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Path-integral approach to diffusion in random media
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Using the path-integral method, we derive the analytical solution for the following one-
dimensional diffusion in random media: dP(x, t)/Bt=D[B P(x, t)/r)x ]+1V(x)P(x, t), where Vis
a white-noise Gaussian potential. A quantity r=(16D/9X )' ' is introduced for the time scale.
When the diffusion time t «r, the behavior of the average (P(x, t) ) is essentially diffusive. When
t ))r, the random potential plays a dominant role, and the average (P(x, t) ) tends to
[1, t '~' /8(m D')' ~']exp[(A. t '/48D)( 1 x'/2D—t) ].

I. INTRODUCTION

where A, and D are constants and V(x) is a time-
independent white-noise Gaussian potential characterized
by

( V(x)) =0, ( V(x, ) V(x2)) =5(x, —x2) . (1.2)

The angular bracket ( ) denotes statistical averages. We
consider the initial condition P(x, O) =5(x). The analyti-
cal solution was derived by a path-integral method. The
asymptotic expansion of the solution in t ~ ~ was initial-
ly somehow in error and clarified later. Rosenbluth first
called this to my attention. He also used a variation ap-
proach to find

Diffusion in random media, where disorder involves
the presence of traps and sources, has recently received
considerable attention, both for its intrinsic theoretical
interest, analogous mathematically to the problem of "lo-
calization, " and for its many applications in physical,
chemical, and biological systems. ' Examples of such
systems would be chemical or physical reactions with
random nucleation centers, the size of a polymer chain in
a random environment, chain reactions with random
fissile distribution, or biological multiplication with ran-
dom nutrient concentration.

In Ref. 3, an analytical solution was reported for the
following one-dimensional diffusion equation:

'dP(x, t) D d P(x, t) ~ ( ) ( )
Bx

(1.4)

which plays an important role in the present problem.
When t «r, the behavior of average (P(x, t) ) is basical-
ly diffusive, the effect of random media is almost negligi-
ble. When t ))~, the effect of random media becomes
dominant, then

4t Sr2 ~4t 3

(P(x, t) )~, exp „1—
If we set x =0 in the above result, we recover the asymp-
totic behavior of (P (0, t) ) reported before. '

The path-integral method used in this study was initial-
ly invented for a class of disordered systems. ' The
present paper develops this method, which is expected to
have applications in other problems related to disordered
systems.

II. PATH-INTEGRAL METHOD

We first write P (x, t) in the form

it is necessary to know the behavior of (P(x, t)) with
x %0.

The present paper is organized as follows. In Sec. II,
we discuss the path-integral method used in this problem
and derive the analytical solution for (P(O, t)). A de-
tailed discussion about (P (O, t) ) is given in Sec. III. Sec-
tion IV is devoted to the study of (P(x, t)) with x&0.
We have found a time scale ~ defined by

1/3
16D7=
9a4

1n[P(O, t)]~A, t /(48D) as t~ ce .

Since then, the problem has received considerable at-
tention. buyer and Machta related the problem to Flory
theory in polymer physics. Leshke and Wonneberger
connected the problem to free energy of the Pekar-
Frolich polaron. Nattermann and Renz showed that
this problem is related to polymers in random media and
stochastically growing interfaces.

In view of the importance of the issue, it is necessary to
present the detailed derivation of the analytical solution
for this problem. Furthermore, all former discussions
were concentrated on (P(O, t) ). For many applications,

P(x, t)= f e ' g(x, E)dE .

Introduce the Hamiltonian

a2H= —D —A. V .
Bx

Then, from Eq. (1.1), g (x,E) satisfies the equation

Hg =Eg .

The initial condition at t =0, P(x, O) =5(x), is now

5(x)= f g(x, E)dE .

(2.1)

(2.2)

(2.3)

(2.4)
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Equations (2.3)and (2.4) imply that

1 1
g( xE)= —Im x 0)g&,E —H —ig

(2.5)

where ( ) D is the Dirac notation and q=O+. We use Re
or Im to denote the real part or imaginary part, respec-
tively. Since the Hamiltonian H is real, for simplicity, we
make all eigenfunctions of H real. Equation (2.5) can be
written into a path integral'

f dP P(x)P(0)exp i f—ding(g)(E H —ig—)P(g)
g (x,E)= Re

f dP exp i —f
ding(g)(E

H —i—g)P(g)
(2.6)

The replica trick" enables us to write g (x,E) into

Re lim f

ding,

(x)P,(0)
7T n~o

Xexp i fdg—P E+D P ik f—VP dg
Qg2

(2.7)

where P is an n-dimensional vector. As we take a statisti-
cal average, only the term containing V needs to be con-
sidered. For a white-noise Gaussian potential, its average
yields

DifFerential equation (2.12) can be solved exactly. Using
u =r /2, we transform it to the form

dNo E A,+4 ——+i u go=0
du D

(2.13)

iA, (, ) 4( DE+i Au—),
u1 H&/3

which implies that Po is an Airy function. After taking
the boundary conditions into account, we represent Po in
the form

exp —i A, V d =exp f(P ) dg (2.8) 0
4( DE)3 j2

3.a'D

(2.14)

We substitute Eq. (2.8) into Eq. (2.7) and introduce a
transformation P~gl&D. Now (g (x,E) ) is given by

Re lim f

ding,

(x)P,(0)
mD n o

B2 A,
2

Xexp i fd—g P —+ P — (f )
ag' 2D'

(2.9)

Following Ref. 10, Eq. (2.9) can be further simplified to

(g (O, E) ) = — Ref (Po) du .
~D o

(2.15)

Here again u =r /2. Differentiating Eq. (2.13) with E,
we get

where 0', /3 is the Hankel function of the erst kind.
We first consider ( P (0, t) ) since it has a simple analyt-

ical expression. The behavior of (P(x, t) ) will be studied
in Sec. IV. From Eq. (2.10), at x =0, we have

(g(x, E))= Ref f dr dr&Po(r)Po(r, )G(r, r, ,x)
~D o o

(2.10)

where G ( r, r, , t) is a Green's function, satisfying the equa-
tion

d' 4o E . X' ~4o+4 ——+) u
du BE D D BE

4——P =0.
D

(2.16)

BG(r, r„t)
l

Bt
1

4 Br'
1 B 1+
r Br

+ r —i r —G(r, r&, t),E, X2 4

2D' (2.11)

Multiplying Eq. (2.16) by Po, Eq. (2.13) by Bgo/M, and
subtracting and integrating over u, we find

2 -, 1 a d4of y',d—u =— (2.17)
D o 2 BE du M=0

+ r — r P—o=0 (2.12)
E 2 iA, 4

D 2D2

and the boundary condition G(r, r, , O)=r&5(r —r&); Po is
the solution of the equation

d'4o 1 d4'o

4 dr 2 r dr (g (O, E) ) = ——Re1 B

BE
d 4'o

du 0=0
(2.18)

where we have used po(0) = 1, Po( ~ ) =0,
(Bgo/BE)~„.o=0, and (Bgo/BE)~„„=0 in the deriva-
tion. We now have

with the boundary conditions Po(0)=1 and Po(~ )=0. From Eq. (2.14), we have
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d4'o

dQ Q=0

2( E—)' H", /'3[4( D—E) l(3iA, D)]
3/D H, "3 [4( —DE) l(3ik D) ]

(2.19)

Introduce

Z(E)=( E)'—H'" [4( —DE) l(3iA, D)] . (2.20)

Then, we have
and

IH", /3( i—2) ) I

= exp(22) )
2 (3.2)

d4o
dQ 0=0

i A—Z, '(E)
D Z(E)

(2.21)

Hence (g (0,E) ) is given by

B Z'(E)
2irD BE Z (E)goE = Im

(P(o, t) ) follows from Eq. (2.22),

(P(o, t)) = f (g(O, E))e 'dE-
A, t ~ Z'(E)

Im e 'dE
2vrD — Z (E)

(2.22)

(2.23)

Before calculating Eq. (2.23), we note that Z(E) satisfies
the Airy equation,

Z"(E)+ Z(E)=0 .
X4

(2.24)

The second independent solution for Eq. (2.24) is Z*(E)
which is a complex conjugate of Z(E) for E real. The
Wronskian of these two solutions is a constant, given by

I

H'" ( ')I'= (3.3)

(P(o, t) )~ f d7) e
3k t
4+D o 23lD vrt

for t «~.
(3.4)

This is the well-known diffusion result which con6rms
our analytical solution.

When t ))~, the main contribution to ( P (0, t) ) is from
the first integral in Eq. (3.1). Using the saddle-point
method, we have the asymptotic behavior

The integral in Eq.(3.1) is convergent for a positive t. To
verify our analytical result in Eq. (3.1), we first consider
the case of a small t, t «~. At t =0, the source was at
the center, then it began to diffuse through the media.
When t is small, the effect from random potential is negli-
gible; therefore the diffusion is dominant. Equation (3.1)
should give us a diffusion result for t «~. An examina-
tion of Eq. (3.1) reveals that the main contribution to
(P(o, t)) is from the second integral in Eq. (3.1) when
0& t &&~. We then have

Z'(E)Z*(E) —Z(E)Z* (E)=6i lir .

Applying Eq. (2.25) and the following relationship:

Z'(E) i Z'(E) Z* (E)
Z(E) 2 Z(E) Z*(E)

(2.26)

4t Sy2 X4~'
( P (0, t) )~ exp

8( D 3)1/2 4gD
for t»~. (3.5)

The general behavior of (P (0, t) ) is obtained by numeri-
cal calculation of Eq. (3.1). The result is plotted in Fig. 1.

to Eq. (2.23), we have

3g2g oo e
—Et

(P(o, t))= ', ' f" ', dE.
2~'D -- IZ(E) '

This is the solution for ( P (0, t) ) .

(2.27)

140-

III. THE RESULT OF (,P(o, t) )

For further study, we substitute Eq. (2.20) into (2.27)
and divide the integral f into two parts f and

f o+ ". After some algebra, we have

100-

80-

(P(0 t))=, f d2) q
2mD o

gt /7

IH"'( —t '")I'

e
—qt I7.

+
IH( i

(
/

)I
(3.1)

i
[ I I I [ 1 I I [

I I I [ i & &
[

& & & f

0 2 4 e 8 10 12 $4 16 18

Time t (units of T' )

where the time scale z is in Eq. (1.4). As 2)~ao, the
asymptotic behavior for the two Hankel functions in Eq.
(3.1) is different:

FIG. 1. The general behavior of (P(o, t}) vs time t The.
time is measured in units of ~. As t ))v., the asymptotic behav-
ior in Eq. (3.5) gives a quite accurate result.
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On the x axis, the time is measured in units of w. On the
y axis, we plot ln[(P(O, t) &/(3A, /4' D )'~ ]. The
asymptotic expression in Eq. (3.5) is quite accurate for
t ) r. For example, when t =6r, Eq. (3.1) gives
(P(O, t) & =101076.1(3A. /4~ D )', while Eq. (3.5) esti-
mates (P(O, t)&=103537.2(3A, /4' D )' . The differ-
ence is only about 2 Jo. This can also be seen from Fig. 1,
since the curve is soon approaching —t .

IV. THE BEHAVIOR OF (P(x, t) &

It is easy to understand that (P(x, t) & is an even func-
tion of x. In addition, since the only source was at x =0

I

Q2L= ——
4 Br2

+ +—r —i r1B 1 F2 . a2 4

r Br r2 D 2D
(4.1)

1
Lo 4 Br2

We note that Eq. (2.12) can be written as Logo=0. From
Eq. (2.11) and the initial condition for 6 (r, r„t), we have

1 a E,+—r —l r
r Br D 2D2

when t =0, (P(x, t) & must have (P(O, t) & as its max-
imum.

To discuss the behavior of (P(x, t)&, we define two
operators L and Lo,

(4.2)

(
gs

g (x,E)
Bx

After integrating Eq. (4.2) by parts and using the property of 5 functions, we have
S

~

~Re( i)'f—dr rPo(r) Lo — Po(r) .
o

' ' 2r Or
(4.3)

The Taylor expansion

XS QS

(g(x, E)&= g, ,g(x, E)ax'
(4.4)

gives us

2 oo ] ()
(g (x,E) &

= — Re f dr rPo(r)exp —ix Lo-
mD o 2r ar

Then, (P(x, t) & is given by

Qo(r) . (4.5)

(P (x, t) &
= — Re f dE f dr rPo(r)exp —tE —ix Lo-

~D — o 2r ar 0o(r) . (4.6)

To consider the situation where x is not too far from the
center, we first calculate ( (8/Bx )g (x,E)

~ „o&. From
Eqs. (2.12) and (4.3), we have

Then we can write

(P(x, t)&=(P(O, t)&exp( —x la ) . (4.10)

a 4'o
g(x, E) = — Re i f dr

Qx
' „o 2nD 0 Br

1 Re(i) =0 .
2nD

(4.7)

From Eq. (4.3) and the equation Logo=0, we have

a2
2P(x t) = Re f dE e= 2

o nD

This also implies [Q(P(x, t) &/Bxj~ o=0, a result con-
sistent with the fact mentioned earlier that at a Axed t,
( P (x, t) & is an even function of x and has ( P (0, t) & as its
maximum. For a small x, we expand ln(P(x, t) & to x,

E 2iA,X
o D

Xgodu . (4.1 1)

ln(P(x, t) & =ln(P(O, t) &

82+,'x P(x, t)
X

Define a quantity a through

x =0
(P(o, t)& . (4.8)

In view of Eqs. (2.15) and (2.23), we write the first term in
Eq. (4.11) in the form of

Re f dE e 'f Podu =— (P(—O, t) & .
mD —~ o D D Bt

a2
a = —2(P(O, t)& P(x, t)

x=o
(4.9)

Differentiating Eq. (2.13) with A, , we get

(4.12)
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d' ~4o E+4 ——+i u
du B(A, )

~No 4i+—ufo=0 .
a(x')

(4.13)

known diftusion solution

(P(x, t)) ~ — exp( —x /4Dt) for t &&r .1 2

2

D'art

From Eq. (3.5), we have the result for t ))r,

(4.18)

Multiplying Eq. (4.13) by Po, Eq. (2.13) by Bgo/B(A, ), and
subtracting and integrating over u, we find X4t'" X't' x'

(P(x, t) )~, , exp 1—
4i z 8

ou du—
D fo B(A )

dPo

dQ
(4.14) for r»r . (4.19)

In view of Eq. (2.21), Eq. (4.14) reads

(4.15)

R * dE ' d
nD 0

2A, 2

(P(o, r)) .» a(x')

Combining Eqs. (4.16), (4.12), and (4.9), we have

—1 —+ - lnI(P(O, r))].
2D r)r Dr g(g')

(4.16)

(4.17)

As r «r, Eqs. (3.4), (4.17), and (4.10) give us the well-

where Z is defined in Eq. (2.20). Applying Eq. (2.23) to
Eq. (4.15), we have the second term in Eq. (4.11),

This result shows that in the long time limit, the random
potential plays a dominant role, but the eff'ect of di6'usion
cannot be ignored. The difFusion starts from the original
source and spreads to the whole space. At time t, the
effective diff'usion length is i/2Dt. In the process of
diAusion, the peaks are getting higher and higher and the
total population 1 ( P (x, t) )dx also increases as fast as
—exp(A. t /48D).
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