorous version of the time-energy
uncertainty relation. %e now turn to two exact deriva-
tives of the linear bound.

The function f (x)=x '~ log2(1+x) inside the brack-
ets has an upper bound =2.32. Now, in order to be able
to decode the information, the receiver must be able to
distinguish between the various energy levels, which calls
for energy measurement with precision 6E &Ac. Ac-
cording to the time-energy uncertainty principle, the
finiteness of the measurement interval ~ imposes an un-
certainty 6E ~ h /~. Thus Ac ~ h /~ in order that the use-
ful information approaches I „. Furthermore, if R is
the spatial extent of the signal, we can use
the momentum-position uncertainty relation to set the
bound E/c )fi/R. In addition, on grounds of causality,
the inequality ~ ~ R /c must apply. Therefore,
&sb, E ~ &2vrhlr Putting all t. hese inequalities together,
it follows from (10) that
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SIGNALS WITH SPECIFIED ENERGY BUDGET

Instead of specifying the signal by its mean energy, a
misleading concept for low excitations, one can instead
specify the energy "budget" or energy "ceiling" for
signaling —the maximum available energy per signal.
Shannon's entropy, Eq. (1), reduces in this case to

upper bound on O(E), we focus attention on the alterna-
tive quantity N (E), which omits the field quanta indis-
tinguishability, thus overcounting the actual number of
m quanta states II (E). Technically speaking, this is ac-
complished by relaxing the energy ordering in Eq. (13).
In analogy with Eq. (15), one defines

H,„=k InA(E), (12) N(E) —=g N (E), (16)

where A(E) is the number of states compatible with this
energy budget, since all signal states with energies below
the maximum are equally likely. The problem reduces to
counting the number of signal states as a function of the
energy budget. This is a diKcult problem in general, as
has long been known from its analog in microcanonical
statistical mechanics. This counting was carried out nu-
merically for a few examples by Gibbons, ' and later by
Bekenstein himself. ' Recently progress has been made
towards the limited goal of establishing bounds on the
number of quantum states up to a given ceiling energy for
three-dimensional systems. ' We shall next brieAy review
this approach.

Let Q(E) be the number of states with energy up to
and including E that are accessible to a quantum system.
Evidently A(E) depends on the one-quantum energy
spectrum [co, ]. It is convenient to focus attention on
configurations with a fixed number of quanta m. If the
one-particle levels are ordered by energy, so that co, ~ co,

l j
when a; (a (degenerate levels are to be ordered arbi-
trarily), an m-quanta configuration is specified by the set
of occupied one-particle levels [co, ] (of course, some of

t

them may be repeated, corresponding to multiple occupa-
tion of a level). The number II (E) of m-quanta states
with total energy ~ E can be written as

a& a2 ( am

e(E —co —co — —co )a& a2 m

(13)

where 8 is Heavyside function. The disposition of the
limits on the summation has the effect of avoiding the
double counting of states that differ only by the exchange
of (identical) quanta. We shall assume a nondegenerate
vacuum, so that Qo(E)=1 for E)0. The number of
one-quantum states with energy up to E will play an im-
portant role in a discussion later:

N(E) =e(E)+f N(E E')—, dE',
o dE' (18)

as may be easily checked by iterating (18), having in mind
that dn /dE is a sum of 5 functions [see Eq. (14)].

This equation can be converted into an algebraic equa-
tion by taking its Laplace transform:

N(s) = (19)
s [1—sn(s)]

where f(s) stands for the Laplace transform of a function
f (E).

Now, a signal of finite duration as seen from a fixed
point may be represented by some function F(t) that has
compact support in time, i.e., it is nonvanishing only in
the interval [0,r]. In fact, it is mathematically con-
venient to regard F as periodic with period ~. This
"periodic boundary condition, " well known from quan-
tum physics, captures the essence of the finiteness of the
duration, while keeping the mathematics simple. Resolve
F(t) into its Fourier components involving the angular
frequencies 2~j/r for all positive integers j (negative in-
tegers are superAuous —recall that under second quanti-
zation of a Bose field negative frequencies just duplicate
the modes). The j=0 (dc) mode is to be ignored as relat-
ing to a condensate of the field. So the spectrum is
co =2rrfij /r, with j =1,2, . . . , and with no degenera-
cies. Thus, the Laplace transform of the one-quantum
particle number function is

which obviously satisfies

H,„=in II( E) (lnN(E) .

The advantage of this procedure is that N(E), which is
an infinite sum of 8 functions, satisfies a very simple in-
tegral equation' connecting the one-particle problem to
the field theory:

n (E)=—Q, (E)= g e(E —co, ) .
a=0

(14)
n(s)= f dE e ' g e(E —js),

j=1
where c.=2uA/~. This equation is equivalent to

(20)

It is tacitly assumed that there is no zero mode, i.e.,
co, )0. Thus n (E)=0 for E ~ 0.

The problem of finding the number of accessible states
Q(E) can evidently be reduced to that of counting all
possible m-quanta states:

(21)n(s)=s ' g e
j=1

Performing the sum in (21), substituting in (19), and in-
verting the Laplace transform N(s), we have

Q(E)= g II (E) .
m=0

(15)
"—1N(E)= . f e 'ds .

2iri r i m s(e"—1)
(22)

An explicit calculation of Q(E) by this means is in gen-
eral hopeless. Nevertheless, for the purpose of setting an

This integral is performed in the Appendix, and the result
1s
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N (E)=2((&&~)) (23)

and [[x]] stands for the integral part of x. Combining
(23) and (17) gives and

n

g p, (lnp, +Pro, ) =0
1=1

(31)

=0 if Er/2vrfi( 1
H E ~ Er ln2/2rrA' otherwise . (24)

CX

lnp = ———/3' —1 . (32)

This result teaches us that for a pulse of duration z, no
information can ever be conveyed unless the energy
threshold E&~ '2~% is reached. Furthermore, it leads
to the channel capacity

cz = —1V (33)

Having in mind the normalization condition (27), we
solve (32) and (31) for o. and lnp:

( bit 1

2M
(25) pM.

p =e
J (34)

We shall now proceed to an alternative derivation of Eq.
(25).

The insertion of (34) into (28), with the aid of (26) and
(27), yields

H,„=/3E . (35)

THE INFORMATIONAL- THEORETIC APPROACH

In this section we deal with an approach which is very
akin to what information-theory practioners used to con-
sider. As before, the information carriers we consider are
quanta distributed among the various energy levels co . If
X is the number of quanta in a given mode j, and N is
the total number of quanta consumed to encode a mes-
sage, then the total energy spent in the message is

Notwithstanding the kinship between this formalism
and canonical theory in statistical mechanics, these for-
malisms are conceptually very diA'erent. Here E stands
for the actual energy spent upon encoding the message,
rather than being the mean energy. Furthermore, the
"inverse temperature" /3 is not a free parameter fixed by
the heat reservoir, but is determined by the normalization
condition (27)

E= g N, co, =N g pjcoj,
j=1 j=1

(26)

n

g g, e '=1,
j=l

(36)

Pj=1 (27)

where p =N /N stands for the probability of finding a
quanta in the jth energy level. The above sum is per-
formed for all j (n levels such that ~„(E.Obviously,

where g stands for the jth-level degeneracy. In order to
solve this equation, first notice that since

n oo

gg)e '(gg, e
j=l j=l

if we define P* through
The information conveyed per quanta is

h= —gplnp, .

Since we wish to obtain the optimal transmission rate, the
various probabilities p; must be obtained by maximizing
the total information conveyed by all N quanta, 0 =Ah,
while enforcing the conditions (26) and (27). This is ac-
complished by varying the quantity

n oo

age '=age
j=1 j=1

then

p&p*,
and /3* satisfies the equation

p co-
g.e '=1 .

(37)

(38)

(39)

H'= —Ng p, lnp, —a g p /3N g p, ~/, —(29) Therefore, putting (38) and (35) together,

where a and /3 are Lagrange multipliers to be determined
later. Variation of this equation yields

H, „~/3*E . (40)

—5N g p lnp, +/3 g p co

[a+/3N~ +N(1+lnp, )]5p =0 .
j=1

(30)

Here Mt and 6p are to be regarded as arbitrary and in-
dependent variations. Thus

Owing to the fact the pulse duration ~ is the unique di-
mensional parameter involved in the problem, on dimen-
sional grounds Eq. (39) should yield /3* o-r '. Thus, re-
gardless of the nature of the spectrum Ice J, a bound like
(5) must hold [see Eq. (40)], although the numerical factor
could only be determined after the signal's spectrum is
specified. Adopting the periodic boundary condition al-
ready discussed in the preceding section (no degeneracies
means g. = 1), Eq. (39) for /3* reads



QUANTUM LIMIT FOR INFORMATION TRANSMISSION 5341

2vrkP* =1
~

7

Summing up the above series yields the equation

1 =2
1 —exp( 2'—fig* /r )

whose solution is

(41)
the single-channel efficiency in a multiple-channel
transmission system as r =I,„(N)/NI „(1), then
r =log&A/N drops very fast with the increasing number
of channels N (for instance, for a ten-channel communi-
cation system, the single-channel efficiency drops to
=33%).

REMARKS AND CONCI. USIONS

~ ln2
2mB

(42)

Putting (40) and (42) together and converting information
to units of bits leads to the noiseless (single) channel capa-
city

I,„= bits s
2m'

A remark is in order. The sum in Eq. (36) runs over
j =1, . . . , n, where n is the number of levels beneath E,
the energy stored in the message. Thus, if E & m &,I,„=O. For the period boundary condition prescrip-
tion, this means that, unless the energy threshold
E )2~6/~ is crossed, no information can be conveyed, in
complete agreement with our earlier result.

It is needless to stress the technical importance of
enhancing the information transmission capacity. But
how could the above limit be overcome? The obvious
way to do it is to endow the communication system with
many channels. Fortunately, the above formalism can be
easily adapted to tackle many channels. If N is the num-
ber of identical channels present in the configuration,
then we should have N times the replica of the single-
channel spectrum. Thus the multiple-channel con-
figuration can be regarded as a single-channel problem,
provided we replace the primitive spectrum by an N-
fold-degenerate spectrum, i.e., g- —+g'=Ng . Therefore,
in this situation, although Eq. (40) follows unchanged,
(39) must be replaced by

(44)

The counterpart of Eq. (41) for N-channel configuration
is

Ng exp
j=1

2vrfiP* j (45)

Summing up the above series yields for P*,

P*= ln(N + 1) .
2RA

(46)

Inserting this solution into the capacity formula (40) and
converting to units of bits yield the final result for mul-
tichannel communication systems:

I,„(N)= log&(N + 1) bits s
2~%

(47)

It is worthwhile to remark that the enhancement of the
information transmission rate is payed at the expense of
reducing the single-channel capacity. Indeed, if we define

Focusing attention on the issue of the information car-
riers (photons or phonons in a crystal, sound waves in a
pipe, etc. ) allowed us to insert information theory within
the realm of physical science and to draw important con-
clusions regarding the process of information transmis-
sion. Here we considered the information carriers to be
field quanta, while a message consisted of a particular
quantum-field configuration. We dealt with the problem
of information Aow from two entirely different physical
standpoints.

Three ingredients went into both proofs: the periodic
condition approximation, the assumption that the zero-
frequency mode cannot be used in signaling, and the
characterization of signals by occupation number. Let us
discuss them in turn.

By viewing the signal as periodic, one obtains a simple
form for the frequency spectrum. This sort of approach
is quite common in physics. Arguably, it would have
been more realistic to look at signals that turn on and off
abruptly. In that case, there are no sharp one-quantum
energies; rather, all levels are broadened. One way to
proceed then is to use Gabor frequency-time cells' to
partition the phase space occupied by the signal. To each
such cell is assigned a Gaussian modulated sinusoidal
wave which takes over the role of the pure sinusoidals in
the Fourier representation of the periodic signal and em-
bodies the idea that the energy levels must be broadened
in inverse proportion to the duration ~. If all cells are
chosen to extend a time ~, it is natural to choose the cen-
tral frequencies of the Gaussian wave packets to corre-
spond to the energies co =2vrjA/~, precisely the frequen-
cies figuring in the periodic-boundary-condition approxi-
mation. The energy spread of a wave packet is then
—2'/~. With this choice it is easy to grasp the effect of
the periodic-boundary-condition approximation.

For a given energy E, a many-quanta state with

g co )E was excluded in the periodic-boundary-
condition approximation. However, if the energy sum
exceeds E only by a quantity of order 2~6/~, the state is
allowed in the present description because it is possible
for the true energies of several of the quanta to be on the
low side of the central energies of their Gaussian packets.
Of course, the larger the excess of g co over E, the less
probable the state, for if the state is a one-quantum state,
the quantum's energy must lie on the outskirts of the
Gaussian packet to keep below E. This situation has low
probability. If we deal with a several-quanta state, the in-
dividual energies can lie closer to the central energies„but
there must be a trend toward the lower-energy side.
Thus, although the individual quanta are not at very im-
probable energies, the product of several probabilities
smaller than 1 will cause the overall configuration to be
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unlikely. Thus, in the exact treatment, extra states be-
come available, but these states have low probability.

We must also note that some states which were permit-
ted in the periodic-boundary-condition approximation
become, in the exact treatment, low probability states.
The states in question are those with g co within a quan-
tity 2m'/r on the low side of E. This is because with
non-negligible probability some of the quanta involved
can lie on the high side of their Gaussian peaks, and
cause the true total energy to exceed E. This effect partly
neutralizes the gain of states discussed above. The con-
clusion must be that the periodic-boundary-condition ap-
proximation is likely to only somewhat underestimate the
number of states. We thus venture to conclude that (25)
is likely to be only a little below the true linear bound in
the exact treatment.

In our derivations we excluded the mode with j =0. If
it were included in our derivation it would have led to an
infinity of states for any energy. This is because we can
form arbitrarily many states by having a varying number
of quanta with zero energy, since all these have no ener-
getic cost. To understand why the zero-frequency mode
must be excluded, one must distinguish between the situ-
ation where the signal is periodic, and the one where it is
sharply limited in time. In the first case, the periodic
boundary condition is exact; the zero-frequency mode in
question sets the dc level of the signal. This dc level can-
not serve to send information. It is permanent, and does
not turn on when the signal is sent, so that the signal's in-
formation is not coded in it. At best, the dc level conveys
some information about the channel, but is not specific to
the signal. The zero-frequency mode thus has no role in
signaling. When the signal is sharply bounded temporal-
ly, the spreading of frequencies precludes the existence of
a mode with exactly zero energy. Even as the center of a
Gaussian wave packet, co =0 is very far from reality, be-
cause it would have as many negative frequencies as posi-
tive. Hence, in the periodic-boundary-condition approxi-
mation, we should not include the j =0 mode.

In our derivation, the signal states were classified by
occupation number. This means that, strictly speaking,
our bound (25) is valid only for a communication system
with a transmitter that prepares occupation number
states, a channel in which the occupation number opera-
tor is a constant of the motion, i.e., propagation in vacu-
um, and a receiver which measures occupation number,
e.g., a photomultiplier for an optical channel. As yet no
study has been made of the inAuence of other choices of
states (coherent, squeezed, etc.) on communication via
signals with a definite energy budget. However, if the sit-
uation for signals with definite mean energy is any
guide, ' the capacity for these alternative signal states
can only be smaller than for occupation number state sig-
nals. We thus conjecture that bound (25) is true for any
type of signaling states. Progress in this direction will be
reported elsewhere.

The remarkable agreement between the quantum capa-
city we obtained starting from two completely unrelated
physical premises [see Eq. (25) and (43)], namely (i) the
overestimation of the number of possible states for signal-
ing by dismissing the indistinguishability of quanta in the

microcanonical formalism, and (ii) the maximum-entropy
approach, seems to point out the universal character of
our result. Last, but not least, the fact that no informa-
tion can ever be conveyed unless the signal duration ~
and proper energy E satisfy the relation E~ ~ h allows the
reinterpretation of the time-energy uncertainty relation in
informational-theoretic language.
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and can be expressed in the form and

I(x)= a —1 1 lna cos(2mxn )

2~' „=, n'+P'
n sin(ny) rr sinhp(~ —y) O~y ~2m, (A6)

1 n sin(2vrnx )

n +p
where p—= lna/2m. . Recalling the identities

after some tedious algebra, we obtain for I (x),

(A7)

cos(ny) m. coshP(vr —y ) 1

, nz+pz 2p sinhpm. 2p~

where [x] stands for "x modulo integer, " i.e., the nonin-
teger part of x.
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