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Expansion-modification systems: A model for spatial 1/f spectra
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It is proposed in this paper that when two processes compete with each other, one tends to create
long-range correlations, whereas the other tends to destroy it; the limiting object usually consists of
many length scales. In particular, it might have power-law correlation functions and spatial 1/f
spectra. The basic features of this competing dynamical process with spatial degrees of freedom are
captured by the model expansion-modification system [W. Li, Europhys. Lett. 10, 395 (1989)]. Many
detailed properties of the system, both numerical and analytical, are discussed here. The implica-
tions of the proposed mechanism for power-law correlation functions to the evolution of mass dis-
tribution in the Universe and the evolution of prebiotic nucleotide sequences are also discussed.

I. INTRODUCTION

There are many systems that have more than one
characteristic length or time scale. For example, the
hierarchy of stars, galaxies, cluster of galaxies, and super-
clusters in the Universe; the nucleotides, codons, genes,
and gene clusters in DNA sequences; and the letters,
words, sentences, paragraphs, and articles in natural
languages. Many names are attached to this type of mul-
tiscale (some of them refer to the multiple-time-scale)
phenomenon, such as “hierarchy,” “fractal,”! “1/f
noise,”? “long tails,”* “intermittency,”* etc. Some of the
names refer to the more restrictive case that the longer-
range correlations are scaled with the shorter-range ones,
and if some appropriate correlation measures are calcu-
lated as the function of distance or as the function of the
size of the units, one typically finds power-law functions.

Rather than having a single universal mechanism for
all these multiscale phenomena, there are actually many
different ways to generate them. The famous example is
the critical point in phase transitions.’ By tuning the
temperature to the critical point and observing, say, the
two-dimensional pattern of the Ising model, one will find
structures with different length scales. Roughly speak-
ing, the multiscale phenomenon at critical point is a re-
sult of the competition between the tendencies to be or-
dered and disordered. The critical point represents the
right balance between the two tendencies. If such a bal-
ance cannot be reached, the transition from one phase to
another does not go through a critical point, and we have
the case of the first-order phase transition.

Another well-known mechanism is the breakage pro-
cess,® or the fragmentation, which can be easily illustrat-
ed by a process of breaking rocks. The large rocks are
broken into small pieces, the small rocks into even small-
er ones, and so on. This process is intimately related to
the log-normal distribution,’ a distribution with long
tails. Note that there is an upper limit of the largest
length scale because the breakage starts from the largest
rock. It is important that not all the larger rockes are
destroyed, otherwise there are only rocks of smaller sizes.
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In other words, in order to have rocks with both large
and small sizes, there is a tendency to resist the breakage
(which can be due to some law of statistics) as well as the
breakage itself. An interesting connection between a par-
ticular type of fragmentation, the restricted space
division, and the 1/f spectra is discussed in Refs. 8 and
9. Again, multiscale phenomenon should result from the
balance between the two competing factors.

The mechanism to be discussed in this paper reverses
the above top-down process to a bottom-up process.
Rather than generating smaller scales by breaking down
the larger objects, one can build up larger scales by ex-
panding the smaller ones. In order to save the smaller
scales, another ‘“destruction” process operates at the
same time against the expansion. The combination of the
two competing processes can be illustrated by the follow-
ing idealized model, in which the expansion is written as
a discrete equation (symbol 1 is expanded to k 1’s at the
next time step):

1—11---1 (1.1
k

and the destruction is modeled by the discrete equation
(symbol 1 is “modified” to symbol 0)

1-0. (1.2)

Similar rules also apply to symbol O to maintain the sym-
metry between O and 1. This set of rules and other varia-
tions are called expansion-modification systems, first dis-
cussed in Ref. 10.

This paper will discuss many properties of the
expansion-modification systems. Section II introduces
the simplest expansion-modification system with each
symbol expanded to two symbols. Section IIT shows that
the correlation functions for sequences generated by
expansion-modification systems are typically power-law
function, and derives the exponent of this power-law
function. Section IV shows that not all rewriting rules
that increase the sequence length can generate power-law
correlation functions. Section V discusses other
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expansion-modification systems, especially those that al-
ways rewrite one symbol into two symbols. Section VI
presents an attempt to apply the expansion-modification
mechanism to cellular automata. Section VII discusses
the implication of the model to the evolution of the
Universe and the evolution of nucleotide sequences.

Appendixes include some mathematical details used in
this paper. Appendix A (to be used in Sec. II) calculates
correlation function for sequences randomly packed with
blocks. Appendix B (to be used in Secs. III and IV)
derives the transition probabilities relating the correla-
tion function at two consecutive time steps. Appendix C
(to be used in Sec. V) derives the eigenvalues of the transi-
tion matrix for all two-symbol Lindenmayer systems,
which always rewrite each symbol to two symbols.

II. THE SIMPLEST
EXPANSION-MODIFICATION SYSTEM

The simplest expansion-modification system is the
two-symbol system in which the expansion process
rewrites one symbol to two identical symbols and the
modification process switches one symbol to another
symbol, i.e., 10

lll (1—q)

LRCE 2.1)
loo (1-p} '

I PRV

The parameter values in curly brackets are the probabili-
ties for the rewriting rules to be applied. p and g are
modification probabilities, or, to borrow a terminology
from biology, mutation rates. 1 almost always set p =q in
this paper, so that there is no bias between the two sym-
bols. Most of the conclusions on the behavior of the sys-
tem will not be affected by this constraint.

By repeated applications of the rewriting rules, a single
symbol expands to a sequence, and a shorter sequence be-
comes a longer sequence. Denoting P,(z) for the density
of symbol 1 at time ¢, the average length of the sequence
at time ¢t is N(O)=k(t)k(t —1)k(t—2) -+ k(0)N(0),
where

k()=2—q)P(t)+(2—p)[1—P(1)]
=2—q +(q —p)P,(¢)

(2.2)

is the average branching ratio at time t. When p =g, k is
equal to 2—p, which is the same constant at all times. In
general, if k =lim,_ k (z), called the limiting branching
ratio, the sequence length N(z)~k'N(0) increases ex-
ponentially. The rewriting process represented by Eq.
(2.1) is illustrated in Fig. 1.

This type of rewriting rule belongs to what is called the
probabilisitic context-free Lindenmayer system.!! Linden-
mayer systems are grammars (in the framework of formal
language theory'?), which update symbols synchronously.
The name context-free means that there is no coupling
among neighboring symbols in a sequence during the
rewriting process. Note that the context-free language
studied in formal language theory'? is different from a
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FIG. 1. A particular realization of the rewriting process for
the simplest expansion-modification system (2.1).

context-free Lindenmayer system in two aspects: (i) it
has another set of symbols (nonterminal symbols) which
do not appear in the final sequence; and (ii) it does not
necessarily need synchronous updating. The second
difference means that for context-free languages, different
branches of the tree (similar to what is shown in Fig. 1)
can stop growing at different times, whereas for context-
free Lindenmayer systems, they all stop simultaneously.

Lindenmayer systems can also be considered as dynam-
ical systems with spatial degrees of freedom. From this
perspective, they can be called “open” dynamical sys-
tems!® in comparison with those whose number of de-
grees of freedom is fixed during the dynamics. Actually,
the term “open” has an even wider meaning'® that the
rule itself can be subject to variations by the environment
or by some higher-level instructions (but they are usually
fixed). Lindenmayer systems are not ‘“‘open” by the
second definition because the rewriting rule is fixed.

In order to see how the competition between expansion
and modification affect the statistical properties of the
limiting sequences, in the following, I examine three ex-
treme cases: (i) p =0, no modification; (ii) p =1, no ex-
pansion; and (iii) p =0.5, the expansion and the
modification is applied with equal probability.

When p =0, the limiting sequence is exactly the ex-
panded version of the initial sequence. For example, if
the initial sequence is a single symbol (e.g., 1), the limit-
ing sequence is a string of 1’s; if the initial sequence is 10,
the limiting sequence contains half 1’s and half 0’s. An
interesting case is when the initial sequence is a random
sequence; the limiting sequence is then a random packing
of blocks. After the rewriting rule is applied ¢ times, the
length for each block is 2/, and the joint probability for
having two 1’s separated by distance d, is (see Appendix
A)

Ny li]

Nyli—1] ¢ . '
—(i2 —d)+T[d-—(z —1)2']

Pyy(d)=—"—

if (—1)2'<d<i2" (2.3)

where N |,[i] is the number of 1-to-1 pairs separated by
distance i at time O, and N is the sequence length. The
correlation function I'(d)=P,,(d)— P? behaves the same
as P,;(d), except for a constant term, so I'(d) is a piece-
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wise linear function.

When p =1, the dynamics is periodic and the limiting
sequence oscillates between the copy and the complemen-
tary copy of the initial sequence. No new structures or
new correlations are generated by the rewriting.

When p =0.5 or p =20.5, the mutation rate is large
enough to destroy most of the long-range correlation in
the limiting sequence. Although there are always short-
range correlations being generated that lead to nonwhite
spectra at higher frequencies, the limiting sequence is
nevertheless very close to a random sequence.

The most interesting range for the mutation rate is
when it is small but nonzero, such as 0 <p <0.2. In this
case, the expansion part of the rule has a long period of
time to generate larger blocks without disruption, but
eventually a mutation will cut a block into two, and the
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cutting point produced by mutation keeps growing itself,
and so on. Intuitively, the self-similar dynamics will be
reflected by the self-similarity in the limiting sequence,
for example, the power-law decay of correlation functions
and power spectra. (Although a self-similar dynamics it-
self cannot guarantee the limiting sequence to have
power-law correlations as in the case of p being large).
Figure 2 shows the spatial-temporal patterns for rule (2.1)
at (a) p =0.01, (b) 0.1, (c) 0.5, and (d) 0.9.

In order to verify this, the numerical calculation of the
power spectrum is carried out for the limiting sequences
at different mutation rates. The power spectrum P (f) is
the Fourier transformation of the correlation function
I'(d), or the square of the Fourier amplitudes 4 (f) of
the sequence {x;}:

oy

aulry

FIG. 2. Spatial-temporal patterns of the simplest expansion-modification system (2.1) at the mutation rate (a) p =0.01, (b) 0.1, (c)
0.5, and (d) 0.9. g is equal to p. The sequences at different time steps are aligned to the left by their first sites. The number of time
steps is 175. The cutoff of the sequence length is 380. If the sequence length is shorter than 380, the remaining space is left blank. If
the sequence length is longer than 380, only the first 380 sites are shown. The time arrow is pointing down.
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N-—1
A(f):-]lv— 2 xje*iZW(f/N)j (f:O,,N—l) ,

j=o

(2.4)

i.e., P(f)=N| A (f)|% By simple scaling property of the
Fourier transformation (see, e.g., Chap. 12 of Ref. 14), it
can be shown that a power-law power spectrum
P(f)~1/f% is equivalent to a power-law correlation
function I'(d)~1/f'"% For example, the “1/f noise”
corresponds to the extremely slowly decaying correlation
function (with the exponent 1—a almost equal to zero),
and the “1/f? noise” corresponds to linear decay of the
correlation function. The example given above (at p =0)
of the sequence with randomly packed blocks has a 1/f2
spectrum because its correlation function [Eq. (2.3)] is
linear.

Figure 3 shows the power spectra (in log-log scales) of
the limiting sequences generated at (a) p =0.01, (b) 0.1,
(c) 0.5, and (d) 0.9. The limiting sequences are taken at
the time whenever the sequence length becomes longer
than 2!=8192. At p =0.01 and 0.1, the power-law func-
tion 1/f“ can fit the spectra perfectly, with a very close
to 1. It is amazing of how easy a 1/f spectrum can be
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generated in this way.

This 1/f spectra cannot persist for all parameter
values of p, as we know that by gradually increasing the
mutation rate beyond, say, 0.5, the limiting sequence is
almost random and the power spectrum should be almost
flat, which implies « is zero instead of 1. Therefore there
should be a transition from the 1/f spectrum to the
white spectrum.

More careful numerical studies show that the exponent
of the power-law function for the main scaling region
(lower-frequency part) of the power spectrum does indeed
decrease as p is increased. Actually, the spectrum is not
always a good power-law function. The scaling remains
at lower frequencies, but bend over at higher frequencies.
From the lower frequency scaling region to higher fre-
quency tail, there is a small crossover region which more
or less stays as 1/f, although it can be hard to judge
whether or not the crossover is a continuous one.

Figure 4 shows how the exponents (—a in f %) change
with p. Two sets of data points are included in order to
show that the lower-frequency part and the middle-
frequency part have different exponents. Actually, the
spectra can roughly be partitioned into three parts. I did

space

FIG. 2. (Continued).
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not include the exponent for the high-frequency tail be-
cause it is only related to the short-range correlation.
Section III will show the analytic results, which will ex-
plain why the correlation functions and, consequently,
power spectra are power-law functions, and how the ex-
ponent (the one for the low-frequency part) changes with

D.
III. EXPONENT a OF THE 1/f* SPECTRA

In this section, I will give an explanation as to why the
correlation functions of the limiting sequences for rule
Eq. (2.1) decay according to the power law, and derive
the exponent for this power-law function. Generally
speaking, the limiting sequences of context-free Linden-
mayer systems have power-law correlation functions if
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the largest nontrivial eigenvalue of the transition matrix
(to be explained later) is positive. The case for context-
free Lindenmayer systems with negative eigenvalues of
their transition matrix will be discussed in Sec. IV.

Suppose that we look at the sequence after the rule is
applied ¢ times: {x/} [i =1,2,...,N(#)]; each site value
can be one of the n symbols {a,} (@=1,2,...,n). Asa
convention, i, j, and k are used for the site indices and «,
B3, and y for symbol state indices. The joint probability
for having the symbol pair a-f3 separated by the distance
d is [P,4(d)]’, with the superscript indicating the time.
Upon applying the rewriting rule, this symbol pair a-8
will lead to other symbol pairs a’-3’ separated by longer
distances d’ at the next time step. Assuming that the
transition probability from an a-f3 pair to an a’-f’ pair is
T (aBd —a'f'd’), the joint probability satisfies the follow-
ing dynamical equation:

(c)

0.40 A

log;o[P(f)]
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FIG. 3. Spatial power spectra P(f) (in log;y-log,, scales) for sequences generated by the simplest expansion-modification system
(2.1). The rewriting is started from a single symbol 1, and stopped whenever the sequence length is longer than 2'*=8192. Half of
the fast Fourier transformation (FFT) components are redundant, and the neighboring four components are averaged as one com-
ponent. It leaves 2!°=1024 points in the plot. (a) p =0.01, a fitting straight line has slope — 1.1, or it is the function 1/£"!; (b)
p =0.1, afitting straight line has slope —0.96; (c) p =0.5, with a straight line having slope —0.09; and (d) p =0.9, with a straight line
having a slope 0.03.
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FIG. 4. Numerically estimated exponents —a for the power-law

function approximation 1/f¢ of the spectra in Fig. 3, as a func-

tion of mutation rate p. The values represented by crosses are for lower-frequency parts of the spectra; those represented by triangles
are for the middle parts. The top line is the analytic estimation of the exponent a by Eq. (5.11) for the fixed-branching-ratio-2 rule
(5.2). Another line is the approximated estimation of the exponent a by Eq. (3.18) for the simplest expansion-modification rule (2.1).

[P,5(d) ) =3 3 T(apd—a'Bd)[Pd)] .  (.1)

d a,pB

If the T(afd —a'B'd’') are written in matrix form, it is
called the transition matrix for the context-free Linden-
mayer system.

Suppose there is a time invariant condition in the
t— oo limit (if the rewriting leads to periodic or chaotic
dynamics of the joint probabilities, this argument does
not apply), and the superscript is dropped. The joint
probabilities are then the solution of the invariant equa-
tion

Pypld')=3 3 T(apd —a'Bd"P,4d) (3.2)
d o,
or in a form of the matrix equation
(3.3)

P(d')= 3 I(d,d"YP(d),
d

where the vector P(d) contains all the joint probabilities
P,p(d) and the matrix T(d,d’) contains all the transition
probabilities T (affd —a'B'd’).

To see what the typical functional solution is, we as-
sume that (i) the matrix equation is approximated by a
scalar equation, i.e., the summation over «,f3 is dropped,
and the transition matrix is replaced by the largest non-
trivial eigenvalue A(d,d’); and (ii) the typical expansion of
the distance is the same with the expansion of the whole
sequence: d'/d~=N(t+1)/N(t)=k, the the multiscal-

Suppose A(d’'/k,d')=A>0, the power-law function
P(d)=1/d° is a solution of this equation, and the ex-
ponent ¢ is

_ _ log(A)
log(k) °
The above argument is general and always leads to a
power-law solution as long as A is a positive constant. In
other words, the sequences generated from top to bottom
without interactions among neighboring sites will have
power-law decay correlation functions if the largest non-
trivial eigenvalue of the transition matrix is positive and
does not change very much with the distance d. It is in
contrast with the case where sequences are generated
from left to right with only short memories, such as the
Markov chains!® and the regular languages.'? In those
cases, the correlation functions typically decay exponen-
tially.!>!¢ For sequences generated from top to bottom
with neighboring couplings such as cellular automata!’
and context-sensitive Lindenmayer systems, there is no
generic form for the correlation function because the sta-
tistical properties of the limiting sequence are crucially
determined by the rule of the interaction. '°
If we relax the single scaling relation but assume that
most of the contribution in the summation over d in Eq.
(3.1) is from a few distances around the most likely dis-
tance d =d'/k, after inserting a power-law solution into
the equation, we have

(3.5)

ing relation is approximated by a single scaling relation, 1 _ S A d +i,d’ ;
i.e., the summation over d is dropped. We then have the ' ;%o |k (d'/k=+i)
approximate equation , .
~ > | Liia [ X (3.6)
P(d")=M\d'/k,d")P(d' /k) . (3.4) izo |k d'
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then
log | 3 Md'/k=*i,d’)
d 3.7

€= log(k)

Again, if the exponent c calculated by Eq. (3.7) is a func-
tion of d’, the solution would not be a power-law function
with a fixed exponent. The above formula for the ex-
ponent ¢ is only an approximation. In general, the mul-
tiparameter scaling might be poorly approximated by a
scaling with a single parameter. Similar reason leads peo-
ple to generalize the fractal description to the multifrac-
tal description. '®

To illustrate the above discussion, I now calculate the
exponent ¢ for the simplest expansion-modification sys-
tem discussed in Sec. II. First of all, the transition proba-
bility T(affd —a’'d’) can be grouped into three types:
i) Ty, which keep both symbol unchanged
(a=a’,=p"); (ii) T, which change one symbol (either
aFa' or B7#'); and (iii) T,, which change both symbols
(a7a’ and B#p’). They are (see Appendix B for the
derivation)

To=T(afd—>aBd’)

a2
:%%[Bm +20d —1,p)
+2Bm+1(d *l,p)‘{_Bm(d _I,P)] ’

T,=T(aBd—apd’) (3.8)

:P_;l_;pzﬁwmﬂu —1Lp)+B,,(d—1,p)],

_ 2
T,=Tl(a d_>a/3d'):3p_—p3m(d —1,p),

where the overhead bar represents the switching opera-
tion between the two symbols. m is roughly the number
of sites in between the a-B pair which mutate

m=(d—1)—(d'—d)=2d —d'—1, (3.9

d’—d is the number of sites which expand, and B,,(n,p)
is the binomial coefficient

n
p"(1—p)"—m, (3.10)

B, (n,p)= m

which is the probability for one event, with probability p,
to occur m times and another event, with probability
I—p, to occur n —m times. Because of the symmetry,
T (afd —aBd’) is equal to T (affd —aBd’)= T,.

The way to remember these formulas is to note that
whenever the expansion is applied to both symbol « and
B, there is a factor of (1—p)?; if there are two mutations,
the coefficient contains p®. As for the subscripts in the
binomial coefficients, there is m +2 whenever the transi-
tion is through the two outer legs of the expansions;
m +1 if the transition is through one outer leg and one
inner leg of two expansions, or one outer leg of expansion
and one mutation; and m if the transition is through one
inner leg of the expansion and one mutation, or two mu-
tations (see Figs. 9 and 10 for an illustration).
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Due to the normalization condition of the probabili-
ties, we have

> [Ty+2T,+T,]

(1—p)? 2(1—p) 1
=§ _Zt%_Bm+2+"2_—me+1+;_;Bm

(3.11)

where d;, is either d’ /2 (if d’ is even) or (d'—1)/2 (if d’
is odd), and d,,, =d’. These are situations when all sites
(or almost all sites) are doubled (d =d;,,) and all are mu-
tated (d =d,,,), respectively.

The transition matrix is of the form

ry, 1, T, T,

(3.12)

(all the matrix elements are function of d, d’, and the mu-
tation rate p) and its eigenvalues are

Mld,d')=T,+2T,+T, , (3.13)
Ad,d')=As(d,d")=T,—T, , (3.14)
Ald,d')=T,—2T,+T, . (3.15)
Ad,d’) is the “trivial” eigenvalue because

YaM(d,d’)=1. In the parameter range of interest
(0<p <0.5), Ay(d,d’) is larger than A,(d,d’) (all eigenval-
ues are positive). So A,(d,d’) is the largest nontrivial ei-
genvalue which dominates the scaling behavior of the
correlation function. We can calculate the summation of

A,(d,d’) over d:

> Ayd,d')=S(Ty—T,)
d d

d d

-2 _273p

2—p 2—p
and using Eq. (3.7), the exponent c as a function of p is
. log[(2—3p)/(2—p)] __log(2—3p)
log(2—p) log(2—p)

, (3.16)

(3.17)

Finally, it is straightforward to determine the exponent
a in the power spectrum P(f)~1/f*

_ log[(2—3p)/(2—p)] _ log(2—3p)
=]l—c~ = .
@ e~1+ log(2—p) log(2—p)
(3.18)

In the limit of p —0, we have ¢—0 and a—1. In other
words, we have a 1/f spectrum. The result is plotted in
Fig. 4 in comparison with the numerically determined ex-
ponent. They fit quite well.
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IV. CONTEXT-FREE LINDENMAYER SYSTEMS
THAT CANNOT GENERATE 1/f° SPECTRA

In Sec. III, it has been shown that context-free Lin-
demayer systems typically have limiting sequences with
power-law decay correlation functions. It is the case
when the largest nontrivial eigenvalue of the transition
matrix is positive and the exponent ¢ calculated by Eq.
(3.7) does not depend on the distance d. As will be seen
in this section, these conditions can be violated for other
context-free Lindenmayer systems.

Considering the following rule, which is similar to the
expansion-modification system (2.1) except that the ex-
pansion is replaced by a rewriting to two different sym-
bols instead of two same symbols,

10 {1—q}
0 {4},
01 {1—p}
0— {1 {p} .
If not specially claimed, g is set to be equal to p.

In the p =1 limit, rule (4.1) is the same as rule (2.1),
and the limiting sequence oscillates between the direct
and the complementary copies. At p =0, the limiting se-
quence is the Thue-Morse sequence, '*?° which is almost
periodic but not exactly. The correlation function for
almost-periodic sequences are oscillating functions, and
should not be a monotonically decaying power-law func-
tion as in the case in Sec. III. This suggests that the larg-
est eigenvalue (in absolute value) of the transition matrix
for Eq. (4.1) should be negative.

To check this, I write down the transition probabilities

T(afd —a'B'd’) for Eq. (4.1) (see Appendix B for the
derivation):

2
TOET(aﬁdaaBd’):ilzfl;)"Bm d—1,p),

4.1)

o ET((le—»&Bd’)Z—;—_—i—Bm(d —1,p),

T,=T(aBd —afd')

_ 2
=%:_Bp)—Bm+2(d—l,p) .2)
+(12——_1;,)23m+1(d —1,p),

T,=T(aBd —aBd’)

1 J—
:5—_—%Bm+1(d —l,p)+—2’%me(d -1,p),
Unlike the Lindenmayer system (2.1), here the probabili-
ty of changing one symbol depends on whether the left or
the right symbol is changed, so T}, T,.

The transition matrix can be written as

TO T12 Tll T2

I(d,d')= (4.3)
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and its eigenvalues are
rMd,d')=Ty+T,+T,,+T,, (4.4)
Ad,d')=Ty+T,,—T,— T, , (4.5)
Md,d' ) =Ty—T+T,—T,, (4.6)
Ad,d')=Ty—T,,—T,+T, . 4.7)

As in Sec. III, it can be shown that 3,A,(d,d’)=1, so
Aq(d,d’) is the trivial largest eigenvalue. Both A, and A,
are negative, whereas A,> 0. It can be shown that the ab-
solute values of A, and A; are larger than A4, and A, is al-
most equal to A;. One can take either A, or A; as the
largest (in absolute value) nontrivial eigenvalue.

What is the functional solution for the scaling equation

Pogld')=—|A|Pypld’ /k) (4.8)

Q

with a negative scaling coefficient? If the modulated

power-law function is used,
N i2med) L

Pa[)’(d )_el m d'c ’

we have ¢ = —log|A| /log(k) as before, but there is anoth-
er relation for the phase

od'")y=0d'/k)+1/2+n ,

(4.9)

(4.10)

where n is any integer. One solution of the equation is

_ logd’

o(d’) 2 logk

4.11)
In other words, the modulation term changes with dis-
tances. An oscillating correlation function leads to peaks
at nonzero frequencies in the power spectrum (see, e.g.,
Ref. 16). It is obvious that it is no longer a 1/f“ spec-
trum.

V. OTHER EXPANSION-MODIFICATION SYSTEMS

The simplest expansion-modification system discussed
in Sec. II captures most of the spirit of the mechanism in-
volving two competing forces. Naturally, one can make
many variations; for example, rather than a symbol being
expanded to two identical symbols, it can expand to three
identical symbols:

1111
1

000 {1—p}
BRI
Similar to that in Sec. III (and Appendix B), the pro-
cedure can be repeated to derive the transition probabili-
ties and the exponent of the power-law correlation func-
tion. This derivation is more complicated though, be-
cause there are more configurations to be counted. Here
I will only present a numerical result of the power spec-
trum for the limiting sequence of Eq. (5.1) with p =0.1,
as shown in Fig. 5, to illustrate that minor changes in the
rule would not destroy the basic feature, i.e., the concept

(5.1)
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FIG. 5. The spatial power spectrum P (f) (in log;o-log;o scale)
for the sequence generated by “‘expansion by three” rule (5.1), at
mutation rate p =0.1. The sequence length is 2!*=8192. Also
shown is a fitting straight line with the slope —1.

of “universality class.” The spectrum has the same 1/f
scaling, and it differs from the spectrum in Fig. 3(b) only
in that there is a dip at f/N =1 (N is the sequence
length).

Another variation of the Eq. (2.1) is to add extra sym-
bol (e.g., symbol 0) for the mutation part of the rule:

[11 {1—q}

o gy (5.2)
00 {1—p} '

0“*[10 (p] .

This type of Lindenmayer system can be called the fixed-
branching-ratio Lindenmayer system because each in-
struction of the rule always rewrites one symbol to a fixed
number (e.g., 2) of other symbols.

The transition probabilities for fixed-branching-ratio
Lindenmayer systems are much easier to calculate be-
cause the relation between d’ and d is fixed, and no bino-
mial coefficient is involved. For the case of a fixed
branching ratio of 2, there are only three possible rela-
tions between d’ and d: (i) d'=2d, (ii) d’=2d —1, and
(iii) d'=2d + 1.

If T use T, (a—a') to represent the probability from
symbol a to a’ through the left leg and TR (a—a') for
that through the right leg (see Fig. 9), the transition prob-
abilities for the fixed-branching-ratio-2 Lindenmayer sys-
tem are

T a[;’iiz— —a'Bd’

T (a—a )T (B—B)+Tgla—a' )Tx(B—p")

2 b2
: T, ( VTr(B—PB) 63
T a[j’(d -I)Ha’[j’d' _ ILla—a")Ty —f3 ’
2 2
' T —a')T —fB
T aB—(d;‘l)aa’B’d' _ Trla a)2 BB
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For Eq. (5.2), we have

T,(0>0)=1—p, TR(0—0)=1,
TL(O-—>1):P, TR(O_>1)=0 ’

(5.4)
T,(150)=g, TR(l1—-0)=q,

T,(1>1)=1—gq, Tg(l—1)=1—gq .

Notice the equivalence relation T (aBd’'/2—a'B'd’)
=T(Bad'/2—B'a’'d’); the 16 transition probabilities are
reduced to 10 independent ones. For rule (5.2), they are

. 2
T(00—00)="172 F1 ”2) *1

T(OO—»01)=(1;2‘MP- ,

2
T(oo_»u):ﬁz—,

T(o1-+00)=il—lpzﬁifi )
T(01—01)= (1—p)1—¢q)+(1—gq)
2 b
(5.5)
T(01“+10)=£21 ,
T(01—>11)= “2—") ,
2
T(11—>OO)=%— ,
T(11—+01)=q(12— )
. 2
T(11—11)=179"
2
Write  the transition matrix as Ty ip 20+

=T (afd'/2—a'B'd'); the eigenvalues of the matrix are

kz=k3=l*§—q, (5.6)

2
A=1—p—2¢q +£2-—+q2+pq .

It is easy to check that the largest nontrivial eigenvalue is
Ay

Similarly, we can write down the transition matrix for
T(aB(d'+1)/2—a'Bd’') and T(aB(d'—1)/2—a'B'd").
There is no symmetry condition among the transition
probabilities, so the number of independent ones remains
at 16. These two transition matrices are
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(1—p)/2 q(1—p)/2 q/2
d—1 0 (1—p)1—q)/2 0
I 2 d p/2 pq/2 (1—¢)/2
0 p(l1—q)/2 0
and
(1—p)/2 q/2 q(1—p)/2
d+1 ,,|_ p/2 (1—q)/2 pq/2
A 0 (1—pll—q)/2
0 0 p(l1—q)/2

The eigenvalues of these two matrices are the same:
AM=1/2,
A=(1—¢q)/2,
As=(1—p—q)/2,
A=(1—p —2q +pq +¢2)/2 .

If the distance is an even number, the joint probability
or correlation function at distance d’ is related to that at
distance d' /2. If the distance is odd, the joint probability
at distance d’ is related to the joint probabilities at two
shorter distances (d'+1)/2 and (d'—1)/2. If (d'+1)/2
is again odd, the connection leads to four distances
(d"+3)/4, (d'+1)/4, (d'—1)/4, and (d'—3)/4, and so
on. In general, the shorter distances can either be even or
odd, and all three transition matrices have to be used. In
a special case, when d’'=2" (n is an integer), only the ma-
trix T'(d'/2,d’) determines the scaling exponent. In this
case, by using the largest nontrivial eigenvalue A, in Eq.
(5.6), we have

c=—logl=p/2—q)
log(2) ’

If p =q, c =—log(1—3p /2)/log(2). The exponent a for
the power spectrum P(f)~1/f%is

(5.10)

log(1—p/2—q)
log(2) '

If d’ is not a power of 2, then the largest nontrivial eigen-
values from both T'(d’'/2,d’) and T((d’'—1)/2,d’) should
be used.

Because it is easier to derive the transition probabilities
for fixed-branching-ratio Lindenmayer systems, in Ap-
pendix C, I list the transition probabilities and the eigen-
values of the transition matrices for all two-symbol,
fixed-branching-ratio-2 Lindenmayer systems. From
these results, one can know immediately which rules can
generate limiting sequences with 1/f spectra (when the
largest nontrivial eigenvalue is close to 1 at some range of
the parameter value) and which do not.

As a diversion, I will end this section by mentioning
the local inhomogeneity for the sequences generated by
Eq. (5.2). The last rewriting rule at Eq. (5.2) produces
symbol 1 in the left leg but symbol O in the right leg.

a=l—c=1+ (5.11)
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q/2
(1—¢q)/2
1—qlg/2
1—q)%/2

9 (5.7)
(
(

q°/2
(1—g)g/2
q(1—q)/2
(1—q)*/2

[

This distinction between the left and the right legs is a
source of the local inhomogeneity. Suppose we ask the
following question: go down the generating tree of rule
(5.2) randomly; what is the probability of having symbol
1?7 Denote X/ as this probabilty at timer ¢ and position i.
Then, depending on which branch the random path goes
through, there are two possibilities of how X/ changes:

(1—g)X/,+p(1—X/,), i even
t

X!= .
T l=q)Xxi_y, ., iodd . (5.12)

This random compositions of two linear maps is a one-
dimensional case of the “iterative function systems.”?!22
Typically, there is no fixed point limit when 7 —> o ; the
X"s are wandering around on a fractal set in the state
space.?!"?? Figure 6 shows the “bifurcation diagram” for
the mapping (5.12). The x axis is the parameter p (I as-
sume g =p), and the y axis is the X' with each point
representing an orbital point of X' (the site index i is
suppressed).

If the trajectory {X'} consists of a fractal set, the frac-
tal dimension D can be determined by the equation?!

KP+K?=1, (5.13)
where K, =1—p and K,=|1—2p| are the two slopes of
the linear functions. Atp =1, D=1andatp =1, D=0.
If the mutation rate is smaller than }, the dimension of
the trajectory set remains at 1 (i.e., there is no fractal) as
shown in Fig. 6.

Random compositions of two linear maps in the two-
dimensional space are widely used to produce fractal pat-
terns, or inversely, compress images with fractal com-
ponents.?® It is interesting that a special case of the
“iterative function systems” finds an application in our

expansion-modification sytems.

VI. CAN CELLULAR AUTOMATA
GENERATE LIMITING SEQUENCES
WITH 1/f SPECTRA?

Unlike Lindenmayer systems, cellular automata!” are
dynamical systems (or in certain sense, formal languages)
which do not increase the sequence length. All generic
cellular automata rules are ‘“context sensitive,” which
means that the rewriting of the symbols not only depends
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FIG. 6. Bifurcation diagram of the mapping (5.12) with two linear functions applied randomly (an example of the one-dimensional

“iterative function systems”). The X axis is p and the y axis is X".

on the symbol value itself, but also depends on the sym-
bol values at its neighboring sites. With this local in-
teraction, it is possible that organizations of at least the
neighborhood size can be produced from a random initial
sequence. Some more interesting rules are capable of
generating spatial correlations of much longer lengths
than the neighborhood size. For example, the nearest-
neighbor rule 110 [the rule maps the neighborhood
configuration 000 to 0, 001 to 1, 010 to 1, O11 to 1, 100
to 0, 101 to 1, 110 to 1, and 111 to O (Ref. 24)] has limit-
ing sequence containing periodic structures, and its
periodicity 14 is much larger than the neighborhood size
3.

Long-range correlation alone cannot guarantee 1/f
spectra though: 1/f spectra require that the long-range
correlations scale with the short-range correlations, or
the correlation function is a power-law function (with the
exponent close to 0). It is not clear how to design a cellu-
lar automaton so that its limiting sequence has a 1/f
spectrum.

Some earlier numerical studies on the lattice-map sys-
tems show that during the transient, there are signs of the
temporal 1/f spectrum for the spatial-temporal spectrum
P(f,k) at some fixed k, but the spatial spectrum does not
seem to be 1/f.%° Also, these 1/f spectra will not
remain after the transients die out. A more recent study
shows that the spatial 1/f spectra can exist during the
transients in many cellular automata with soliton interac-
tions.?® Another study shows that the spatial block en-
tropy of the limiting sequence of a nearest-neighbor rule
22 [the rule maps the neighborhood configuration 000 to
0,001t01,010to 1,011 t0 0, 100 to 1, 101 to 0, 110 to O,

and 111 to O (Ref. 24)] does not increase linearly with the
block length,?” which implies that the correlation at
longer lengths is more than what it should be for a ran-
dom sequence (the difference is nevertheless very small).
The mechanism for producing 1/f spectra discussed in
this paper cannot apply to cellular automata directly be-
cause the very source of the long-range correlations is by
expanding the sequences, which cannot be accommo-
dated by a cellular automaton. In order to mimic
the expansion-modification by a probabilistic cellular

automaton, consider the following rule with only
left nearest-neighbor interactions O/ _x}
—x/ "1:{probability}):

000 {1/2+(1—p)/2],

101 {1/2+p/2},

(6.1)
01—0 {1/2+q/2},
111 {1/2+(1—¢)/2} .

The probabilities for other rewriting rules not listed
above such as 00— 1 can simply be derived by the nor-
malization condition: P(00—1)=1—P(00—0).

The reason to write the rule in this way is that there is
a tendency for x; _; to “expand” (or ““inject”) its value to
site x;, and at the same time, there is a tendency for x; to
control itself by either mutating or maintaining its own
value. There are different ways to assign weights to each
competing factor. The probabilities used in Eq. (6.1)
represent the following weight assignment: the “expan-
sion” or the “injection’” from the left neighbor always
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contributes a 1 to the probability, and the “maintaining”
of the site’s own value contributes a (1—p)/2 or (1—¢q)/2
depending on whether the site value is O or 1.

When p =g =0, 00—0 and 11—1 always apply, so a
block (a string of O’s or a string of 1’s) will never be des-
troyed from inside. The basic structure of the spatial se-
quence is a long string of 0’s followed by a long string of
1’s, which in turn is followed by a string of 0’s, and so on.
Both the left and the right boundaries of a block move to
the right with a probability 0.5. When the left boundary
of a block moves faster than the right boundary the two

oy
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can meet and consequently destroy the block. This de-
struction is irreversible, and the total number of blocks
becomes smaller and smaller, or, the average block length
becomes longer and longer. Figure 7(a) shows an exam-
ple of this process (the time arrow points down), in which
the final number of “black” blocks (and “white” blocks
too) is only 3, much smaller than that at the earlier times.

Increasing the mutation rate a little bit, a block can be
destroyed from inside with probability p /2. Figure 7(b)
shows the spatial-temporal pattern at p =0.1. It already
becomes extremely difficult to find a block with a long

FIG. 7. Spatial-temporal patterns for the probabilistic cellular automaton rule (6.1) at p =0 (a); p =0.1 (b); and p =0.9 (c). The se-
quence length is 548 for (a), 274 for (b) and (c). The time step is 794 for (a), and 397 for (b) and (c).
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block length. It is easy to imagine what the situation is
like when the p is further increased. Figure 7(c) shows
the spatial-temporal pattern at p =0.9.

As a measure of the correlations, the power spectra for
the sequences generated at p =0 and 0.1 are calculated.
Figure 8(a) shows the result at p =0. Although the limit-
ing sequence for a finite lattice simulation might be all O’s
or all I’s due to the irreversible destruction of blocks, the
spatial spectra seem to have a 1/f? form if we do not
wait for the whole sequence to become a single block.
This 1/f? spectrum is similar to that for the sequences
with randomly packed blocks as discussed in Appendix
A. On the other hand, the spatial spectrum at p =0.1
shown in Fig. 8(b) has a small-frequency region with 1/f
scaling. The lower-frequency spectrum is, however, flat,
because of the lack of blocks with longer lengths.
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FIG. 8. The spatial power spectra of the sequences generated
by the probabilistic cellular automaton rule (6.1). The sequence
length is 2!'=2048. (a) p =0, the straight line has the slope
—2.04; (b) p =0.1, the short straight line has the slope —0.94.
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VII. SUGGESTIONS OF THE APPLICATION

The expansion-modification systems can have applica-
tions to real-world systems if these systems contain both
elements of creating and destroying the long-range corre-
lations. Expanding, growing, or branching processes are
all capable of generating long-range correlations, but
without another balancing force to destroy the perfect or-
der, the correlation would not decay at longer distances.
Long-range correlation itself cannot guarantee scalings of
the correlation as well as the 1/f spectrum.

Take electromagnetic showers in cosmic rays and had-
ron showers in higher energy experiments, for example;
they are full of branching processes, such as the pair pro-
duction ¥y —e *e ™ (y for photon, e ~ for electron, and e ©
for positron), and the radiation of photons et —e ™y,
e —e y. There are also processes involving the in-
teraction among branches such as the annihilations
e e —yy. But processes similar to the “modification”
are missing; for example, the electrons are not converted
to a vacuum. As a result, it is unlikely that the spatial ar-
rangement of the particles in the end of a shower will
show anything like 1/f spectra.

In this section, I will discuss three expanding systems,
with the first two having close connection with the
expansion-modification system and the third one less
similarities. They are as follows: (i) the evolution of the
matter distribution in the Universe, (ii) the evolution of
the prebiotic nucleotide sequences, and (iii) the genera-
tion of natural language texts. In the evolution of the
Universe, the stretching of the distances between two
mass points due to the expansion of the space coexists
with the shrinking of the distances due to the gravitation-
al attraction. In the evolution of the prebiotic nucleotide
sequences, the replication tends to generate long-range
correlations whereas the mutation tends to destroy them.
The generation of a natural language text, though also an
expanding process, does not seem to have the two com-
peting factors. I included this example because I want to
show a real case which is related to the Lindenmayer sys-
tem whose largest nontrivial eigenvalue of the transition
matrix is negative.

The existing data provide evidence that there are
indeed nontrivial long-range correlations in the two ex-
amples mentioned above. The matter distribution (it is
actually the galaxy-galaxy correlation that is measured)
of the Universe is known to have a power-law correlation
function.?®?® For the nucleotide sequences, the correla-
tion function varies greatly from sequence to sequence.
Although most of the protein-coding sequences do not
have long-range correlations, the noncoding sequences
and the sequence segments between genes sometimes do
(a brief report on this result is included in Ref. 30, and
more studies are in progress).

A. Mass distribution of the Universe

The expansion-modification system is highly reminis-
cent of the evolution of the expanding Universe, in
which, on the one hand, two points in space move further
away due to the expansion, but on the other hand, any
two mass points will attract each other due to the gravi-
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tational force. Without gravitational attraction, the spa-
tial distribution of the matter at time ¢ will just be an ex-
panded version of the initial configuration at time ¢ =0,
and no new structure is generated. Without the expan-
sion of the space, a collection of mass points with only
gravitational interaction will collapse—not a complicat-
ed configuration either (although the dynamics for each
mass point may be nontrivial). At a certain conceptual
level, the expansion-modification system addresses exact-
ly this issue concerning two competing processes, al-
though one has to translate the term ‘“modification” to
““gravitational clustering” with much more realistic mod-
elings.

The basic quantity to characterize the spatial
configuration of the Universe at any instant of time is the
two-point mass-mass correlation function. Higher-order
correlation functions such as the three-point correlation
function are also used, especially when the two-point
correlation function alone cannot distinguish obviously
different configurations (the case with a typical non-
Gaussian character). Currently, the mass-mass correla-
tion function is not measured directly, due to the large
amount of “dark matter” ( the material that does not
emit or absorb radiations®">*?) in the Universe. What is
measured is the galaxy-galaxy correlation function?®?® or
the cluster-cluster (cluster of galaxies) correlation func-
tion.* The assumption is that the three correlation func-
tions are proportional to each other.3*3® These correla-
tion functions, for both galaxy-galaxy pairs and the
cluster-cluster pairs, are observed to be the power-law
function

rd)~-L, p=~1.3 (7.1)

d

correct within certain length scales. It has been men-
tioned that at larger scales, the correlation function does
not fit the same power-law function,® i.e., there is a
cutoff of the scaling behavior. It is not clear whether it is
due to the limitation of the observational data or due to
the finite lifetime of the Universe so that the larger scale
structures have not got a chance to develop. For the
most recent studies on the larger scale structures of the
universe, see Ref. 37.

There is a large number of papers discussing various
models which lead to the power-law correlation function
of the mass distribution. The consensus of opinion is that
the large scale structure of the Universe is developed only
from the gravitational instability (for the earlier review
see Ref. 28, and for a recent one see, e.g., Ref. 38). With
this basic assumption, the evolution of the Universe can
be simply studied by putting a number of mass points in
the expanding space and seeing how they evolve. It is
similar to the computer simulations of the molecular dy-
namics except that here the space is expanding and the
interaction between points is gravitational instead of the
short-ranged van der Waals force.

Many such computer simulations are carried out® ™%
and, depending on initial conditions, the power-law
correlation function with the exponent close to 1.8 can
indeed by reproduced. The readers can go back to the
original references to get more information on the range
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of length scales with the power-law behavior, the fitting
exponents, the initial conditions used, and the evolution
times, etc. Although the success in reproducing the two-
point correlation cannot guarantee that other cosmologi-
cal observations are also reproduced, it at least shows
that, with certain initial conditions, gravitational systems
in an expanding space can produce spatial configurations
with power-law correlation functions. The limitations of
the “success” include the following: (i) the correlation
function at larger scales may deviate from the power-law
function, and (ii) the correlation function itself may
change with time, indicating a discrepancy between the
transient configurations and the limiting configuration.

From the point of view of the expansion-modification
system, the spatial power-law correlation function with a
certain exponent results from a correct balance between
the expansion of the space and the gravitational cluster-
ing. By tuning the “strength” of either the expansion or
the clustering, the power-law correlation function is con-
ceivable destroyed, either by way of changing the ex-
ponent, changing the range of the scaling, or changing
the functional form. The “strength” of the expansion is
measured by the expansion rate, which is determined by
the Hubble constant. The strength of the gravitational
clustering is measured by the exponent y=2 in the
Newtonian form of gravitation: F(r)=Gm,m,/rY, and
the mass density of the Universe.

If we increase the value of ¥ from 2 to some very large
value, the interaction among mass points is relatively
short ranged, and it is unlikely that the attraction can
provide an effective counterforce against the expansion.
Of course, such parameter tuning is not realistic. As for
the tuning of the expansion rate, because the expansion of
the Universe is also a gravitational effect (according to
the theory of general relativity), the Hubble constant is a
function of the mass density. The larger the mass densi-
ty, the larger the expansion rate. Perhaps the expansion
and the clustering processes are indeed ‘‘balanced” after
all, because of this fact.

It is interesting to note that there are other models,
some of them purely geometrical, that can reproduce the
power-law correlation function. One example** is the so-
called Voronoi foams. One can start from a distribution
of points, then draw lines (or planes, if the space is three-
dimensional) perpendicular to the links between points,
and these partition lines consist of a Voronoi foam. The
points represent the centers of the low mass density re-
gions (voids), and due to the gravitational instability these
low-density regions become even less dense, and the mass
flows to the partition lines. The mass can continue to
flow along the partition lines into the vertices. It is
claimed that by this process the power-law correlation
function can be recovered. **

Another example is also geometrical in a sense: the
formation of the cosmic strings.*’ There is evidence that
the string loops evolve in a self-similar manner, and the
resulting correlation function for the mass residing
around the string loops is a power-law function. Even a
cellular automaton with a threshold function is shown to
exhibit power-law correlation functions with the ex-
ponent changing with the threshold value.*® However,
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the exponent 1.8 can only be recovered at a particular pa-
rameter value in this model.

B. Prebiotic nucleotide sequences

Evolution of prebiotic nucleotide sequences is another
example in which two competing processes play an im-
portant role in determining the statistical properties of
the sequences. On the one hand, the nucleotide se-
quences replicate. The recent developments in molecular
biology have shown that RNA sequences have the ability
to self-splice47 and the ability to catalyze other reactions,
including the replication. This discovery makes the
scenario possible that in the periodic environment, the
RNA sequences can replicate themselves even without
the protein enzymes.*® As more and more copies of the
same sequence are created, there are chances that they
can link together into longer sequences. In this way,
long-range correlation can be generated.

On the other hand, the replication in the prebiotic en-
vironment was hardly perfect. All the mistakes during
the replication—mutation, insertion and deletion—have
the effect of reducing the long-range correlations in the
linked sequence. The comparison with the expansion-
modification system is now clear: if the prebiotic evolu-
tion contains only replication, the linked limiting se-
quence is periodic; if the mutation rate is too high, the
limiting sequence is random. Only when the two process-
es are in an appropriate balance, can the nucleotide se-
quences show nontrivial long-range correlations, for ex-
ample, the power-law decay of correlations.

The reason I discuss only the prebiotic evolution in-
stead of the present-day evolution is because the latter is
much more complicated and it does not always increase
the sequence length. The sophistication of the modern
replication machinery with the many types of
biomolecules involved in each step of the process would
make any realistic models be very complicated. The
expansion-modification system looks too simple to be
relevant. Also, because the sequence length is hardly in-
creased in the present-day evolution, the crucial mecha-
nism to generate the long-range correlation is missing.
Because the longer-range correlation does not necessarily
imply the fitter species, biological systems do not have to
increase their current nucleotide sequence length more in
order to survive, though they can still explore new possi-
bilities by shuffling segments in the existing sequence,
e.g., the crossover.

The main obstacle in verifying the predictions of any
mathematical models of the prebiotic evolution is the
lack of available prebiotic nucleotide sequences. As a
large approximation, let me assume that the present-day
nucleotide sequences have many statistical properties in
common with the prebiotic ones. Then we can infer the
statistical properties from the present-day DNA se-
quences.

The search for long-range correlation and power-law
decay of the correlation in present-day DNA sequences is
being carried out. A brief result is reported in Ref. 30.
The main observation is that the statistical properties of a
DNA sequence depend on whether it is a protein-coding
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or a noncoding segement in a gene, and whether it is a
gene or a segment between genes. Without a large num-
ber of sequences in each category accessible, it is difficult
to make a general conclusion on what the consensus sta-
tistical property is. The situation will certainly be better
as more and more genomes are sequenced in the ongoing
human genome project.*’

The preliminary analysis of a few available sequences
reveals the following results: (i) First of all, it seems that
most of the protein-coding sequences (called exons) are
random, in the sense that the nucleotide-nucleotide corre-
lation decays to zero after only a few bases. The correla-
tion can be measured either by the correlation function
for a particular symbol, or by the mutual information
function which averages over pairs of all symbol states.>®
Since three nucleotides code for one protein, there is a
natural unit of three-base. As the correlation decays to
zero, it can show an oscillation of a period of three. (ii)
Second, the noncoding sequences (called introns) have
longer correlation lengths then exons. Many introns
have some two-unit segment being repeated many times.
It is likely that these repetitions are responsible for the
observed long correlation lengths. The exons do not have
these exact repetitions, otherwise, the protein sequence
consequently translated will repeat the same amino acids
many times, a situation not needed in a catalytic reaction.

If a DNA sequence is not decomposed into genes and
segments between genes, or exons and introns, what is the
correlation function or mutual information function like?
In this case, the segments between genes contribute more
to the statistics (because of their longer lengths), and the
larger scale structures, such as the distribution of genes,
should also become important. It has been discovered
that in eukaryotic DNA sequences, it is a rule rather than
exception that there are many repetitive segments.>! 33
Sometimes, the repeated segments are next to each other
(tandem repeat), other times they are separated (inter-
spersed repeat). The length of the repeated segments
varies greatly; some of them are short, others are as long
as the whole genes. With this large number of possible
variations, one might hope that one or a few DNA se-
quences can have the power-law correlation function or
1/f spectrum. Indeed, a partial 1/f spectrum has been
observed in one intron sequence.’’ However, the 1/f
spectrum may not appear in DNA sequences as often as
the 1/f noise appears in, for example, the fluctuation of

resistivity in conducting materials.>*

C. Constituent sequences and letter sequences
of natural language texts

The generation of a sentence in a natural language fol-
lows the rules of grammar, which can be approximated
by certain context-free languages. In this generation pro-
cess, a sentence breaks down to a few major constituents
such as noun phrase and verb phrase; each constituent
then is decomposed into subconstitutents, subconsti-
tuents into sub-subconstituents, and finally into words.
The constituent composition of a sentence can be gen-
erated by the following grammar rules (S for sentence, N
for noun phrase or noun, ¥ for verb phrase or verb):
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S—NV,
N->S,

V—>VN .
Combining the first two rules, and including the cases of
trivial rewriting N—N and ¥V —V, we have the more
symmetrical representation:

NV
N,

(7.2)

N—

(7.3)
VN

V=1p .

If we ask the question of what the limiting sequence is
if each rule in Eq. (7.3) is applied many times with a fixed
probability, we go back to the same question discussed in
the previous sections in this paper concerning the statisti-
cal properties of the limiting sequence generated by pro-
babilistic Lindenmayer systems. In particular, compar-
ing rule (7.3) with the rule (4.1), the first and the third
rewritings are the same “ complementary replication” be-
cause a symbol becomes two different symbols, but the
second and the fourth rewritings in (7.3) maintain the
symbol instead of modifying the symbol as in the case of
rule (4.1). If the probability of applying the first and the
third rewritings is large, the limiting sequence of rule
(7.3) should be very similar to that of rule (4.1). As we
know, the largest nontrivial eigenvalue of the transition
matrix for (4.1) is negative, and the same should be for
rule (7.3), so there is no 1/f spectrum expected to be
present here either.

If the 1/f spectrum is missing from the limiting se-
quence of Eq. (7.3), what about the constituent sequence
of a real natural language text? And what about a letter
sequence of a real natural language text? We have the
following arguments: (i) In a natural language text, the
grammar rules are applied only a few number of times,
whereas for rule (7.3), each rewriting is applied many,
many times. Obviously, if the grammar rules are applied
too many times, the sentence will contain subsentences,
sub-subsentences, etc., and it is too complicated for a nor-
mal person to comprehend. (ii) The grammar rules of the
natural language are only responsible for the structure of
one sentence, but not responsible for the correlation be-
tween neighboring sentences. (iii) There are long-range
correlations through the meaning of words in natural
language texts. These correlations cannot be measured
by correlation functions, mutual information functions,
nor other statistical quantities. One can detect these
correlations only when some translational device (e.g., a
dictionary) is used. (iv) A letter sequence and the corre-
sponding constituent sequence of a natural language text
can have different statistical properties. It is because a
constituent, such as N for noun, can have many ways to
be transformed into a word, such as table or dog.
Different words can contribute differently to the statisti-
cal property of the letter sequence.

Due to the above consideration, the statistical proper-
ties of the limiting sequence of rule (7.3) cannot be
transformed simply to those of the constituent sequence
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as well as the letter sequence of a natural language text.
But generally speaking, it is difficult for the long-range
correlation to be present in a real natural language text,
because the correlation is easily interrupted by the start-
ing of a new sentence, and by the random realization of a
word.

A numerical calculation of the mutual information
function (similar to the correlation function, see Ref. 50)
for letter sequences of English and German texts is car-
ried out in Ref. 55. Indeed, no long-range correlation
has been observed. If repetition is important in lifting the
value of correlation at large distances, as in the case of
intron DNA sequences and perhaps in music, it is miss-
ing from natural language texts. Perhaps the better anal-
ogy of natural language texts is the exon DNA sequence.
If we do find a 1/f spectrum in a natural language text
(perhaps in a poem?) maybe the repetition is too frequent
for that text to be acceptable?

VIII. CONCLUSION

In this paper, it is proposed that when two competing
processes—expansion and ‘“‘modification” —coexist, at
certain ranges of the parameter value which measure the
relative strength of each process, the sequences or pat-
terns generated by the dynamics have nontrivial long-
range correlation (periodic sequences are examples of the
trivial long-range correlation). In particular, the long-
range correlation function can be a power-law function
with an extremely small exponent, so the corresponding
power spectrum is 1/f.

There are many interesting aspects of the system which
are not studied here, such as the power-law divergence of
the block entropy (some preliminary results were ob-
tained,>® similar to the study in Ref. 27), the multifractal
description of the block length distribution in the limiting
sequence (similar to the study in Ref. 57), and the absence
of the temporal 1/f spectrum following the temporal se-
quence of, say, the first site of the sequence (it provides a
specific example that the spatial 1/f spectrum does not
lead to the temporal 1/f spectrum). Although the many
length and time scales phenomenon is not the result of a
single mechanism, what is discussed in this paper seems
to provide a rather general model which potentially may
have many applications.
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APPENDIX A: CORRELATION FUNCTION
FOR SEQUENCES WITH RANDOMLY PACKED
BLOCKS [SEE EQ. (2.3)]

This appendix derives the joint probability (and the
correlation function) for sequences with randomly-
packed “blocks” (all blocks have the same length m, “1-
block” means a string of 1’s, and “O-block” means a
string of 0’s):

00:-+0 I1---1 11--+1 00---0 11---1

m m m m m

(A1)

To apply the result to the sequences generated by Eq.
(2.1) at p =0 starting from a random sequence, simply re-
place m by 2/, where ¢ is the number of time steps.

The joint probability of two symbol 1’s separated by
distance d is represented by P,,(d). The correlation
function I'(d) is equal to P;(d)—P? (P, is the density of
symbol 1). For sequences with only two symbols, it has
been shown that other joint probabilities such as P,y(d)
have the same functional form as that of P,;(d). So once
we know the P (d), we know all other joint probabili-
ties. >0

When d <m, we count all the 1-1 pairs within 1-
block’s and between two neighboring 1-block’s. Suppose
the number of 1-block’s is N, and the number of neigh-
boring 1-block’s is N,[1]. If the periodic boundary con-
dition is used, the last site in the sequence is considered
as the left neighbor of the first site of the sequence. It is
easy to show that

N1
e Null]

N
P“(d>=-Ni(m d if0<d<m (A2

where N is the sequence length.

If m =d <2m, we have to count the 1-1 pairs within
two neighboring 1-block’s, and in two ‘next-nearest-
neighbor” 1-block’s, i.e., two 1-blocks separated by
another block (there are N;;[2] of them). We have

Ny (1] Ny [2]

P, (d)= (2m —d)+ (d —m)

if m=<d<2m . (A3)

For arbitrary distances, suppose we know the number
of two 1-block pairs with i —1 other blocks in-between
(equal to N;;[i]); the general formula for the joint proba-
bility is
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Nyjyli—1 Ny li
= N m
_ Nll[i'_l]_Nn[i]d
N

if (i —1)m=d<im . (A4)

When all the {N,[i]}’s are known, the P (d) is
known exactly, which is a piecewise linear function. If
the case of random packing, N,;[i] does not change with
i very much. Depending on how N;,[/] fluctuates with i,
the correlation function can either increase linearly, de-
crease linearly, or stay at a constant. This piecewise
linear correlation function leads to a 1/f? power spec-
trum.

APPENDIX B: TRANSITION PROBABILITIES
FOR THE SIMPLEST
EXPANSION-MODIFICATION SYSTEM
[SEE EQS. (3.6) AND (4.2)]

The transition probability T (af3d —a'f3'd’) is the prob-
ability of the symbol pair a-f3 separated by distance d
leading to the symbol pair a’-3’ separated by distance d’
upon rewriting of a context-free Lindenmayer system.
For the simplest expansion-modification system (2.1), the
rewriting of one symbol can be classified into two types:
doubling (the graph representing this type of rewriting is
called a scissors) and mutation (the graph representing
this rewriting is called a bar) (see Fig. 9). The relations
between d and d' depend on whether one of the symbols
or both symbols of «, 3 double or mutate.

We can further classify the rewriting of two symbols
into six cases, as illustrated in Fig. 10. In cases 4,, 4,,
and 4, there are two scissors, but symbols @’ and 8’ are
either both on the two outer legs, or one on the outer leg
and another on the inner leg, or both on the inner legs.
The case A, is actually used twice: @' is on the inner leg
and B’ is on the outer leg, or the reverse. In cases B; and
B,, there is one scissors and one bar; again, both cases
will be counted twice. In case C, there are two bars.

Suppose we know that symbol pair a-f8 leads to a'-B’
by one of the six cases mentioned above; what is the
probability that it can be accomplished, given that the
distance between a and 8 is d and the distance between o’
and B’ is d'? If all the symbols in-between a and 8 dou-
ble, d' is almost double d. On the other hand, if all the
symbols mutate, d’ should be the same as d. If the two
distances d' and d are given, roughly speaking, d’'—d of
the symbols double, whereas the remaining symbols (ap-
proximately 2d —d’ of them) mutate.

Take case A4, for example; the number of symbols in-
between a and B that double is d’—d —2 (because « and
B are already known to contribute to the increase of d’
from d), and the number of symbols in-between a and 8
that mutate is 2d —d’+1. Since the probability for a
symbol to double is 1 —p and that for a symbol to mutate
is p, the overall probability for case A4, is proportional to
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d—1

(d—1)—(d'—d —2) pZd*d'+1(l_p)d'*d*Z(l_p)Z .

(B1)

The (1—p)? factor at the end of the line is the probability
for the two end symbols a and B to double. Using a
shorthand notation:

m=(d—1)—(d'—d)=2d —d’'+1 (B2)
and the binomial coefficient
B, (n,p)= m pr(1—p)yt—m, (B3)

and considering the normalization factor (2—p), the
probability for case 4 is

(1—p)*
p(Al)z_.z__PTBmH(d—l,p) . (B4)
Similarly, the probabilities for other cases are
Y
P(Az)zLL)BmH(d_l’P) s
2—p
_ (1—p)?
P(A3)— Bm(d—l,P)y
2—p
—_pd—p) -
p(Bl)—-—~2Tp—Bm+1(d 1L,p), (BS)

_pll—p) _
p(B,) Y B, (d —1,p),
2
— p _—
p(C) z_me(d 1,p) .

The probabilities for these configurations can be easily
transformed to the transition probabilities for a particu-
lar Lindenmayer system. For example, with the rule
(2.1), since cases 4, 4,, and A; keep the symbol states
unchanged, we have

time=t

time=t+1

outer leg inner leg outer leg

left leg right leg

bar

scissors

FIG. 9. Illustration of the notations and the names to be used
in Appendix B.
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T(aBd —aBd’')= 3 p(A4;)
—U=p p 2B ..+B,). (B6)
- m+2 m+1 m/’ -

2—p

The factor of 2 for the B,, ., term is because case 4,
contributes twice. Similarly,

T(aBd —aBd’)=T (afd —afd’)
=3 pB)=L P8, +B,)

(B7)

and

2
T(aBd—»aEd’)=p(C)=§;Lme : (B8)

<= = - - -———

1

d
1
Al A ..'/\.I .../\
1 1

1 1

— ¢ —
1 1
1 1 1 1
.

1

/\

1 1

1
1 1
pa >

< d ->

1 0
B, /\ .../\. I
1 1 1
¢ " R
1 0
By /\ A~
1 1 1
€ d >
0 0
C | .'.A. I .« .o
1 1
< d >

FIG. 10. Illustration of all the possible situations when “scis-
sors” and ‘‘bar” are present. In the first three cases (4, 4,,
and A4;), both ends have “scissors.” In B, and B,, there is one
scissors and one bar. In C, there are two bars.



5258

These results are used in Sec. I11.

For rule (4.1), scissors can change the symbol, so
T(afd —a'B'd’) take into account both A4;, B;, and C.
It is easy to show that the transition probabilities for this
rule are

(1—p)?

T(apd—apd')=p(A;)="5 LB, 41,

T(afd—aBd’)=p(A;)+p(B,)=+—Lp

T(aBd —afd')=p(A,)+p(B,)
2 _
_a _p) B, .\t 3(21“pp)B

T(afd —apd’')=p(A,)+p(B,)+p(B,)+p(C)

_1-p

_E_:;Bm+1+2_i-;3m .

APPENDIX C: TRANSITION PROBABILITIES
AND THE EIGENVALUES
OF THE TRANSITION MATRICES

In this appendix, I will list the transition probabilities
T(apd’'/2—a'B'd’) for all two-symbol Lindenmayer sys-
tems whose branching ratio is always 2 (see Sec. V). I
will use the notation

a—>Cop 1, 2¢,+¢,[P] (cn

to represent the following rewriting rules for symbol a:

a—bb, {1—p}, a—cic, {p}, (C2)
with the parameter in curly brackets being the probabili-

ty for that rewriting to be applied; and the notation
0—’C2b, +by,2¢; +e,y (p],

1=Cpr iy ner et 4]

(or sometimes simply Cap 45 ,2¢,+c,C ) to

267 +b5,2¢] +c)
represent the Lindenmayer system:
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0—b,;b, {1—p}, 0—cyc,

1—bib; {1—gq},

r},

l—cicy {q} .

(C3)

For example, Eq. (5.2) is C,[p]C30[¢] by this notation.

Equation (5.2) can also be represented by
Cn[p]Co3[1—q] by switching the two rewriting rules for
symbol 1 and their probabilities. In general, we have
C;lp]=C;[1—p]. The case of C; is simply a special ex-
ample of C;[p =0], and should not be counted as an in-
dependent case. With these considerations, the number
of independent rewriting rules for one symbol is six.
They are C;, Cy,, Cp3, C1y, Cy3, and C,;.

From these six independent rewriting rules for one
symbol, one can construct 36 two-symbol Lindenmayer
systems. But due to other equivalence relations, the
number of independent Lindenmayer systems is further
reduced. The first set of equivalence relations (represent-
ed by =) is by switching symbols 0 and 1. We have

0—Cq[p]=1—-Cyul[l1—p],

0—Cplp]=1-Cy;[1—-p],

(C4)
0—Cpilpl=1-Cyl[1—p],

0—->Cplpl=1-Cy[1—p].

Another set of transformations is the left-to-right
transformation. The equivalence relations corresponding
to this transformation are

0—’C01[P]‘=0—>C02[P] ,

0-—Cyp[p]=0—-Cylp],

(C5)
0—Cp[p]=0—-C[1-p],

0—C;3[p]=0—-Cxulp].

After using all the equivalence relations, the number of
independent Lindenmayer systems in only 13.

The following results are derived by using the symbolic
manipulation program MATHEMATICA.*® Some explana-
tions are as follows: (i) The transition probabilities from
a symbol to another symbol through both the left and the
right leg are represented by the array

{{T(0—0), T(0—1), T(1-0),T(1— 1)}, {T(0—0),T(0—1), T(1—0), T(1— 1)} igp.} -

(ii) The transition matrix can be constructed from the above array by [see Eq. (5.3)]

[T\er(a—a' )T\ (B—B')+ Trign (a—a’ )T tighi (B—B")]

Tza'+3,2a+ﬁ5 2
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These transition matrices are not listed here to save
space. (iii) The eigenvalues of the matrix are

(A=A A A5A,) .

Note that the largest eigenvalue A, is always equal to 1.
For the 13 independent rules, we have the following.
() 0—Cy[p], 1->Cpq]:

{Tleft’Tright}:{{l’O’ 170}’{1—P’P’1~q:q}} ’

L 4=P 9P (q—p)zj.

=1L "5 7

(i) 0—Cy;[p], 1—>Cq,[q]:
{Tleft’Tright j={{1,0,1—q,q},{1—p,p,1,0}} ,

L 4=p 9—p p’*q’
20 2 0 2 |

(iii) 0— Co; [p], 1-Cops(q]:
{Tleft’Tright } = [ { ,0,1 —4q,9 }’ {I‘P’P,l_q,q ] } ,

{Ai}=

| 24=p 29 —p p’=2pq+2q°
b 2 b 2 b 2 .

(iv) 0—=Cy [p], 1 >C,[q]:

{A}=

{Tleft’Tright}:{{I’O’I_qu}’{l—p)p»%l_q}] ’
1—p 1—p 1—2p—2q+p2+2pq+2q2]

{(A)=11

2 7 27 2

(v) 0—-Cy[p]), 1> Cy5(q]:
{Tleft’Tright}z { { 1’071_q’q}’ ““P»P,O,I}} >

l1—p+q 1—p+q 1—2p +p2+q2
2 ’ 2 ’ 2

A1=11

(vi) 0—Cy;[p], 1—>Cylgl:
{TlerTright}z { { 170’0’”’ [l—p’pyl—q’q } } 4

1—p+q 1—p+gq 1+p2+q2—2pq
2 ’ 2 ’ 2 )

{A}=11

(vii) 0—Co3[p], 1-Co[q]:
{Tleft’Trighl } = { { I”P’p’ 1’0}: il—Prp’l_q’q}} >

L 9=2p 9=2p 2p’+q’=2pq l

)= 2 2 2
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(viii) 0—Co3[p], 1—Cps[q]:
{Tiet» Trigne} ={{1—p.p,1—¢,9},{1—p,p,1—q,q}} ,
{A}=1{1,9 —p,qg —p,(¢ —p)*} .

(ix) 0—Co3[p], 1 > Cp[ql:
{Tiefi> Trigne} = ({1 =P, 1— g9}, {1—p,p,q, 1 —q}} ,

1—2p 1—2p 1—2p —2q +2p%+24>
2 7 2 2

{(A)=11 .

(x) 0—C\,[p], 1>Cq gl
[Tleft’Tright}: { { 1—p,p, 1’0}? §P,1—P,1—¢],q}} 5

e 1—2p —2q +2p*+q*+2pq '
20 27 2

(A )=

xi) 0—Cy,[p], 1>C,[q]:
[TleftaTright}2{{I_P’P’l_q’q}9{l—p’P’l—q’q}} ?
{A}=1{1,0,0,(p —¢)?} .

(xii) 0—C;3[p], 1> Cy;[q]:

{ Tt Trigne} = {{1—p,p,1,0},{0,1,1—g,q}} ,

L 9=p—1 g=p—1 1-2g+p’+q’

{}\‘l}: 2 ’ 2 ’ 2

(xiii) 0— C5[p], 1 > Cq,[q]:
{Tleft’Tright} = { { 1 —p,p,l—q,q}, {0’ l’l’O] } ’

L 4=p=1 g=p—1 1+p>+q°—2pq |
b 2 ’ 2 b 2

{(ri}=

To check the result, take rule (5.2) for example, which
is also Cpy[p]Co3[1—g], or Cy;[p]Co3[1—¢g]. By substi-
tuting g with 1—g, we get the largest nontrivial eigenval-
ue A,=1—g —p /2, the same as what we have derived in
Eq. (5.6).

These results of eigenvalues of the transition matrices
can immediately tell which Lindenmayer system at what
parameter value can generate the limiting sequence with
1/f“ spectra (a~1): it is when the largest nontrivial ei-
genvalue A=1, then the exponent for the correlation
function ¢ = —log(A)/log(2)=0, and the exponent for
the spectrum a=1—c=1.
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