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We emphasize that the ordinary differential equations of a continuous dynamical system, or at
least of equivalent systems, can be reconstructed from numerical scalar time series. Methods are
exemplified in the case of a strange, chaotic attractor generated by a mathematical model, namely, a
Rdssler band. Resultant validations rely (i) qualitatively on comparisons between original and
reconstructed phase portraits, and (ii) quantitatively on comparisons between generalized dimen-
sions D, of original and reconstructed attractors. Some of the many lines of research offered by the
presented results are discussed to stress potentialities of this kind of reconstruction.

I. INTRODUCTION

There is now a great interest in the study of the theory
of nonlinear dissipative dynamical systems, with applica-
tions to several miscellaneous fields, including, for in-
stance, mechanics of structures, hydrodynamics, general
physics, chemistry, biology, ecology, epidemiology, and
economics. Indeed, the number of actual and potential
applications of nonlinear dynamics is tremendously big
because most systems existing in nature may be described
by mathematical models such as nonlinear maps and
flows. To gain a background knowledge on such topics,
the reader may consult textbooks such as those by Guck-
enheimer and Holmes,! Thompson and Stewart,> Deva-
ney,’ or Bergé, Pomeau, and Vidal,* and also increasingly
prolific literature.

Particular attention is paid to systems producing
strange and chaotic attractors, the words strange and
chaotic here referring to metric properties, i.e., fractal di-
mensions, and to dynamical properties, i.e., sensitivity to
initial conditions, respectively. In such cases, dissipative
phenomena previously attacked in terms of high-
dimensional phase spaces and/or of noise sources may be
actually understood in low-dimensional phase spaces as
the consequence of deterministic chaos. When studying
experimental systems, a single scalar variable is usually
recorded versus time. Therefore a great deal of effort has
been devoted to the quantitative characterization of un-
derlying attractors when our knowledge of the system is
limited to a recorded numerical scalar time series.

There exists a host of invariants to quantify attractors,
such as natural measure, pointwise and partial dimen-
sions, Hausdorff dimension, or Lyapunov exponents (see
Refs. 5-7, for instance). Now the most popular quanti-
ties might be generalized dimensions D, generalized en-
tropies K, and their associated singularity spectra. Also,
there are now several well-known algorithms available to
derive these quantities from numerical scalar time series
relying, for instance, on fixed-radius or fixed-mass ap-
proaches, or on the determination of unstable periodic
orbits that are dense in the attractor (see Refs. 8—19, for
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instance, and references therein).

The above evaluations are purely numerical and re-
quire the reconstruction of attractors in phase spaces of
dimensions n usually much bigger than the minimal di-
mension n,. There is one theoretical and one practical
reason, implying that » must usually be bigger than n,.
Theoretically, we have a theorem of Mafié?® and
Takens?"?? stating that the points of the attractor may be
parametrized by n real coordinates if n = ny in which np
is given by the Takens criterion n=2D +1. Here, D can
be taken as being the Hausdorff dimension Dy or the
capacity Dy of the set. One recalls that, for every com-
pact set S, Dy (S) SDK(S).23 In practice, D is often taken
as being the correlation dimension D, of the attractor,
which may be rather easily evaluated. A rough but not
too misleading evaluation is to take D as being the dimen-
sion n, of a minimal embedding phase space. Takens’s
criterion, however, gives a sufficient condition because
many manifolds and attractors contained in them having
a typical dimension D can be embedded in less than n-
dimensional phase spaces. Although this paper is devot-
ed to flows, we stress that the above discussion extends to
the case of maps.

Practically however, for a phase space of dimension »
satisfying Takens’s criterion, the quality of the recon-
struction is not warranted. Sophisticated procedures like
singular value decomposition or redundancy analysis may
be used to approach the best reconstruction,?* 27 but
there also exists a simple pragmatic method relying on
the observation that the value of the so-called window
length is determinant in the quality of the projection pro-
cess.!>2* We then find that the dimension n, of the phase
space in which the attractor is reconstructed must be in
practice much bigger than n, to avoid biased evaluations
such as severe underestimations. For instance, we may
consider an attractor generated by a simple model of
thermal lens oscillations.?® The original phase space is of
dimension 3 and generalized dimensions D, of the attrac-
tor are equal to about 2. Therefore, n, is about 5. The
optimal phase-space dimension 7, relying on the
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window-length approach is, however, 25. The problem is
similar for generalized entropies K, because evaluation of
these quantities from time series requires the computa-
tion of order g correlations (see Sec. IIIC) for phase
spaces of increasing dimensions. For instance, in Ref. 28,
again, these dimensions range up to 45.

When dealing with experimental systems, data require-
ments for running the algorithms may then become
prohibitive. These data requirements become more
stringent when high-dimensional phase spaces are re-
quired because data points are spread in hypervolumes of
bigger dimensions. As a result of these difficulties, time
series may even be possibly erroneously diagnosed as be-
ing chaotic.

When the algorithms are successful, there is no doubt
that they provide us with valuable information. We may
have concluded that the system is deterministic. We may
also have obtained interesting data to discuss the fore-
casting issue from Lyapunov exponents and/or general-
ized entropies. For instance, the largest Lyapunov ex-
ponent tells us how far into the future reliable predictions
are feasible. We may finally have evaluated the effective
number of degrees of freedom required to describe the
dynamics telling us what the minimal dimension n, of the
embedding phase space may be, i.e., how many ordinary
differential equations we need to produce a phenomeno-
logical model of the system (see a later discussion in Sec.
IT A). However, even then, we remark, in agreement with
Casdagli,29 that the calculated invariants are of limited
practical interest. This is an especially disappointing
state of affairs when we consider the large amount of skill
involved in the underlying mathematics and associated
numerical expertise. In particular, even if we determined
ny, a necessary bit of information for the construction of
a model, we would not know how to construct the model
itself from the available time series.

For modeling purposes, we usually have to rely on
physics and on the understanding of instability mecha-
nisms, independently of the knowledge of any time series.
An example concerning thermal lens oscillations and as-
sociated hot-wire phenomena®* ™32 is described in Refs.
28 and 33. Afterward, we must compare the model and
experimental data and possibly iterate between theory
and experiments up to the obtainment of a satisfactory
enough agreement. This is a lengthy, inconvenient and
tedious procedure. Furthermore, if we have to study a
new system, we must build a new model starting from
new principles relevant to the new system under study,
i.e., each system is really a special case.

In this paper, we emphasize that it is possible to over-
come all the aforementioned shortcomings because the
knowledge of numerical scalar time series enables us to
reconstruct the original vector field equations, or at least
equations equivalent to them. Therefore there are more
or less systematic algorithms for building phenomenolog-
ical models from scalar time series. Since our methods
are exemplified on a rather simple case, we clearly expect
that variants will be produced in the future and that they
will be actually needed to investigate more and more
complicated vector fields. But we expect that most of the
essential ideas will be preserved. We shall, however, dis-
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tinguish between what is particular to the studied exam-
ple and therefore should be generalized to attack more
difficult cases, possibly making suggestions for these gen-
eralizations, and what is expected to be robust.

When the model is constructed, we obtain a continuous
dynamical system evolving in a phase space of minimal
dimension n,. Therefore, metric and dynamical proper-

ties of attractors may be computed in R "°, leading to less
stringent requirements than having to work with a phase
space of dimension n, >ny>n,. There may be also some
other opportunities, which are listed below, but those we
shall not explicitly consider in this paper. Flow predic-
tions by using reconstructed systems become feasible, and
we expect that the corresponding techniques could also
be applied to map predictions (see Refs. 29 and 34) by
lifting them to flows. Although the system is originally
known from only a time series, bifurcations of the system
might be predicted by studying the properties of the
reconstructed vector fields. Some of these statements
may be optimistic but only further work will determine
how far we may go in the proposed directions.

We note that our methods require the computation of
time derivatives. Time derivatives have been widely used
to evaluate attractor invariants in reconstructed phase
spaces, although the so-called time-delay technique is
now more popular, but without considering the issue of
vector field reconstructions. Nevertheless, the possibility
of vector field reconstruction has been briefly discussed
by Packard et al.*® on the example of the Rossler system
and used to evaluate a characteristic exponent. However,
no systematic development of the idea is given. Later on,
Cremers and Hiibler*® provide a more systematic discus-
sion of the same idea and consider the case of a Lorenz
attractor and of a van der Pol oscillator. The structure of
the original vector fields is, however, assumed to be
known, and a test of the quality of results only relies on
the determination of a limit cycle radius. The issue of
strange attractors is not examined. These two references
must nevertheless be considered as precursors of our own
contribution.

The paper is organized as follows. Section II defines
the chosen system to study, introduces algorithms, and
applies them to the production of reconstructed systems.
Section III provides us with qualitative and quantitative
validations. Section IV is a conclusion.

II. ALGORITHMS AND RECONSTRUCTED SYSTEMS

A. The system under study and the standard transformations

We consider the example of a R3ssler band generated
by the following equations:

X=—y—z
y=x+tay, (1)
z=b+z(x —c),

with control parameter values ¢=0.398, b=2, c=4, for
which the asymptotic motion of the system settles down
on a strange, chaotic attractor when initial conditions are
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chosen in the basin of attraction.? Rdssler equations are
particularly simple, displaying only one nonlinear vector
field component, and therefore provide us with an easier
opportunity to illustrate basic methods. Although our
final motivation is the study of noisy experimental sys-
tems, testing a simple case is a prerequisite before attack-
ing more difficult situations. We also choose the case of a
chaotic attractor, which represents the most interesting
issue to investigate. For limit cycles, see Cremers and
Hiibler.>®

From integration of the system by a fourth-order
Runge-Kutta algorithm, we obtain a numerical scalar
time series {x;} that represents the asymptotic chaotic
motion when transients have been allowed to die. This
time series is assumed to be all the knowledge we possess
concerning the motion of the system. From it, we intend
to reconstruct the original system (1) or at least systems
equivalent to it.

An example of an equivalent system (in some sense) is
provided by what we call the direct standard transforma-
tion (DST), which is a change of coordinates taking origi-
nal coordinates (x,y,z) to new ones (x, Y,Z) according to

=Y,
Y=2, (2)
Z=F(x,Y,Z) .

In principle, we are not supposed to know the number
of equations required for the standard reconstructed sys-
tem (SRS) defined by Eq. (2). Therefore, when the origi-
nal system is unknown, we must start with a preliminary
evaluation of the number of degrees of freedom from time
series {x;}. There are many opportunities to fulfill this
task. When using singular-value decomposition,?*~26
series {x;} are used to construct an orbit matrix made of
N rows, each row being an n-dimensional vector obtained
by embedding the series in an n-dimensional reconstruct-
ed phase space. In principle, i.e., not withstanding addi-
tional difficulties as due to the presence of noise, the num-
ber of coordinates required to define the state system is
equal to the rank of the orbit matrix. Also, the minimal
dimension of the required phase space is closely related to
a fractal dimension D of the attractor. For instance, ac-
cording to Froehling et al.,” to determine the dimension
of a low-dimensional attractor, only a few independent
quantities are needed: as few as the fractal dimension D
of the attractor rounded to the next integer. The same
idea is discussed by Farmer, Ott, and Yorke,’ stating that
the dimension of an attractor is a lower bound on the
number of essential variables needed to model the dynam-
ics, and by Cenys and Pyragas,*® who explicitly write the
relation ny=int(D)+1 and test it on several examples.
However, the multifractal attractor possesses a spectrum
of generalized dimensions D, rather than a single dimen-
sion D. From this point of view, the most interesting di-
mension is the minus infinite-order dimension D _
(characterizing the domain of the attractor where the
measure is most rarefied) because it is an upper bound of
all the D,’s.

In the present case, a proper evaluation with successful

5323

algorithms would provide the correct answer n,=3.
Then we will elaborate on the economy of this evaluation
later in this section (but see Sec. III C). However, we also
believe that the algorithms used to construct the SRS (2)
contain in principle the possibility of an independent
evaluation of n, from the time series. This belief relies on
the idea that, if the number of equations is too big, evalu-
ations of constants associated with reconstruction will be
dominated by numerical noise and will vary much when
different series are investigated. We similarly expect non-
reproducibility of results with respect to different time
series if the number of equations is too small. Therefore
our methods might also provide a way to determine the
minimal dimension nr,. Examples of noise-dominated
and nonreproducible constant evaluations will be dis-
cussed in Sec. II C.

The basic idea is now as follows. From scalar time
series {x;}, we may determine vectorial time series
{x;,Y;,Z;,Z;}. In this paper, this is done by using a cen-
tered finite-difference scheme with a time step &¢ equal to
the time step in the Runge-Kutta algorithm used for in-
tegration, i.e., for instance,

J'C[=Yi=(x,-+1‘—x,-_1)/28t . (3)

We are then left with the problem of determining the
unknown function F. It is of further interest to know
how the original Rdssler system (1) is theoretically
transformed by the DST. We readily find that the stan-
dard coordinates Y and Z are given by

Y=—y—z, (4)
Z=—b—x—ay+z(c—x), (5)
and establish that the function F reads

Z=ab—cx+x*—axY+xZ+(ac—1)Y+(a—c)Z

Y  x4b-—av+2z). (©)
a+tc—x

We note that there is seemingly a singularity in the
standard exact system (SES) at x.=a+c [Eq. (6)]. A
closer inspection would, however, reveal that this singu-
larity is only apparent.

For unknown original vector field cases in which all
the available information is contained in time series {x;},
reconstruction leads to SRS’s [Eq. (2)]. From the stan-
dard reconstruction using coordinates (x,Y,Z), we are
also free to consider any inverse transformation taking
standard coordinates (x,Y,Z) to new ones (x',y’,z’). An
interesting line of research would be to know whether our
finding inverse transformations such as coordinates
(x',y',z') had a clear physical meaning.

Among all the inverse transformations, there is a spe-
cial one, the inverse standard transformation (IST), tak-
ing back the standard coordinates (x, Y,Z) to the original
ones (x,y,z). In the present case, where the original sys-
tem is known, the IST is known and defined below. We
use Egs. (4) and (5) and the trivial relation x =x. Furth-
ermore, we demand that the last two equations for y and
2 of the original system (1) be exactly satisfied. Therefore,
all numerical errors associated with reconstructions are
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reported on the first equation for x. For a given recon-
struction, the IST then produces an inverse standard
reconstructed system (ISRS), taking the form

x=F'(x,y,z),
y=x-+ay, (N
z=b+z(x—c).

In this paper, the interest in considering vector fields
and attractors generated by the IST lies in the fact that it
allows for more direct and convincing validations of
reconstructions, because, if reconstructions [i.e., deter-
mination of F in (2)] were perfect, the IST would enable
us to perfectly recover the original Rossler system (1).

In summary, in the present case when the original sys-
tem is known, and also in all cases when it is unknown,
the function F of the standard system (2) may be deter-
mined with some accuracy. We may afterward examine
the vector fields and the attractors generated by the stan-
dard system and also by any inverse transformation we
like. In the present paper, after having evaluated func-
tion F (a step valid in all cases), we will make the choice
of examining vector fields and attractors generated by the
IST, in order to test the quality of our methods against
the behavior of the known original Réssler attractor.
Discussion of attractors generated by standard systems
and by subsequent inverse transformations using coordi-
nates (x’,y’,z')(x,,z) is postponed to a future work.

B. Research of F by using ratios of polynomial expansions

When the original system is unknown, the determina-
tion of the standard function F should rely on the decom-
position of F on a complete set of orthogonal functions,
with the issue being to determine which set would be the
best, i.e., leading to fast convergence and easy numerics.
An example of such a decomposition, using Legendre po-
lynomials for reconstruction of a limit cycle, is provided
by Cremers and Hiibler.>® In any case, we may also at-
tempt to research F by using ratios of polynomial expan-
sions, according to

NO
jvkrm
Z=—dtkin=

(8)

Ny .
1+ 3 Dy,x'y*z"
jtk+m=1

In the denominator, the term Dy, ,x°Y°Z? is set equal
to 1 to remove an undetermination in the problem. The
general procedure then consists in considering successive-
ly increasing orders N, of approximations till conver-
gence of the process is obtained. The form (8) and also a
simpler form without any denominator (N,-order polyno-
mial) have acquired some popularity in forecasting prob-
lems.”** However, we have not succeeded in approxi-
mating F with N-order polynomials in our case.

Furthermore, although Eq. (8) may be tested in any
case (unknown original system), it is particularly suitable
for the present case of the Rdssler system, because (6)
takes the form (8) with Ny =3. Therefore, only computa-
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tions at this order will be discussed. Theoretical values of
constants Ny, and D, (not given) are easily derived.
Among these 39 constants, only 13 are not equal to 0. To
evaluate constants from time series {x;,Y;,Z;,Z,}, Eq. (8)

is rewritten as

Nooo+ N 160X
+NooY+ -+ =Dy, YZ?Z—D |, xYZZ=2Z .
)

In practice, about ten quadruplets {x;,¥;,Z;,Z;} are
sampled per pseudoperiod T;~6.22 of the Rossler band.
When 39 quadruplets are recorded, Eq. (9) produces a set
of linear equations that is solved by the Cramer tech-
nique, leading to an evaluation of the set of constants. To
provide more accurate results, we actually solve N, sets
of equations. The evaluation of one constant associated
with one set is called a realization of the constant. The
algorithm for evaluations then proceeds in two steps.

In the first step, we solve N/ sets of equations. For
each constant, we compute an evaluation K equal to the
average over the N realizations and the corresponding
standard mean deviation o [relative root mean square
(rms) denoted by a]. The relative rms allows for the eval-
uation of a statistical accuracy 8 given by a/V/N, in
which an irrelevant numerical prefactor is omitted.
Here, N, is the number of realizations used to compute
the evaluation K, which is equal to N in the present first
step. For constants that are not theoretically equal to O,
we also compute €, the absolute value of the relative
difference between the theoretical value of the constant
and its numerically reconstructed value, in order to quan-
tify the accuracy of the evaluation. For constants that
are theoretically equal to 0, & is not computed and € has
no meaning. Then, the accuracy of the evaluation is ob-
tained by using A, the absolute difference between the
theoretical value and the reconstructed value, i.e., the
modulus of the reconstructed value itself.

Then, several series {x;,Y;,Z;,Z;} with different N/
and different Runge-Kutta time steps are processed. In
any case, we observe that evaluations of constants that
are theoretically equal to O are characterized by very big
values of the relative rms a. This fact indicates that these
evaluations are dominated by numerical noise. Relying
on the results concerning the other constants, we then
identify the best series among all the processed series.
The best series is defined as the one giving the best, i.e.,
the smallest, average 8 per constant not theoretically
equal to 0. This is a statistical objective criterion. It is
chosen for the sake of objectivity, even if the best series
does not correspond to the smallest € and A, because we
are not supposed to know these two last quantities. We
obtain our best series with 8 =103 and NS1 =35. Forit, €
and A are 0.001 and 0.000 15, respectively.

When processing different series with the above first
step of the algorithm, we observe that increasing the
number of processed sets of equations and/or decreasing
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the Runge-Kutta time step do not necessarily improve
the results. Indeed, some sets of equations lead to very
poor evaluations for some constants. Therefore, result
improvement requires the use of a discrimination scheme
that is implemented in the second step of the algorithm.
This discrimination scheme is based on the results of the
first step.

We now solve NS2 sets of equations. For each constant,
each realization is tested to reject poor evaluations asso-
ciated with badly conditioned sets. Rejection is based on
the evaluation K of the first step and on the value of the
associated standard mean deviation o. If a realization
ranges between K —20 and K +20, it is accepted. Oth-
erwise, it is rejected. The discrimination acting separate-
ly on each constant (not on sets, although this other kind
of discrimination is also possible), the rate of rejection de-
pends on the constant. We then define an average rate of
rejection per constant. Quantities K, a, €, and & are eval-
uated similarly, as in the first step, but only account for
validated realizations. To evaluate 8, N, is taken equal to
N2, corrected by the average rate of rejection. Several
series are processed, and we retain the results of the best
series defined as in the first step by the smallest average &

i=—>— |—bc+x(a +b)+ya+zc?—2xzc +x%z
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per constant not theoretically equal to O, i.e., not associ-
ated with large relative standard mean deviations.

The best processed series was for 8t =102 with 49 998
quadruplets (i.e., N2=1282), the rate of rejection depend-
ing on the constant ranges between 10% and 34%, with
an average rate per constant equal to 17%. Reconstruct-
ed numerical values of constants are given in Table I.
The average € per constant theoretically not equal to O is
now 0.000 25, representing a gain of accuracy by a factor
of 4 with respect to the first step evaluations. The corre-
sponding average & per constant is about 10™*. For con-
stants theoretically equal to O, the average A per constant
decreases down to 3X 1075, representing a gain of accu-
racy by a factor of 5. These results seem very satisfacto-
ry. At least, they show that a two-step algorithm leads to
improved results. Afterwards, starting from the second
step, we attempted to similarly use a third step iteration.
We did not observe further significant improvements.

As stated previously, we shall not discuss in this paper
the SRS (2) with function F given by (8). Rather, we use
the IST and incorporate the reconstructed values of con-
stants N, and Dy, in the ISRS (7). With F given by
(8), this inverse system is readily found to be

3 .
S Nymx(—y —2—b—x—ya+zc—xz)"

j+k+m=0

.+..

3 .
1+ 3 Dynx/(—y —2)(—b—x—ya+zc—xz)"

jtk+m=1

C. Research of F by using a simplified form

Constants Ny, and Dj,, theoretically equal to O may
be identified on objective grounds, by relying on the fol-
lowing features.

(i) Small values of the corresponding reconstructed
constants (see Table I).

(ii) Very big a’s associated with them. When compared
with the case of the other constants, these a’s are bigger
by more than two orders of magnitude up to more than
six orders of magnitude.

(iii) Nonreproducibility of the corresponding evalua-
tions when different time series are processed, in connec-
tion with feature (ii).

These two last features indicate that evaluations of the
corresponding constants are dominated by numerical
noise. Indeed, we check that constants identified as equal
to O from the above facts are effectively those that are
theoretically equal to 0. Dismissing them, Eq. (8) is ex-
plicitly rewritten as

, y=x-+tay, z=b+z(x—c). (10)

TABLE I. Reconstructed numerical values of all constants
Njkm and Djkm .

Noo 0.795 990 548 Digo —0.227 407929
Nio —4.180933 610 Do —0.000010217
Now 0.137 190 166 Do, 0.000017 907
Nooi —3.601912 559 Dygo —0.000020317
Nago 1.909 527 658 Do —0.000 003 260
Noxo 0.090 468 385 Doy 0.000 029 103
Noo —0.000 188 131 Diio 0.000012 249
Nio —0.759 714 303 Do, 0.000 024 532
Nio 1.818 842985 Doy, 0.000003 871
Nou —0.227 127982 Do 0.000 000 898
Nigo —0.227419 943 Do —0.000 000 146
Noso —0.000 009 593 Doos —0.000001 651
Noos —0.000009 775 Do —0.000 004 700
Nawo 0.090 485 324 Doy —0.000012 790
Naoi —0.227 483 927 Dy 0.000 002 060
N 0.000 066 128 Doy, —0.000 000 029
Noy 0.000 039 290 Do —0.000011 380
Nig —0.000 045 469 Dops 0.000 002 030
Noi —0.000053 366 Dy, 0.000001 332
N —0.000 114238
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z=— 1L (Nooo +N 100X +Noo1 Z +NogoX 2+ Nyg 1 XZ + N3gox 3+ Noyg X °Z)
1+Dgx
Y
+ H_Dloox(N010+N110x+N020Y+N0112+N210x2) (11)

containing only 13 constants. The problem defined by
Eq. (11) could again be solved by the Cramer technique.
However, without any significant loss of generality, we
shall further decrease the number of constants. For that
we may remark from Table I that

N201/D100= 1.0003 ,

NOOlDIOO/(NIOI —1)=1.0003 ,

(12)
N}OO/DIO(): 1.00005 ,

Noo— (N 100 =D 100No00 ) D 100 =0.999 91 .

Therefore, we may assume on objective grounds that
these quantities are equal to 1, although, admittedly, Eq.
(12) might have been difficult to find if we did not know
what we wanted to do on theoretical grounds. Injecting
the four quantities of the left-hand sides of (12), assumed
to be equal to 1 in Eq. (11), and reintroducing two con-
stants C and E, we establish after some algebraic calcula-
tion that Eq. (11) may be rewritten with 11 constants as

Z=A+Bx+Cx2+ExZ+GZ

Y

+Wx?+SY+TZ) . 13
1+Px(U+Vx Wx*+S ) (13)

+

The interesting aspect of this relation with respect to
(11) is essentially that it exhibits the same structure as (6).
Theoretical expressions and values of constants 4,...,T
are readily derived. To numerically evaluate them, (13) is
rewritten under the form

=

A+x(AP+B)+ YU +ZG +x4BP+C)+Y:S+xYV
+YZT+xZ(GP+E)+x3CP+x YW +x2ZEP
+xZ(—P)=Z , (14

which now contains 13 constants K, ..., K3 linked to
constants A4,...,T.

Again, about ten quadruplets {x;,Y;,Z;,Z;} are sam-
pled per pseudoperiod. When 13 quadruplets are record-
ed, Eq. (14) produces a set of linear equations, which is
also solved by the Cramer technique. The set of con-
stants A4,...,7T is afterwards recovered from the set
K, ...,K.

As in Sec. II B, we use a two-step procedure. In the
first step, the best series is for 6z = 1073, N:1=20, leading
to an average € per constant (K;,...,K;;) equal to
8.107% and to an average & per constant equal to
5X 1079, i.e., to a very satisfactory accuracy, much better
than that presented in Sec. II B. In the second step, the
best series is for 82 =103 and 49 998 quadruplets corre-
sponding to N2=3846 sets of equations. The average
rate of rejection is about 12%. The average € per con-
stant is now 6.5X107° representing a significant im-
provement with respect to the first step but not so im-
pressive as that presented in Sec. I B. The average 8 per
constant is found to be 3X 1077, Corresponding values
for constants A4, ..., T are given in Table II. When one
of these constants may be evaluated from two different
expressions in terms of K, ..., K3, we retain the evalu-
ation requiring the smallest number of algebraic opera-
tions.

As in Sec. II B, we use the IST and incorporate the
reconstructed values of constants A4,...,T in the ISRS
(7). With F given by (13), the inverse system is readily
found to be

1_+Z (4—Gb—bc)+x(B+a+b—Eb—G)+yala—G)+zc(G+c)+x*C—E)—xyaE

+xz(Ee—G—2¢)+x%2(1—E)+ L2 [ (5T~ U) 4 x(T — V) +p(S+aT)+2(S—cT)

1+ Px

—x2W+xzT1|, y=x-+ay, z=b+z(x—c). (15)

III. VALIDATION OF RESULTS AND DISCUSSIONS
A. Qualitative validation

Qualitative validation relies on the visual comparison
between phase portraits. Figure 1 shows a trajectory of

the original Rdssler system (1) containing about 10*
points with about 10? points per pseudoperiod. Similarly,
Fig. 2 shows a trajectory of the ISRS (10) with the same
number of points, the same sampling time, and the same
initial conditions as for Fig. 1. Numerical values of
reconstructed constants are taken from Table I. We
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TABLE II. Reconstructed numerical values of constants
A,...,T.

0.795 996 958
—3.999987 759
1.000 004 939
1.000 005 590
—3.601987 328
—0.227376 463
0.137 243 848
—0.759981 069
0.090 496 341
0.090494 834
—0.227 374 487

NuIEwovamAwa

clearly observe that much of the structure of the system
has been correctly reconstructed. However, constants be-
ing not accurately enough evaluated, the fractal charac-
ter of the original attractor has been essentially des-
troyed. Finally, Fig. 3 shows a trajectory of the ISRS (15)
with again the same number of points, the same sampling
time and the same initial conditions. Numerical values of
reconstructed constants are taken from Table II. This
figure compares very favorably with the original attractor
of Fig. 1. This fact alone would be sufficient to evidence
the validity of our methods and algorithms. A more
complete discussion, however, requires one to address the
issue of structural stability.

B. Structural stability and quality of results

By definition, structural stability concerns the stability
of phase portraits under vector field perturbations (see,
for instance, Ref. 1, in which the issue is extensively dis-
cussed). We may conveniently decompose these pertur-
bations in two cases, namely, (i) perturbations of the
mathematical structure itself, i.e., modifications of the
mathematical functions appearing in the vector field and
of the way in which these functions are combined; and (ii)
modifications of the numerical values of constants in-
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400+

2.007

FIG. 2. A trajectory of the inverse standard reconstructed
system (10). Sampling time between two points equal to about
6X1072%

volved in the functions and in their combination. In the
framework of bifurcation theory, these constants may be
considered as control parameters of the system. There-
fore, the purpose of our reconstruction problem is two-
fold: (i) to correctly identify the mathematical structure,
and (ii) to accurately evaluate the control parameters.

For arbitrary systems, we expect, as mentioned above,
that the identification of the mathematical structure
should require the projection of the standard function F
on a complete set of orthogonal functions. The projec-
tion process would associate one control parameter with
each function.

In the present case, Eq. (8) provides a very decent
choice. It is theoretically justified because the Rdssler
system exhibits this form at order 3. But, knowing only

FIG. 1. A trajectory of the original Rdssler system (1). Sam-
pling time between two points equal to about 6X 1072,

FIG. 3. A trajectory of the inverse standard reconstructed
system (15). Sampling time between two points equal to about
6X1072%
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the time series {x;}, the validity of the choice is objec-
tively evidenced by the reproducibility of the evaluations
of some constants Ny, and D, those which are not
theoretically equal to 0, when different time series are an-
alyzed. When noise-dominated constants are preserved,
Eq. (8) does not possess exactly the correct mathematical
structure, due to the existence of extra parasitic terms,
but the associated constants are very small. It would be
erroneous to give to these noise-dominated constants the
status of control parameters. Dismissing them on objec-
tive grounds, Eq. (8) becomes Eq. (11), which now exhib-
its the correct structure insofar as the number of retained
constants is sufficient to describe F and that all constants
provide us with relevant information, i.e., there is no
noise-dominated constant. However, all constants are
not necessary. Using Eqgs. (12), the mathematical struc-
ture is refined to obtain Eq. (13), which is now structural-
ly perfectly correct, as evidenced by comparison with Eq.
(6). The first purpose of the reconstruction, i.e.,
identification of the mathematical structure, is therefore
perfectly fulfilled with Eq. (13) and fairly fulfilled in Egs.
(8) and (11).

In the case of Fig. 2, perturbations of the Rossler vec-
tor field concern the two aspects we mentioned: all con-
stants Ny, and D, being preserved, small parasitic
terms remain, and the other constants are evaluated with
an average € per constant which is 0.00025. Although
such an accuracy might be found to be satisfactory in it-
self, consequences on the phase portrait and on the quali-
ty of the reconstructed attractor depend very much on
the amount of structural stability. Near a bifurcation
locus, even very small errors on constant evaluations may
have dramatic effects on phase portraits. In the present
case, although constants have been recovered with a fair
accuracy, there is at least one bifurcation between Figs. 1
and 2. This bifurcation destroyed the fractal character of
the attractor or, at least, modified it deeply. This discus-
sion, however, emphasizes the fact that our methods
might be useful for bifurcation predictions of systems
when the only available knowledge is a numerical scalar
time series. In a general way, whether attractors may be
correctly reconstructed will depend, for a given accuracy
of constant evaluations, on the structural stability of the
system with respect to the addition and omission of
terms, and on the proximity of bifurcation loci.

In the case of Fig. 3, the mathematical structure of the
vector field is perfectly reconstructed and, furthermore,
the average € per constant is very good (6.5X107°).
Both purposes of reconstruction are therefore fulfilled.
Metric and dynamical properties of the attractor could be
evaluated in R> by using the reconstructed system (see
Sec. III C).

Conversely, results could be worse than the ones illus-
trated by Figs. 2 and 3. For instance, we also used a less
efficient finite-difference scheme than the one given by
Eq. (3), namely, of the type

X =Y,=(x;—x;_,)/8T , (16)

and series {x;,Y;,Z;,Z;] were analyzed without using
any discrimination scheme.
Then, in the case of Eq. (8), we obtained an average
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€=0.02 per constant not theoretically equal to O (with an
average 8§ of 0.015), and an average A for the other con-
stants equal to 0.0012. In the case of Eq. (13), the aver-
ages € and 6 per constant were 0.0064 and 0.0013, respec-
tively. Although these results are not too poor and even
identify the mathematical structure as in the previous
cases, the corresponding ISRS did not produce correct
phase portraits. For instance, Fig. 4 shows a trajectory of
the ISRS (15), with initial conditions taken on the Rossler
attractor and values of constants obtained by using the
scheme (16). This trajectory diverges to infinity. It is
likely that the basin of attraction of the attractor has
been destroyed or at least deeply modified. For the ISRS
(10), divergence to infinity was not obtained when the sys-
tem motion was tracked on the same observation time,
but the trend to divergence was clearly revealed.

One of the most interesting issues and actually our final
motivation is the application of vector field reconstruc-
tions to experimental systems. In such cases, data are
noise polluted. Therefore, even after efficient noise
smoothing and removal, we should not expect to identify
vector field mathematical structures nor evaluate in-
volved constants with the same accuracy as that found in
mathematical models. However, the consequences of
such a loss of accuracy might be compensated for by a
more robust structural stability of experimental systems,
which must resist external noise to be observable.

C. Quantitative validations

In this paper, quantitative validations rely on computa-
tions of generalized dimensions. Definitions and the algo-
rithms used are briefly recalled for completeness.

We consider an attractor 4 and a partition of A4 into
boxes of size r. The boxes are numbered from 1 to M (r).
Let p; be the probability measure of box i. Generalized
dimensions D, are defined by (see Refs. 8—10, 39-41, and
references therein)

80.07 \

40.01

-5.00x106

-750x106
00

FIG. 4. An example of a trajectory of a poor quality inverse
standard reconstructed system showing divergence to infinity.
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M(r)
. log 3 pf
= li =1 . (17)
D, qg—1 oo logr

We define a local correlation C;(r) at point X (i) by the
relation

1
N—1

C;(r)= nb{j7i, | X())—X(j) <r} . (18)

In this relation, X(i) is a vector, which will be
(x;,;,2;) for the original Rossler system or for the ISRS.
N is the size of the temporal sequence, i.e., the number of
vectors in it, and j ranges from 1 to N. || is a norm to
compute the distance between vectors X (i) and X(j). We
use the o« norm, i.e., the maximum among the absolute
values of the component differences.

We consider m central vectors chosen at random with
respect to the natural measure and define order-gq correla-
tions C,(r) by spatially averaging local correlation mo-
ments, according to

m
- -1
C,(r)= - Ig’lcﬁ (r), g#+1 (19)
and, for the special case g=1,

m 1/m
C,(r)= [[Ci(r)] . (20)

Assuming that the measure is ergodic on the attractor,
we then show that

limC,(r)~r%> (21)
r—0
in which Qis ¢ —1 for g1 and 1 for ¢ =1.

Ideally, the size N of the temporal sequence and the
number m of central vectors must tend towards the
infinite to reach the limit r —0 in Eq. (21). In practice,
computations are carried out with a finite resolution
(N,m) and preferably with the condition m =N. Then
the scaling equation (21) is only observed for a finite r-
scaling domain.

Therefore, C,’s are evaluated at discrete values r; of r,
(preferably) separated by equal distances in logarithmic
scales. Local values of D/’s at r;’s are then evaluated in
the r-scaling domain by computing local slopes

1 log[Cq(ri-*l-Ari)/Cq(ri-—Ar,-)]

y=1 . 22
Dy ) = gl (r, + Ar) /(7 — Ar)] @2

D,’s are afterward obtained by averaging local slopes
in the r-scaling domain. We obtain an insight into the ac-
curacy of the results from the standard mean deviation of
the local slope values.

The above algorithm is implemented in computer pro-
grams to study the original Rossler system (1) and the
ISRS (10) and (15) corresponding to Figs. 1, 2, and 3, re-
spectively. Computations are carried out with a Runge-
Kutta time step 8 =10 °. About 60 vectors are sampled
per pseudoperiod T,. Local slopes D,(r;) are evaluated

on 45 r; locations separated by equal logarithmic inter-
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vals on a range (7 ;1,7 max )

For system (1) of Fig. 1, D, computations are carried
out for g ranging from (—50) to (+50). It is well known
that the choice of the r scaling domain lacks objectivity
in this algorithm and that this feature is actually one of
its shortcomings. Furthermore, (7;,,"max) depend on gq.
Therefore, a new table should ideally be given. We may,
however, roughly indicate these domains by stating that
they are about (0.06—0.25) for ¢ €[ —50,—9.75] and
about (0.045—0.23) for ¢ €]—9.75,+50], to compare
with the extension of the Rdssler attractor given by
Ax ~8.5, Ay ~7.7, and Az ~6.1. For the sake of accura-
cy, computations are performed with a high resolution
(N,m)=(10%2000) after having performed preliminary
indicative runs at smaller resolutions (5.10%200) and
(10°,500).

D, computations are similarly carried out for the ISRS
of Eq. (15) and Fig. 3, under exactly the same
specifications as in the previous case, including the choice
of the r-scaling domains. Results are presented in Fig. 5.
We observe that D, decreases when g increases, in agree-
ment with known results from the theory of generalized
dimensions. We also remark that displayed D,’s become
smaller than 2 for g larger than about 0. In particular,
the correlation dimensions D, are 1.88 and 1.91 for the
original system and for the ISRS, respectively. These D,
values are not satisfactory for hyperbolic strange attrac-
tors, but our D, value for the Rossler attractor agrees

perfectly well with results mentioned in Ref. 26 and ob-
tained with the same algorithm. Indeed, underestima-
tions of dimensions are also a classical feature of the algo-
rithm. Some statistical error bars are displayed in the
figure. They greatly increase when g becomes large or
small. However, these error bars are only a clue to sta-
tistical accuracy and should not be given a too serious
meaning. See Ref. 28 for similar observations concerning
D, underestimations and error-bar behavior in the case of
a strange attractor produced by a model of thermal lens
oscillations. We are, however, more interested in com-
paring systems than in absolute evaluations of dimen-
sions. Such comparisons make sense because the algo-
rithm is run under the same specifications for both the
Rossler system and the ISRS. Then, Fig. 5 displays a
very satisfactory agreement, evidencing that metric prop-
erties are correctly recovered. The relative difference for
D, is about 1.5%. Even for extreme ¢’s, it remains small,
being 0.9% for g= + 50 and less than 2% for g = — 50.

For the ISRS of Eq. (10) and Fig. 2, we should not ex-
pect such a good agreement. In this case, computations
have been carried out with smaller resolutions and only
D, (capacity), D; (information dimension), and D,
(correlation dimension) have been evaluated. For
(N,m)=(5X10%200) we find that all these dimensions
are equal to 1.01£0.02 in an r-scaling domain
(7 min> Fmax ) =(0.025,0.53).

Therefore, over more than two orders of magnitude of
r, the attractor is not fractal. Dimensions equal to 1 are
in agreement with Fig. 2, showing that the orbit is essen-
tially periodic. However, we also observe that the attrac-
tor might be fractal at smaller scales. We effectively
computed that local slopes D, (r;) approach 1.8 for r near
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FIG. 5. Satisfactory comparison between generalized dimensions D, of the original Rossler system and of the ISRS of Eq. (15).

0.001. Accounting for underestimations due to finite
resolution, these local slopes might actually be larger
than 2. Another clue to the existence of residual chaos at
small scales might be the fact that some parts of the orbit
leave the main band. The most likely diagnostic concern-
ing this attractor is that it is chaotic with large lacunarity
and chaos confined to small scales near a periodic orbit.
A more complete investigation of this object is, however,
not interesting in the framework of the present paper.

IV. CONCLUSION

We have emphasized that the knowledge of numerical
scalar time series permits the reconstruction of the equa-
tions of the underlying dynamical system or, at least, of
equivalent ones. This result opens the way to many lines
of research, some of them having been mentioned in this
paper. Although some of our suggestions might be op-
timistic, an interest in a more complete examination of

them is warranted.

In our opinion, the most interesting prospect might be
the possibility of automatic reconstruction of phenome-
nological models. Although more work should be devot-
ed to the study of mathematical models, particularly with
the addition of noise, in order to improve and generalize
algorithms, the final motivation is the study of experi-
mental systems. With such a motivation in mind, we now
intend to systematically exploit the opportunities offered
by the results we presented. More details, including com-
puter program sources, are contained in an internal re-
port available on request.
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