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Relaxation in the subcritical pitchfork bifurcation:
From critical to Caussian scaling
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We study the crossover in the relaxation dynamics from the situation at the bifurcation
point of a subcritical pitchfork bifurcation to a situation well above the bifurcation point. An
approximation for the stochastic paths is given that allows the calculation of the statistical
properties of the escape times. These properties can be described by a generating function that
exhibits dynamical scaling of critical nature at the bifurcation point and Gaussian dynamical
scaling well above the bifurcation point.

I. INTII'OI3UCTION

One of the phenomena in which statistical fluctuations
play a crucial role in nonequilibrium physics is the tran-
sient dynamics associated with the relaxation from st, ates
that have lost their global stability due to changes of ap-
propriate control parameters. An important quantity in
the characterization of the relaxation dynamics is the life-
time of such states: The time that the system takes to
leave the vicinity of the initial state in some appropriate
configuration space is a random quantity. The statistics
of this random quantity is mathematically described by
a first-passage-time (FPT) distribution. The mean first-
passage time (MFPT) is identified with the lifetime of
the initial state. There are standard techniques to cal-
culate PT statistics for Markovian processes. A useful
alternative route to these techniques focuses on the in-
dividual stochastic paths of the process and extracts the
FPT st, atistics from some approximation of these paths.
This alternative approach allows for a complete descrip-
tion of the relaxation process connecting the initial stages
of the dynamics which determine the PT with the late
stages of approach to a final state. It also permits one to
address questions of dynamical scaling. From a practical
point of view this approach is useful in the calculation of
PT statistics in situations in which standard techniques
do not hold, such as, for example, problems with time-
dependent parameters2 or processes driven by nonwhite
noise. It is also useful in problems described by several
variables in which standard techniques do not lead easily
to explicit results.

A description in terms of individual stochastic paths is
well known for the relaxation from the state that becomes
unstable in a supercritical pitchfork bifurcation. In a
first approximation the paths are described by a deter-
ministic trajectory with a random initial condition. The
relaxation dynamics from this type of unstable state fol-
lows, initially, Gaussian statistics. More complicated is
the description of the relaxation from the state that loses

its stability in a saddle-node bifurcation or in a subcrit-
ical pitchfork bifurcation. Those are states of marginal
stability for which Gaussian statistics or, equivalently,
linear theory does not hold at any time of the decay pro-
cess. In a previous work, a description was given of the
stochastic paths of the relaxation process occurring pre-
cisely at the bifurcation point of the subcritical pitchfork
bifurcation. In this paper we extend that description to
arbitrary values of the control parameter above the bi-
furcation point. This is relevant from the experimental
point of view due to the fact that, in practice, it is dif-
ficult to sit precisely at the bifurcation point. Here we
are particularly interested in the crossover from the re-
laxation dynamics at the bifurcation point to the relax-
ation dynamics well above this point. The decay process
for values of the control parameter well above the bifur-
cation point is essentially the same in the subcritical and
supercritical pitchfork bifurcations.

A cent, ral question addressed in our study is that of
dynamical scaling. In a first general sense we say that
there is dynamical scaling when the statistical proper-
ties of a stochastic process in some time regime can be
obtained by a time-dependent mapping of another sim-
pler and known stochastic process. This sort of scaling is
well known for the relaxation dynamics in the supercrit-
ical pitchfork bifurcation: The time-dependent mapping
is the deterministic dynamics and the mapped process is
a Gaussian one describing the initial linear regime. This
sort of scaling does not hold for the relaxation process in
the subcritical pitchfork bifurcation. However, scaling
properties for auxiliary processes and relevant physical
quantities based on non-Gaussian statistics were found
to hold for relaxation at the bifurcation point. Here we

discuss that such properties no longer hold for arbitrary
values of the control parameter. In particular we an-
alyze the scaling properties of an escape time that we

identify with the PT. A scaling property holds when this
time can be expressed as a function of a random variable
with known statistics. When this property is satisfied
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II. GENERAL PROPERTIES
OF THE RELAXATION DYNAMICS

We associate the normal form of the subcritical pitch-
fork bifurcation with the following stochastic equation for
an order paramenter z(t):

dz = az(t) + bz (t) —cz (t)+ ~sf(t) (2 1)

with b, e ) 0. The parameter z measures the strength of
the fluctuations and ((t) is a Gaussian white noise of zero
mean and correlation g'(t)((t')) = 2b(t —t') Equation.
(2.1) can be written in terms of a potential as

dz(t) dV(z) + '' (2.2)

the PT statistics can be calculated easily. Such scaling is
found at the bifurcation point with a non-Gaussian ran-
dom variable (exceptional critical scaling) and well above
the bifurcation point (Gaussian scaling). The situation
well above the bifurcation point coincides with the de-
scription of the relaxation in the supercritical pitchfork
bifurcation. For intermediate values of the control pa-
rameter scaling does not hold, but we introduce a scal-
inglike ansatz that is useful in the computation of the
passage-time statistics.

The outline of the paper is as follows. In Sec. II we
summarize some general properties of the relaxation dy-
namics. The MFPT is calculated using standard tech-
niques and the phenomenon of transient trimodality is
discussed. In Sec. III we develop our approximation for
the stochastic paths of the relaxation dynamics. Results
for generating functions associated with the calculation
of PT statistics are given. Section IV includes the discus-
sion of the scaling properties for the escape times. Details
of the calculations are given in the Appendixes.
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FIG. 1. Bifurcation diagram corresponding to the sixth-
order potential V(z) defined in (2.3). Solid lines denote
stable states. Dots and crosses stand for unstable and
metastable states, respectively, where a = b /(4c) —and
a' = -(3/4)b'/(4c).

above the bifurcation point, a & 0. The system finds
itself in a nonstable steady state and relaxes to z = +zo
due to fluctuations. For a = 0, the system relaxes from
a state of marginal stability at the top of a locally flat
potential. s For very large values of a the relaxational dy-
namics has the same characteristics as in the well-known
cases of the decay from an unstable state in a super-
critical pitchfork bifurcation. We are interested in the
crossover between these two situations of a = 0 and a
very large.

In the relaxation from z = 0 the saturation term czs(t)
is only relevant in the late stages of evolution, when
the system approaches +@0. The early and intermediate
regimes of relaxation are then described by (2.1) with
e=0

V(z) =—az bz' ez'
4 6 (2 3) dz(t) = az(t) + bz (t) ~ ~zg(t) . (2 5)

The bifurcation occurs at a = 0. The steady-state solu-
tion z = 0, locally stable for a ( 0, becomes unstable for
a & 0. The two equivalent stable steady states for a ) 0
are at

The relevant dimensionless parameter in (2.5) is

ak= ~. (2 6)

!z=+zo ——+
l

—+(2c '2c ) (2.4)

The form of the potential U(z) and the associated bifur-
cation diagram is shown in Fig. l.

In a previous paper we considered the relaxation from
z = 0 to +zo at the bifurcation point a = 0. Here we are
interested in the same relaxation process, but for an ar-
bitrary value of a & 0. Physically we imagine the system
being for times t ( 0 in a steady state z = 0 associated
with a large negative value ao of the control parameter
and fluctuations around z = 0 are very small. At time

0 the control parameter a is switched to a value

dz(t) = az(t) —bz (t) + ~zg(t) . (2 7)

Starting from z(0) = 0 this equation describes the decay
from an unstable state. We note the diA'erent roles of the
nonlinear term bz in (2.1) and (2.7). In the first case this

This parameter measures the relative importance of the
linear term in comparison with the nonlinear term and
the noise intensity. If k (& 1 the linear term plays no im-
portant role and the system behaves as in the marginal
case a = 0. On the other hand, the normal form of the
supercritical pitchfork bifurcation is given by the follow-
ing dynamical equation:
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term contributes to the departure from z = 0, whereas
in (2.7) it accounts for saturation. If k is large enough,
the linear term in (2.5) dominates during the early and
intermediate regimes of the relaxation from z = 0. In
such a case, and during these regimes, the relaxational
dynamics described by (2.1) and (2.7) coincide.

The role of the parameter k and the differences in the
relaxational dynamics for different values of k can be

made evident in two complementary ways. The first one
is the calculation of the lifetime of the state z = 0. The
second one is the evolution of the time-dependent prob-
ability distribution P(z, t). The lifetime can be identi-
fied with the mean first-passage time for z2 to reach a
value z~h starting at z = 0. From the standard theory of
stochastic process, we have that such MFPT and the
variance of the FPT are given by

2thP(0-,'„))=— d~ ~[&(~ )—&(»)I/~ZgC ) (2 S)

dz3 dz4exp([V(zi) + V(z2) —V(zs) —V(z4)]/s), (2.9)

T(0 ~ z,„)= C(k)+ —ln 1+
2a 4hz,'h

+Oi (2.10)

This indicates that T scales with (bc) ~2 The fu. nction
4(k)is given by

where V(z) is given by (2.3). The asymptotic evaluation
of (2.8) for small s givesii

4(k) = e
2k

(2.13)

interpolates between the MFPT for the relaxation from
a metastable state and the MFPT for relaxation from an
unstable state: For a & 0 all the terms in the series are
positive and a large value of T is obtained. In fact, for
a & 0 relaxation occurs via activation through an energy
barrier of height AV = a /(4b). When ~k~ &) 1, very far
from marginality, and a & 0, we are in the high-barrier
limit (KV/s )& 1) in which the series (2.11) converges to

4(k) =
2 e "I~a(u )du = ) (—1)"B„

n=O

(2.11)

This result reproduces the Kramers escape time. On
the other hand, for a & 0, (2.11) is an alternating series
which in the limit ~k~ )& 1 converges to

where I~a(u) is the modified Bessel function of zeroth
order and

B = ~22„(, 1. ~(
+ ll

16 ( 4
(2.12)

The second contribution in (2.10) does not depend on
the noise intensity, but it; depends on the details of the
potential and the barrier position. Equation (2.10) iden-
tifies that the dominant contribution to (T) (bs)i~2 is a
universal function 4(k) of the parameter k. This implies
a scaling result for difFerent values of a, b, and z simi-
lar to the one discussed in Ref'. 7 for the saddle-node
bifurcation. Scaling of this form has been evidenced for
relaxation dynamics in a laser with saturable absorber.
The function 4(k) is analytic for all the values of k and
it has interesting asymptotic behaviors. For k = 0 we
recover the results for the MFPT for the relaxation from
a marginal stateio in the limit s « 1. The result (2.10)

I

C(k) —ink .2

2k

(T) = —ln
2a 6

(2.15)

An asymptotic evaluation for small z of the variance
from (2.9) gives

with

(») = —4(k) + 0
~

th
(2.16)

This value of 4(k) replaced in (2.10) reproduces the
MFPT time for the decay from an unstable state:

(1 + ui) —Bg —mls (2.17)
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in an intermediate position at a given time is quite large
and there is no transient trimodality.

In the following sections we will construct a descrip-
tion of the relaxation process for intermediate values of
k that includes the decay from a state of marginal stabil-
ity (k = 0) and the decay from an unstable state (k » 1)
as extreme cases. In particular we are interested in the
connection between two scaling descriptions: Gaussian
scaling (k » 1) and critical exceptional scaling at k = 0.

III. ESCAPE PROCESS

important point to be noted is that the existence of tran-
sient trimodality depends on the relation between two
time scales: It exist whenever tg is smaller than the stan-
dard deviation of the FPT, LT. This relation can be
characterized by the parameter

(3.2)

which represents the probability of finding the system
in the second stage of evolution. In the decay from a
marginal state a = 0, AT 1/~bc, so that p —+ 0 for
e —+ 0 and transient trimodality exists. In the decay from
an unstable state

We aim a useful approximation to the individual paths
describing (2.5). In order to clarify ideas we consider a
typical trajectory obtained from a numerical simulation
of (2.1) with initial condition z(0) = 0. Simulations for
different values of a are shown in Fig. 3. We have used
the same sequence of random numbers in all the cases.
We distinguish three stages of evolution. In the first stage
the system remains close to its initial state. In the sec-
ond stage the system leaves the vicinity of z = 0, and in
the third stage of evolution the process fluctuates around
+zo. I et us start our analysis by looking at the trajec-
tory for a small value of k (k = 0.01). In the first stage
the random term +r((t) has an important role in the evo-
lution. We can identify two time regions. In the initial
one the system is so close to z = 0 that the deterministic
contributions in (2.1) can be neglected in front of ~s((t).
The process evolves like a purely diffusive one (Wiener
process),

X
0.0

0 6 k=10 k=1 k=0.01

I I I I I I I I I » I I « I i I I I I

200 400 600 800 1000 1200

In the second time region the system is still close to z 0,
but the deterministic terms also contribute to the dy-
namics and the trajectory clearly differs from the purely
diffusive one. Finally the system departs from z 0,
starting the second stage of the evolution. This depar-
ture occurs at time t', which is rather sharply defined for
each individual trajectory. We refer to the escape process
as the evolution up to the time t,'. The duration of the
two time regions of this first stage depends on the value of
k. As k increases the deterministic terms become;mpor-
tant sooner and the escape time is smaller. For k large
enough the deterministic term az(t) contributes from the
very beginning and the distinction between two time re-
gions disappears. This is what happens in the first stage
of the decay from an unstable state in the supercritical
pitchfork bifurcation.

In the second stage of evolution the deterministic con-
tributions in (2.1) play the main role, whereas the noise
term can be neglected. The system leaves the vicinity
of z 0 and evolves to +zo. For small values of k the
time spent in this second stage is much smaller than the
escape time t'. Following Ref. 18 we call transition time
td the time that the system spends in this region. This
time is determined by deterministic considerations. An

X
0.0 ——

0.4—

0.8— 1000

1.0—

1.4
0 1 2 3

I I I I I I I I

FIG. 3. Single realization of (2.1) for different values of
a. (a) Solid lines correspond, from left to right, to a = 10
(k = 10), a = 10 (k = 1), a = 10 (k = 0.01). (b) The
solid line corresponds to a = 1 (k = 1000). The dotted line
corresponds to the Wiener process (3.1).
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ZZ = —/1f (I),
1

2Q

In this way the approximation for the escape process is

where @ is the digamma function. i4 This variance does
not depend on the noise intensity and for large enough
a, p can have a finite value, so that transient trimodality
disappears.

We are here concerned with the escape process con-
necting the first and second stages for diA'erent values of
k. Rescaling z and t in Eq. (2.5) as

zR(r) =

e "' rl(r')dr'

' ,„, (
1 —2 e ' e g(r )dr dr

0 0

z=nzR, f =P7.,
with n = (e/tI)i~4 and p = (be) ii'~ we obtain

dzR(r) 3
d7

= kzR(r) + z„(r) + n(r), (3 5)

dzR(r) = kzR(r) + V yR(r)g(r), (3.7)

dyR(r)
2 2

( )d7
(3.8)

with zR(0) = zR(0), yR(0) = 1. Basically the idea is
to decompose the process z(r) into two parts, a process
zR(r) associated with the linear evolution and a process
yR(r), which takes into account the nonlinear terms of
the dynamical equation. For k « 1, initially yR(r) 1,
then zR(r), and also zR(r), are essentially Wiener pro-
cesses. As time goes on yR(7) decreases, consequently
zR(r) has negligible fluctuations, and the evolution be-
comes deterministic. For k && 1, even from the very
beginning, the evolution for zR(r) is not purely difFusive
since the contribution of the term kzR(r) is important.
This term makes zR(r) increase faster, so the system es-
capes earlier. This term is also responsible for the dis-
appearance of the separation in two time regions in the
first stage of the temporal evolution.

It is possible to obtain an approximate solution for
the coupled equations (3.7) and (3.8) in an iterative way.
We start from yR(r) = yR(0) = 1, and solving (3.7) we
obtain

T

zR(7-) = e~' e "' rl(r')dr'.
0

Substituting in (3.8) we have

(3 9)

yR(r) = 1 —2 e "
~

e i1(r")dr"
~

dr' .
o I o

(3.10)

where g(r) is a Gaussian white noise of zero mean and
correlation (il(r)g(r')) = 26(r —r'). To find an approx-
imation for this process we proceed in a similar way as
for the case a = 0. We write the rescaled process zR(r)
as the ratio of two stochastic processes

zR(r)
zR(r) =

yR(r)

Then (2.5) is equivalent to the set of equations

(3»)
In Fig. 4 we show a numerical simulation of a single
trajectory of the process given by (2.1) and the approxi-
mation (3.11) for the same sequence of random numbers
and for diA'erent values of k. The agreement is remark-
ably good for k —+ 0 and it becomes better for large
values of k. In fact, for k = 0 we recover the results
of Ref. 8 [see Eq. (2.14)j. It is possible to obtain an
improvement upon (3.11) by going to the next order in
the iterative process, but the first, -order approximation
(3.11) contains the main features of the process. We re-
mark that (3.11) is not a scaling approximation for the
process since zR(f) is given as a function of two nonin-

I
dependent stochastic processes, namely J~ e "' ((r')dr'

aad f e('f ed('v")dv") dv'. We have checked

that the approximated process (3.11) gives a very good
approximation to the time-dependent probability distri-
butions P(z, t) shown in Fig. 2.

I et us analyze, in terms of (3.11), the mechanism re-
sponsible for the escape from the vicinity of the initial
condition z = 0. For k « 1 the numerator of (3.11) is

I I I
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FIG. 4. Diferent stochastic paths for a given sequence of
random numbers and diR'erent values of k. Solid lines corre-
spond to a simulation of the exact process (2.1) for the same
values of k as in Fig. 3. Dashed lines correspond to the ap-
proximation (3.11) for the same values of k. The dotted line
corresponds to the Wiener process (3.1).
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y~(7-) = 1 —20(7.),
where

l

fI(7.) = e'" ' e-"'"g(r")d7-" d7-'.
o ( o

(3.12)

(3.13)

~ o

A(7) is a positive definite stochastic process which m-

creases monotonically in time, reaching a time 7-* suc

is due to the fact that we are neglecting the saturation
effects]. We will identify the time 7' at which yR(7) ~ 0
with the escape time and we call yR(7) the escape pro-
cess. This identification was discussed for
8. Its meaning orf k && 1 can be understood as follows:
For k &) 1 and small times

z~(t) = zR(t) = e"'hR(r), (3.14)

hectic process very close to the Wien~~ p
f t for k = 0 it is the Wiener process). This makes the)

t fluctuate around z = 0, but does not provide an

escape mechanism. It is the denominator yR (~) a is

responsible for that. Equation (3.10) can be rewritten as

where

hR(r) = e " g(r')d7'. (3.15)

B(r) =
T -2e"' hn(r') d7'. (3.16)

Thus for times at which (3.14) becomes large, yR(7.) ~)

also.
ends onlWe note that the escape process pe(7) depends on y

on one stochastic process, so it is easier to analyze t an
the full process zir(v). In addition, it turns out that t e
statistical properties of yIt(r) are exactly known since it
is possible to calculate the generating function for B(7')
(see Appendix A)

Equation (3.14) coincides in rescaled varia es
o

es with the
linear approximation for t e y

~ ~ ~ ..e deca of an unstable state
m''obtained from (2.7) neglecting the saturation term.

in time and is the dominant mechanism of escape. ev-
ertheless, as (3.14) grows, 0(/) also grows since in t is
case

—1/2
—k7. 2 sinh ~

k
2(A, ) = ( "o&'&) = s '& cosh csch +, 7 = e (3.17)

P(7.)—: zlt (r')dr' = —~21ny~(i-) .
0

(3.18)

8The escape process yR(7) is simp yl related to a process
with direct physical meaning P(w) defined as

(/). We recall that t,
* has been defined by y(t*) = 0. The

distribution P(t') is compared in Fig. 5 wit th
passage-time distribution P(T) obtained from numerica
simulation of the exact equation (2.1). The distribution

The relation (3.18) is verified independently of the ap-
proximation use or y~&7-&.d f ~~ &~. The generating function for
the process P(/) is derived in Appendix 8,

&:,p. ..) -=(.-'&& ~)

= (.;"'(.))
u" 'e "Gri(—2u, ~)du.

I'(A/2) o

0.0012

0.0010

0.0008

0.0006

0.006

800

(3.19)

In particular

)' = —' r ' " [Gri(—2u, 7.) —1] du . (3.20)~
—

2 so

These results for the process P imp y gl a scalin law: The
statis ics 0 +y7-g

' t' f +~& ~& are completely determine by a trans-
e recallformation of the statistics of the process Q(7). We reca

cess z(t). In fact, (3.20) and (3.18) give the only form of
scaling that is preserved for all values of k.

IV. STATISTICS OF ESCAPE TIMES

We have computed the escape-tim pe robability distri-
b t' P(t') from a numerical simulationl of the rocessU ion p

0.0004

0.000'

0.0000
0 1000 ZOOO 3000 4000 t 5000

ution. Solid line corre-FIG. 5. First-passage-tIme distributio
ocess 2.1 and dashed

0.3 for first time. Circles correspon to e
u t' f times at which the denomina or odistn ution o im

k = 1 0.01. Inset:ishes for first time. ro pm to to bottom,
e assa e-time Istri u ionk = 10, crosses correspond to the pa g —

'

assnciated with (2.7) given by (4.1) with x,„=a/6
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P(T) is defined as the probability that z(t) reaches a
given threshold value zih at time T for the first time.
zth is choosen in such a way that the process has clearly
escaped from the vicinity of z = 0. It is seen that P(t')
gives a good representation of P(T) for different values
of k. For k && 1 there exists a small discrepancy in the
tail of the distribution. This discrepancy corresponds
to rare stochastic paths which stay a long time around
z = 0 and are not well approximated by (3.11). As k in-
creases these long-lived events become more rare and the
discrepancy disappears. It is also seen that for k )& 1,
P(t*) approaches the first-passage-time distribution as-
sociated with the process (2.7). We note that the PT
distribution for the process (2.1) is essentially indepen-
dent of the precise value of xth. This is due to the fast
deterministic evolution once the system leaves the sur-
roundings of z = 0. For the relaxation from an unstable
state the PT distribution is shifted in time when chang-
ing zth. Indeed, such PT distribution is obtained
from the linear approximation to the process given by
(2.7) (b = 0) and considering times of interest kr » 1:

Substituting (4.7) into (3.12) and going back to the orig-
inal variable 4, we have for e2~' && 1

1 at* = —ln
2a sbh~(oo) (4 8)

Q(r) = f(r)v, (4 9)

where v is a random variable [either 0 for k = 0 or hR(oo)
for k » 1]. For an intermediate value of k scaling does
not exist because a relation of the form (4.9) does not
hold.

A similar discussion about scaling can be given in
terms of the generating function Gii(A, r). For k = 0,
(3.17) give

This coincides with (4.1) with z,h ——a/b We find again
a scaling property since the time dependence of Q(r) has
been scaled out and t* is given as a function of the ran-
dom variable h(oo). This property only holds here in a
long-time regime at » 1.

In both cases considered, k = 0 and k » 1, we have

t = —ln th
2a eh~(oo) ' (4.1)

- —1/2
Gti(A, r) = cosh(2rV A) (4.10)

where h(oo) is a Gaussian variable defined by
This result coincides with the one obtained in Ref. 8.
For k » 1, we have from (3.17)

h(oo)—: e "((t')dt'.
0

(4.2)
I

e2~~ —1 —2kr)
Gti(A, r) = 1+ A

~

(4.11)
We see below that the PT distribution approaches (4.1)
for k )& 1 with an eff'ective threshold value z~h ——a/b

In order to obtain analytical results for the escape-
time distribution we analyze the process Q(r) defined in
(3.13). For k = 0 we have

(4 3)

where 0 is a random variable defined as
10—: W (s)ds . (4 4)

Using (3.4) and with the definition y(t') = 0 in (3.12) we

obtain for the escape time

In both cases

Gri(A, r) = F(Af(r)) . (4.12)

- —z/a
F(A) = cosh(2v A) (4»)

Substituting f(r) = 7~ [from (4.3)] we recover (4.10)
from (4.12) and (4.13). On the other hand, the generat-
ing function for h~~(oo) is given by

This equation has the same content as (4.9), F being the
generating function of the random variable v. In the case
k = 0 the generating function for 0 is

t' = (2bsA) F(A) = [1+2%/k] (4.14)

This result implies the existence of scaling properties in a
strict sense: The time dependence of Q(r) can be scaled
out so that; t* can be given as a function of a random
variable O.

For k &) 1, the stochastic process h~(r) defined in

(3.15) can be approximated as h~(oo) = (bs)i~4h(oo) in
(4.2). The random variable h~(oo) is Gaussian with zero
mean and variance:

(4.6)

In this limit (3.16) gives

From (4.7), f(r) = (e "' —1)/(2k), and substituting
into (4.12) we obtain an expression that, in the limit
k -+ oo, coincides with (4.11).

The general form (4.12) evidences scaling behavior.
This is found here in two limits: For k )) 1 we have the
usual scaling based on initial Gaussian statistics. For
k = 0 we have an "exceptional" scaling due to being
at the critical point a = 0. For intermediate values of k
there is no scaling. However, for a given value of k, and 7

large enough, the generating function (3.17) is effectively
zero for values of A such that

1
Q(r) = (e "' —1)h~(oo) . (4.7)

A » k'/2. (4.15)

In the range of values of A in which Gri(A, r) is nonzero,
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the generating function approaches the scaling form
(4.11) with increasing r (see Fig. 6). The net results is

that while for k = 0 there is scaling for all times, scaling
is postponed to long times for k j 0: There is an asymp-
totic Anal regime in which Gaussian scaling efFectively
sets in. This scaling is postponed to very long times if
I(; is small. The problem is that for k small enough the
asymptotic regime of Gaussian scaling is beyond the in-
teresting time regime in which the system escapes from
x=0.

The lack of scaling for intermediate values of k makes
impossible, in principle, the calculation of the escape-
time statistics by expressing t* as a function of a random
variable as it would follow from yrt(r*) = 0 and a scaling
form (4.9) for A(r). A possible way out is through a
scalinglike ansatz for Q(r): For intermediate values of k

we propose the following approximation for A(r):

(4.16)

n(r ) (n(r'))
(~(r ))

(4.19)

The definition y~(r') = 0 implies that Q(r') =
z and

(4.18) implies that (Q(r )) = i. These two results to-
gether with (4.17) and (4.19) give

(4.18)

which together with (4.17) fixes our choice of the value
of r

From (4.16), (3.12), and the identification y~(r*) = 0,
the escape time can be obtained by numerical inversion
as a function of the random variable B(r ). In order
to check the reliability of the statistical properties of r'
obtained in this way we need to compare the statistical
properties of Q(r) given by (3.17) and those which follow
from the ansatz (4.16). A way to do this is to check if
statistical properties of A(r ), which follow from (4.16),
are consistent with the exact result (3.17) for r = r
The ansatz (4.16) gives for 7 = 7'

where r~ is a parameter to be determined. In the limiting
cases k = 0, k ~ oo, (4.8) holds. As a consequence the
approximation (4.16) gives the correct results (4.3) and
(4.7) for any arbitrary value of r . In general (4.16)
is of the form (4.9) with A(r ) playing the role of the
random variable v. The statistical properties of Q(r )
are known through the generating function (3.17). The
time-dependent function (A(r)) is explicitly known since
it can be exactly calculated from (3.13)

(4.20)

exp (4.21)

This is compared in Fig. 7 with the exact result (3.17)
for r = 7 . For k = 0 the agreement is perfect since

Therefore the statistical properties for B(r ) implied by
the ansatz (4.16) are given by the generating function

r 1 —2kr
(~I(r)) = (4.17)

The free parameter r~ is here determined by the require-
ment

1.0

0.8

0.8
0.6

0.4

0.4 0.2

0 0
0 2 4 6 8 y 10

0.0 0.2 0.4 0.8 ~ 1.0

FIG. 6. Gaussian scaling of the generating function
Gn(A, r). Solid lines correspond to Gn(A, r) for k = 1 given
by (3.17). Dashed lines correspond to the Gaussian-scaled
Gn(A, r) given by (4.10). From top to bottom, r = 1, 3, 5.

FIG. 7. Comparison between (4.20) with r' as the time
at which yn(r') = 0 and G&(A, r ) given by (3.17), for dif-
ferent values of k. Results for (4.20) obtained by numerical
simulations are plotted for k = 0.01 (solid line), k = 1 (short-
dashed line), and k = 10 (long-dashed line). Circles, crosses,
and squares correspond to Gn(A, r ) for the same values of
k, respectively.
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scaling holds exactly. There exists Gaussian scaling for
I~; —+ oo, so that for large k our approximation works very
well, and already for k = 10 the result is good. The worst
situation concerning the lack of scaling is for k 1. Even
in that case the agreement in Fig. 7 is rather satisfac-
tory. Such agreement gives support to the approximation
(4.16) as a scaling interpolation approximation for inter-
mediate values of k.

Following the procedure of Ref. 8, Sec. IIB, the mo-
ments of the FPT distribution ( t" ) can be calculated
numerically from the ansatz (4.16). An advantage of this
approximated method is that it only involves one nu-
merical integration, while the standard FPT technique
requires 2n integrations. As a final remark we note that
transient fluctuations for an arbitrary value of k can be
evaluated from the FPT statistics following the ideas of
Sec. III of Ref. 8, but using the deterministic evolu-
tion starting at x' at time t* instead of a step-function
approximation. For small k the deterministic evolution

I

z(t) is a steplike function at t = t', so that the results
for a = 0 are recovered. In this procedure the moments
(z"(t)) are determined by a transformation of the sta-
tistical properties of the escape time, so that a form of
scaling is recovered.
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APPENDIX A

In this appendix we present a derivation of the result
(3.17) for the generating function Gri(A, r). We start
from a general calculation for a generating function of
the form

G(A, r) = exp —A f (r') g(r")g(r")dr" dr'
0 0

(A1)

where the average is to be understood over the ensemble of realizations of the white noise g(r). In our case f(r) = e '
and g(r) = e ~ . The first step in the calculation of (Al) is to discretize the time as r = ns. Then the noise

rj(r)dr = dW(r) will be also discretized as a Gaussian random number EW~ with

0, & &WxAR'l &=»bw . (A2)

Then

f (r') g(r")rt(r")dr" dr' s ) f (ry) ) g(rt)AW~
0 0 ) a=o (t=o )

(A3)

In order to perform the average we introduce auxiliary variables z;, i = 0, 1, ..., n —1 and make use of the well-known

properties of Gaussian integrals:

n —1 (k-1
exp —As ) f (rj,) ) g(r))AW)

k=0 l=O

2

~~ ~

~~

OO 1
n —1 n —1 k-1

dzo ... dz„ i exp —2) z& + iv 2As) f(rI, ) I ) g(~~)AIV~ zy . (A4)
QQ 21I QQ 27K

p o L=O (I=0
~~

The double sum of the exponent can be written as

n —1k-1
) ) f(ry)zing(r()AW) = ) A(g(r()b, W), (A5)
k=O l=O

where

n —1

) . f(ra)za.

l=o

(A6)

Substituting (A5) and (A4) into (Al), we have a discretized generating function

n. —1 ) ( n —2

G(A, ns) = dzo ... dz„ i exp —
2 ) z& exp i/2A )sAig(rt) AWi

& 'a=o
~~ (A7)
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The average that appears in (A7) can be performed by
expanding the exponential in series, averaging term by
term and summing up the final series. We obtain

ra-2

exp i+2As ) Arg(rr)AWr l

ri=o

with u(0) = I, u'(0) = 0. For our special forms of f(r)
and g(r) (A14) reduces to

d, u —2kd u+4A = 0 . (A15)

Solving (A15) with the quoted initial condition we obtain
the final result (3.17) with

= exp i2As ) Ai g (rr) . (AS)
)=0

G(A, r) = lirn G(A, ns) = u '~'(r).

APPENDIX D

(A16)

By substituting (A8) into (A7), the resulting multiple in-
tegral can be evaluated step by step. Retaining in each
step of integration the leading contribution (i.e., neglect-
ing terms of order s with respect to terms of order s )
we obtain, after n integrations,

Here we derive the generating function for the process
P(r) given in (3.19). Starting from the definition for
Gy(A, 7) and using (3.18) we have

G(A, ns) =
ra r( -k-1

1+4As'f'(r„) ) g'(r&)
l

r=o )

(B1)

From the definition of the I' function for an arbitrary c,

Keeping only terms up to s2, this is equivalent to

(A9) I'(z) = c'

we obtain

z —l~ —cvd (B2)

G(A, ns) = 1+4As' ) fs(rr, ) ) g2(rt)
t=o

(A10)

The argument of the square root of (A10) can be ob-
tained by the following recurrence relations for the aux-
iliary quantities u„and v„:

u„+i —u„+ +4Asf (r„)v„)

'«' ) -
F(A/2)

A/2 —1 —u 2uA{7.)

OO

~R" '(r) = A/2 —1 —uy~(r) d
I'(A/2) o

OO

„x/2-1 —u[~ —2@{~)]d„
I'(A/2) o

where we have used (3.12). Then (Bl) reduces to

(B4)

v„+i —v„+ v4Asg (7.„)u„,2

(A 11)

with initial conditions uo ——1, vp —0. Then, by ne-
glecting higher-order terms in s it is possible to prove
by induction that (P(r)) = —

2 (in[1 —20(r)]) .

Expanding the logarithm we have

(B5)

Taking into account the definition of Gii(A, r) we get
(3.19).

The average of the process P(r) can be derived in a
direct way. From (3.18) and (3.12)

In the large-n limit, i.e., for vanishingly small s, we get
a set of diA'erential equations

—in[1 —20(r)] =), '
[2A(r)]"

(k —I)!
k=1

du(r) = y 4Af (r)v(r),

dv r = V'4Ag (7.)u(r),

(A13)

~ - [2~(r)]'
kk=1 0

—e-" e2""{ —l du ) (B6)

to be solved with initial conditions u(0) = 1, v(0) = 0.
These equations are equivalent to

so that

(&(r)) = —,
' 1—e "[Grr(—2u, r) —l]du,

d, u —2 d, u —4Af~(r)g2(r) = 0, (A14) which coincides with (3.20).
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