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Monte Carlo simulations have been performed on tethered networks possessing the connectivity
of a b=2 Sierpinski gasket, both with and without self-avoidance. For networks without self-
avoidance, the simulations are found to be in reasonable agreement with the theoretical prediction,
v=~0.3685, and independent of the embedding dimension d. For networks with self-avoidance, the
simulations give clear evidence for crumpling. The measured value for v is in good agreement with
the Flory theory and, to a lesser extent, the first-order € expansion of an appropriately generalized
Edwards model. The upper critical dimension, dyc, above which self-avoidance is irrelevant, is
found to lie in the range 8 <d <10, which is consistent with the theoretical prediction dyc = 8.6.
The shapes of crumpled gaskets were also measured and found to be considerably more spherical

than those of polymers.

I. INTRODUCTION

In recent years tethered membranes have emerged as
useful models for simulating the thermodynamics of cer-
tain types of membranes and, especially, for addressing
the question of the existence of a crumpling transition.! >
They are, in many respects, analogous to the random
walks used for studying polymers. However, unlike self-
avoiding (SA) random-walk simulations, whose results
are in good agreement with experimental evidence, sim-
ple theoretical predictions(’ (Flory calculations), and more
sophisticated theoretical analyses (€ expansions of the Ed-
wards model’ and real-space renormalization-group argu-
ments®), the results of SA tethered-membrane simulations
do not agree with Flory calculations,? real-space
renormalization-group calculations,’ or € expansions'® of
a generalized Edwards model. Specifically, for SA mem-
branes embedded in a three-dimensional space (d =3),
the Flory theory predicts v=1$, real-space renormaliza-
tion arguments give v=0.8, and the € expansion gives
v=0.536+0(€?). This latter value violates the lower
bound v=2 imposed by a simple geometric argument®!!
(v determines how the radius of gyration R, scales with
the intrinsic length L of the system; i.e., R,~L"). On
the other hand, the results of several different simula-
tions*> indicate v~1.0.'> Furthermore, direct measure-
ments of an appropriate shape parameter (described in
detail below) indicate that membranes become increasing-
ly flat as the thermodynamic limit is approached. Al-
though there has been some disagreement over the validi-
ty of the simulation results,'® there is increasing evidence
to indicate that they are essentially correct. We are left,
therefore, with the conclusion that theoretical ap-
proaches that work quite well for polymers fail to de-
scribe even the qualitative features of membranes.

In the context of field theory, both polymers and mem-
branes are seen as special cases of a more general (but still
homogeneous) manifold characterized by a parameter D,
which measures its degree of intrinsic connectivity or to-
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pological dimension. Thus, D =1 for polymers, while for
membranes D =2. It is then apparent that as D in-
creases, somewhere in the regime 1 <D =<2, three things
must occur: (1) Renormalization-group arguments and,
possibly, the € expansion break down; (2) the Flory
theory must cease to contain all of the essential physics
needed to describe the thermodynamics properly; (3) the
thermodynamic behavior of the manifold must change
from crumpled to flat.

It seems worthwhile to study the connections between
these three points and the reasons why the theory breaks
down in the first place. Ideally, one would like to com-
pare the results of simulations with theoretical calcula-
tions for arbitrary D and to look for discrepancies. Un-
fortunately, it is not clear how to simulate such mani-
folds. To overcome this difficulty, a model is needed that
is amenable to simulation and theoretical calculations
and which interpolates between polymers and mem-
branes. In this article, I propose regularly connected
fractal networks for this purpose. Although not homo-
geneous, these networks are characterized by a spectral
dimension'* dg, which is completely determined by the
intrinsic connectivity of the network, and, in many ways,
plays the role of D (see Sec. II). As a result, they are
amenable to both Flory theory calculations and € expan-
sions. They are also straightforward to simulate. The
remainder of this article is concerned with the compar-
ison between Flory theory calculations, € expansions, and
simulations for a particular model: a network with the
connectivity of a b =2 Sierpinski gasket.!> As we shall
see, the SA version does, in fact, crumple; the Flory
theory is reasonably accurate; and the € expansion gives
modest results for d =3 but improves as d approaches its
upper critical dimension.

II. THEORY

Figure 1 shows the intrinsic connectivity of the model,
which is that of a b =2 Sierpinski gasket. For the nth
iteration of the network, the number of vertices is
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n=1 n=2

FIG. 1. Iteration process for a b =2 Sierpinski gasket. The
value of b gives the multiplication factor for the increase in the
number of connections along an edge after each iteration.
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The lattice fractal and spectral dimensions, defined in the
n — oo limit, are, respectively,'*

N (1

In3
=——=~1.585 (2a)
=1
and
In3
de=2——=1.365. 2b
5 7Ins (2b)

Two versions of the model are discussed here: a phantom
network, which allows the nodes to overlap, and a SA
network, which does not.

Theoretical predictions. There exists for the phantom
network a rigorous prediction for the scaling exponent v
based on a mapping between the partition functions for
tethered membranes and resistor networks with the same
connectivity.? This mapping predicts (subscript zero
denotes phantom-network quantities)

_ Z_ds dfl
Vo= 2 ds ’ (3)
SO
d 2d
fl S
d=-L= .
fo Yo z_ds (4)

d 10 is the Hausdorff dimension, which relates the radius

of gyration to the number of vertices,
1/d
RgONN 1o . (5)

For SA networks, a Flory theory can be constructed
using a line of argument similar to the one for polymers.®
The free energy (v, measures the excluded volume),
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is minimized with respect to R, and gives

dg+2
d+2

an
dg

V=

(7

Similar kinds of arguments can be made to determine
the upper critical dimension dyc above which self-
avoidance is irrelevant. One such argument is to observe
that dy, measures how much of the embedding space is
filled by the fractal object. For embedding spaces with
d >2d, intersections between two or more portions of
the network separated by large intrinsic distances will be
unlikely; hence, dyc=2d ro- An alternative, but related,
argument is that including self-avoidance always in-
creases Rg, s0 v is a lower bound on vg. Hence,

VFld=dUC=V0 . (8)

Either way, one finds

4dg

dUC: 2—dS . 9)

Substitution of Eq. (2b) into Eq. (9) gives dy-=~38.6 for
the b =2 Sierpinski gasket. This is in marked contrast to
the case of homogeneous membranes!® (i.e., D =2 net-
works) for which dyc= .

Also, notice that Egs. (3), (4), (7), and (9) reduce to the
corresponding homogeneous-manifold results by simply
substituting dg=d=D. In this sense dg plays the roll
of an effective topological dimension.

The Edwards model. There have been several studies
of homogeneous manifolds that have applied e-expansion
techniques'® to a generalized version of the Edwards
model, !¢
2

— L D ar(x)
A fo 47 ox
+uo [ "aPx dPxr6%x(x) —x(x")) . (10

The above discussion suggests that it might be possible to
generalize Eq. (10) to include fractal networks by simply
making the replacement D —dg. However, this does not
work, as can be easily verified. For example, requiring
the Gaussian part of BH(D —dg) to be scale invariant
does not give the same result for v as does Eq. (3). The
reason for this failure is that whereas [d”x implies an
integration over a homogeneous and compact space,
dg . . . .

f d Sx implies neither. Rather than attempt to discuss a
measure theory for fractal sets, which would be needed to
understand fully the meaning of [d dsx, 1 will simply
propose an ansatz for establishing a correspondence be-
tween a fractal manifold and an homogeneous one that
has the same physics. The resulting Hamiltonian can
then be analyzed in a straightforward manner.

The only other parameter besides dg that characterizes
the internal space is L. It is not surprising that an intrin-
sic length scale might be modified for the case of a fractal
manifold, since, unlike homogeneous networks, which are
characterized by a single intrinsic large length scale L,
fractals have many such scales, and it is not clear which
scale is appropriate for integration. Assuming an in-
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tegration scale of the form L~*, we can fix x by requiring
Jldtx=N, (1n

from which we obtain x =d; /dg. The Hamiltonian re-
sulting from this correspondence,

lim BH=BH
L1’
Dads
2
_ e e | arx)
0 dx
df,/ds
+v0fL d%xd®x’
X 84r(x)—r(x"), (12)

has the same upper-critical dimension and Gaussian scal-
ing exponent as the original Sierpinski gasket model. It
also leads to the same Flory theory prediction. For ex-
ample, applying the usual Gaussian integration tech-
niques’ to the calculation of the mean-squared distance
between two points of the phantom network gives

dT(L1dg)
([rlx )= 1) P) =— o x =, % . (13)
S
7> (2—dg
The rms end-to-end distance, whlch scales like R, is ob-

tained by setting |x, —x,|=L 4’9 from whlch we ob-
tain a result identical to Eq. (3). Apphcatlon of the usual
power-counting arguments to Eq. (12) gives results identi-
cal to Egs. (7) and (9). In addition, e-expansion results
for v can be obtained directly from the homogeneous-
manifold results (cf. Ref. 17),

d (2—d¢$)e
yomvgt L 2TAS)E

2y, (14)
ds 8[d¥+2C(d¥)]

where

€e=4ds—(2—dg)d , (152a)

Vel
2—dg
Cdg)= (15b)
22‘15*/(2*‘1;) 2+dyg
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and
2d*
d¥= (15
S 4+44qr ©

The € expansion is performed about the arbitrary point
(d¥,d*), which lies on the critical line that separates
SA-relevant behavior from SA-irrelevant behavior. If Eq.
(14) turns out to be consistent with numerical results for
the Sierpinski gasket (which, as we shall see, it does), then
they provide evidence for the correctness of the ansatz,
Eq. (12).
III. SIMULATIONS

In order to perform Monte Carlo (MC) simulations,
tethered-network versions of the Sierpinski gasket were
developed.
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(1) For the phantom network, all vertices are free to
move through the embedding space subject only to the
constraint |r'?—r?2<1; i and j label connected
nearest-neighbor vertices.

(2) For the self-avoiding network, an additional con-
straint is imposed: + <[r'"?—r!”[2; i, any two vertices of
the network. In the ball-and-string language, the model
uses strings of unit length and balls of diameter

Temporal evolution of the simulations proceeds by a
standard Metropolis algorithm. A vertex in the network
is chosen at random and displaced by a random d-
dimensional vector. If the trial move does not violate any
of the applicable constraints, the move is accepted. N
such trial moves constitute a MC step of the network. A
natural time scale (measured in MC steps) is the Rouse
time, "

TR= 2d R (16)

ms?

z

where s is the maximum length of the random-move vec-
tor. Since there is no intrinsic energy scale in either mod-
el, acceptance of a trial move is determined solely by the
constraints, and in this sense the simulations were done
at infinite temperature.

The simulations were started from a flat configuration,

and data were taken every 7z /10 MC steps. The data
consisted of the eigenvalues A; (i=1,...,d;
A=A, = - -+ =A,) of the inertia tensor,
N
Tijz 2 (ri(k)_ri,c‘m.)(rj('k)_rj,c.m.) ’ (17
k=1
where 7{¥ is the ith component of the d-dimensional posi-

tion vector of the kth vertex. After a run of approxi-
mately 10007 each simulation was interrupted to deter-
mine the initial relaxation time, which was typically less
than 1007z. The remaining data were then used to mea-
sure the relaxation time 7 of the eigenvalue autocorrela-
tion function,

—1 (R, (

1 t+1)R (') — (R, (1'))?)
T =0 ([R,(t")— (R, (1

NP

(18)

(( ) denotes an average over the MC time t’ and is
effectively an ensemble average). The simulation was
then restarted and allowed to run until sufficient data had
been acquired so that the statistical error in R;( =3 \)
was less than 1% at the 20 level.

The measured eigenvalues were then used to calculate
the scaling exponent,

ln(R(n)/R(nwl))
(1) — 8 "8
Y N N ) 1

where Ré’” and N'™ refer to the nth generation network
values of R, and N, respectively. Calculating v in this
way makes the importance of any finite-size effects more
evident than, say, a least-squares fit of all data points.
However, it does lead to a larger error.

In order to determine whether or not the simulations
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exhibit crumpling, we must, of course, have a reasonable
definition of what constitutes a crumpled network. To do
this, first consider the scaling exponents for the individu-
al A;’s,

v;= lim ", (20a)

n— oo
where
S dg In(A{ /A" ~1)
i 21n(N(n)/N(n—1))

and i=1,...,d. Note that v=v,. Theoretical calcula-
tions to date have assumed the existence of two types of
behavior: (1) flat, for which v=v;=v,_;=1 and v; <1
fori=1,...,d —2; (2) crumpled, for which v=v,; <1 for
i=1,...,d. Thereis, however, a third possibility, which
has been observed in MC simulations:* (3) rough, for
which v=v;,=v,_;<landv;<v,fori=1,...,d —2.

If there were only the flat and crumpled regimes (as ap-
pears to be the case for SA homogeneous membranes em-
bedded in d =3), then v would be sufficient to determine
which one was observed. However, since v<1 cannot
distinguish between the rough and crumpled regimes, we
must find some other test. In principle, the v,’s could be
used, but they are much more difficult to calculate
theoretically or to measure from simulation data than v.
This difficulty can be circumvented by introducing the
shape parameter,

(20b)

Sq= lim s, 21a)
where
k(n)
(n) — d—2
S;" —< }»51") > . (21b)

S{" is easy to measure from simulation data, although it
might be quite difficult to calculate theoretically. Since
S,70 only in the crumpled regime, it can be used to dis-
tinguish between rough and crumpled behavior. The re-
sults of this discussion are summarized in Table I.

IE 9is also worthwhile to measure another shape parame-
ter,

Ag=lim 4/, (22a)
n-— o0
where
3 (AW —Am)2)
)
A=—21 , (22b)

1

(d—1)< = A§">]2>

TABLE 1. Criteria for determining the different regimes of a
tethered network.

Regime v Sa
Flat 1 0
Rough <1 0
Crumpled <1 #0
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which has been used in polymer studies. Although not
very useful for determining whether a network is flat,
rough, or crumpled, it does give a more detailed charac-
terization of the shape than S,;. If all the A,’s are approx-
imately equal, the crumpled configuration will be nearly
spherical. The numerator of Eq. (22b) then will be small
compared to the denominator, and 4,;~0. Conversely, if
A4 is much larger than the other A;’s, the configuration
will be “cigar shaped,” and 4, ~1.

Error analysis. There are three important sources of er-
ror in the estimates of R,: statistical-measurement er-
rors, long-time-relaxation correlations, and finite-size
effects.

The statistical error was determined by two different
methods: (1) configurations temporally separated by 2.37
were treated as independent (i.e., correlations less than
e “23=0.01 were ignored), and a simple error analysis
based on the number of independent samples was done;
and (2) a more sophisticated analysis was done,?® which
took into account the measured correlation between sam-
ples. Both methods gave similar error estimates, and in
all cases the larger error estimate was used.

All of the data sets exhibit an initial rapid relaxation
toward equilibrium followed by a much slower one. Typ-
ically, R, is within 2% of equilibrium after only 1007, but
to improve this by an order of magnitude requires a run
of at least several thousand 7. Removal of the effects of
the initial relaxation was done by simply ignoring the first
1007 of data. The effects of the long-term relaxation were
more difficult to sort out since they were often about the
same size as the statistical errors. Without a reliable
method for estimating these effects, the only alternative
was to increase the number of ignored initial data points.
This both reduced the long-time-relaxation effects and in-
creased the statistical errors; the latter eventually
overwhelming the former. In practice, an initial cutoff
was found acceptable if the remaining data, after binning,
had an approximately Gaussian distribution.

Because the simulations were done for finite (and rath-
er small) n, the data must be extrapolated to the n —
limit to obtain meaningful results. These effects, difficult
to estimate without a finite-size scaling theory, are prob-
ably the most important. They were estimated by simply
extrapolating the statistical errors from the two largest
systems to the n — oo limit. Examples of this method are
the dotted lines in Figs. 3(a) and 3(b). Note that only the
largest system was used to determine the lower error esti-
mate for v and A,, and the upper error estimate for S,.
The rationale for this is the assumption that the slopes of
the curves should not change sign. Hence, the single data
point provides a realistic bound on the related estimate.
Also note that the estimates for v, S;, and 4, have been
chosen simply to be midway between their upper and
lower error estimates.

IV. RESULTS

Phantom networks. Figure 2 shows the results of simu-
lations of phantom networks done for d =3 and d =9.
To facilitate extrapolation of the data to the n — o« limit,
viM, §im and A" have been plotted versus 1/n. Also,
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the v'"”s are plotted horizontally midway between the
two relevant values of n. With the exception of the n =5,
d =3 data point, the v\"’s are all consistent with the
theoretical prediction for v, discussed in Sec. II, and they
appear to be independent of d. The failure of this one
point to fit the theory probably reflects the extremely
long run time ( >>28007) needed to equilibrate the sys-
tem satisfactorily. From the shape data, one can see that
S{" approaches a finite value in the n — co limit, indicat-
ing, as one would expect, that phantom networks crum-
ple. Comparison of the A4, results with the correspond-
ing polymer values!® ( 4;~0.526 and 44~0.431) shows

0.40 [
E~ (@)
e BN °d=3
v ~ od=9
038 F_ ~ o
= - — ~
037 E A=~ Vo
______ - \\\\
036 [ ~
035 F

0.26

WU U NN TN [N WA NN N SN (NN T TR TN TN [N OO VNN SN SN (NNNY NN NN WA NN (NN TN N TN

(©)

w020 |
4 019
0.18
0.17

0.16

0.15

0.14

[} % J) SR

1 1
1 1 1 1
5 4 3 2 1

FIG. 2. Results for the phantom-network simulations. (a)
v!" vs 1/n; the curves for extrapolating v'™ have been omitted
for clarity; (b) S{ vs 1/n; (c) A" vs 1/n. Error bars on all
points reflect statistical errors only. Also note that the points in
(a) have been positioned at 1/2%,1/3%, etc. to reflect the fact
that they have been determined using the two simulations whose
n values they lie between.
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that crumpled phantom Sierpinski gaskets are much
more spherical than their polymer counterparts.

Self-avoiding networks. Figure 3 shows results for the
d =3 SA network. The Flory prediction for v is remark-
ably good—differing from the data by at most a few per-
cent. This is consistent with the d =2 simulation of this
model.?! As with the phantom case, S, approaches a
finite value for n— o, indicating that the network is
crumpled, although its much smaller value than the cor-
responding phantom one suggests that the SA network is
much flatter in shape. This conclusion is also borne out,
to some extent, by the A4; data. This is different from po-
lymers, where self-avoidance has almost no effect on
A,.%2 However, as d increases, the distinction between
the phantom and SA values for 4, disappears.

Results for all the simulations are summarized in Table
IT and Fig. 4. Figure 4 shows that the data are consistent
with the Flory theory for d <8. The first-order e-
expansion results are not as good for d =3, but improve,
as one would expect, as d —dyc. The data also show a
clear crossover to Gaussian behavior in the 8 <d <10 re-

0.83

(a)

0.77

0.75

TTTT T

| S T

(b)

0-25\11111|||||||1111||

0.23
(n)

0.21

0.19

0.19
S (n)

017

N -

!
1 1 1
5 3 3 1

n

FIG. 3. Results for the d =3 SA-network simulations. (a)
v'" ys 1/n; the Flory theory prediction is shown for compar-
ison; (b) S, A vs 1/n. Error bars on all points reflect statist-
ical errors only. The meaning of the dashed lines is explained in
the error-analysis portion of Sec. III. Also note that the points
in (a) have been positioned at 1/21,1/31, etc. to reflect the fact
that they have been determined using the two simulations whose
n values they lie between.
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TABLE II. Summary of simulation parameters and results. The run lengths do not include the initial discarded data. The quoted

errors include both statistical and finite-size errors.

Length of run (in 7)

Type d n=2 n=3 n=4 n=>5 v Sy Ay
Phantom 3 1452 1884 1808 1411 0.37240.008 0.302+0.010 0.195+0.010
9 87 79 232 67 0.379+0.016 0.292+0.010 0.159+0.024
SA 3 693 482 204 47 0.790+0.028 0.176%0.012 0.210%0.025
7 523 709 163 18 0.451+0.019 0.295+0.018 0.177+0.022
8 260 320 70 26 0.412+0.023 0.298+0.028 0.167%0.024
9 442 557 280 17 0.395+0.018 0.291+0.011 0.172+0.032
10 358 459 32 0.382+0.016 0.283+0.013 0.143+0.017
11 203 225 67 0.361%0.007 0.289+0.006 0.1334+0.010
14 731 639 611 0.380%0.016 0.272+0.013 0.131£0.007

gion. The exact location of the crossover is not very well
determined, but it is certainly consistent with the predic-
tion dyc~8.6.

There are several obvious extensions one could make to
the present work, of which I mention only two. The first
is to include bending energy in the simulation models and
look for a crumpling transition. Currently, there are no
known SA tethered-network models that exhibit a crum-

1 T T T T T T T T T T 1T
0.9 (@ A
\Y 1 e SA

08 o phantom )
07 N 4
06 | -
05 .
0.4 — & 3 . F '

* | A=
034 [ttt +—t 1 0.30
Sa : b 1 A
030 gl % %‘ { i — 0.26
0.26 % — 0.22
- Sd A d .

B miA| SA ]

022 - O] A |[phantom| | ¢ 18
0.18 * } { i — 0.14
014 I TN TN NN (NN U NN (RN N N N 0.10
2 4 6 8 10 12 14

FIG. 4. Summary of all simulations done. (a) v vs d. The
Flory prediction (vr), obtained from Eq. (7), and the e-
expansion prediction (v,), obtained from Eq. (14), are shown for
comparison; (b) Sy, A; vs d. The error bars in both figures in-
clude finite-size effects as well as statistical errors.

pling transition (they are either always flat or always
crumpled), so it would, of course, be interesting to find a
counter example. The second extension is to explore
more fully the phase diagram in Fig. 5. Although not as
interesting from a physical point of view as the corre-
sponding diagram for homogeneous systems,?® it does
have the advantage that the 1 <dg <2 region of the dia-
gram is accessible to simulations, whereas the 1 <D <2
region of the homogeneous diagram is not. Furthermore,
the results of this paper suggest that a correspondence be-
tween regular fractal manifolds and homogeneous ones
may exist, although work remains to be done to justify
the treatment of the Edwards model given here. This is

important since theoretical analyses®®!'>!” of membranes
have so far been unsuccessful in discovering the flat phase
(but see Ref. 24). It may be possible, then, to set up a sys-
tematic program of simulations of regular fractal systems
on the one hand, and theoretical calculations of the cor-
responding homogeneous manifolds on the other. One
could then explore in detail their relationship to ques-

flat rough
2+ o O o ]
> —
51 (SA relevant)
d, | §/, .
(3] Ory
] '/ X crumpled % x x x
1+ (SA irrelevant)
Gaussian
crumpled
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

FIG. 5. Phase diagram for regularly connected fractal net-
works. The crosses represent the data from this simulation; the
open circles are taken from Ref. 4. The dashed curve is hy-
pothetical; although the point labeled a (discussed in Ref. 21) is
taken to be evidence for its existence. The precise location of
the flat-rough boundary is also unknown.
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tions concerning the existence of phase boundaries. For
example, if a first-order phase boundary exists between
the D=2 and SA-irrelevant lines, € expansions will not
detect it; but a corresponding boundary in the dg-d plane
could be found through simulation. Indeed, one such
phase boundary may have already been discovered.?!
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