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Diffusive motion in a fractal medium in the presence of a trap
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There have been many studies of transport in an unbounded fractal medium. Here we discuss a
number of quantities related to the concentration of reactants diffusing in fractal media in the pres-
ence of a trapping point. This investigation is suggested by an extension of the Smoluchowski mod-
el to calculate reaction rates in such media [M. von Smoluchowski, Phys. Z. 16, 321 (1915); 17, 557
(1917); 17, 585 (1917)j. Results, some analytic and some based on a scaling argument, are given for
the flux into the trap, which is the analog of the reaction rate, in addition to the concentration
profile in the neighborhood of the trap and the time dependence of the distance between the trap
and the nearest untrapped particle. The results of our theory are found to be in good agreement
with Monte Carlo and exact enumeration calculations for the concentration profile on a Sierpinski
gasket and on an infinite percolation cluster at criticality. Some scaling and numerical results are
reported for the situation in which the traps move in the presence of fixed particles.

I. INTRODUCTION

The Smoluchowski model for diffusion-controlled reac-
tions, ' in spite of its extreme simplicity, still can be re-
garded as a useful visualization of microscopic events
that are combined to produce a reaction rate used in or-
dinary chemical kinetics. The essence of this model can
be framed in terms of the reaction scheme 3 +B~B,
where, in Smoluchowski's original analysis and almost all
subsequent ones, many-body effects are ignored and re-
placed by the simplifying assumption that there is a sin-

gle immobile B particle, surrounded by an initially uni-
formly distributed swarm of noninteracting point parti-
cles that are allowed to diffuse through an unbounded
space. The B particle is then generally modeled as a
sphere with an absorbing surface. In this picture the re-
action rate is modeled as the Aux of 3 particles into the B
particle. Other applications of such an elementary pic-
ture include processes in which elementary excitation
particles are trapped, quenched, or annihilated by anoth-
er kind of excitation or particle in confined geometries.
Physical examples of this possibility include electron
trapping and recombination, exciton trapping, quenching
or fusion, soliton-antisoliton recombination, phonon up-
conversion, and free-radical scavenging. ' Further-
more, there are several examples of effectively one-
dimensional systems, such as polydiacetalenes and other
quasi-one-dimensional crystals, polymer chains in dilute
blends, and crystals grown inside pores and microcapil-
laries. An interest in the reaction kinetics of such sys-
tems, in addition to a number of others, has motivated a

number of recent studies of diffusion-controlled kinetics
in such systems. ' '

One of the effects of a reaction in a confined geometry
is a tendency for the reactants to self-segregate, that is, to
form islands in which one component or another tends
to predominate, rather than having the complete mixing
which underlies the classical chemical descriptions of re-
action kinetics. A complete analysis of this tendency
poses intractable physical and mathematical problems,
which had led, in recent years, to a much simpler way of
looking at the general phenomenon without entering into
many of the complicated details. The model employed
for this purpose is very much in the spirit of
Smoluchowski's treatment of reaction kinetics. In it one
considers local effects in the neighborhood of a single,
isolated, immobile trap. 6' ' 2 In the context of reac-
tion kinetics in a confined geometry, the focus of interest
is on the distance of the single B particle from the nearest
untrapped 2 particle. This distance is a measure of the
zone of depletion of 3 particles. A number of results
have appeared in the literature for this simplified picture,
for diffusion in a medium whose properties are strictly
translationally invariant. ' ' In this paper we
present results for the same problem in the absence of
translational invariance and when either the 2 or the B
particles are allowed to move, the other component
remaining fixed. Specifically, we consider some proper-
ties of an ensemble of initially uniformly distributed ran-
dom walkers in an unbounded fractal medium containing
a single trap. We will not delve into the much more com-
plicated formulation in which both the A and B particles
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are allowed to difFuse, and for which, at the present time,
only simulation results are available. ' Some of the prop-
erties reported on here can be mimicked by those of a
continuous-time random walk ' (CTRW) whose
pausing-time density is of stable law form, as reported
elsewhere. '

The present study of nearest-neighbor distances on
fractal media was tested numerically on two specific frac-
tal media in which the difFusion is known to be anoma-
lous. One is the deterministic Sierpinski gasket, and the
second is a two-dimensional percolation cluster at criti-
cality, exemplifying a random medium. In keeping with
the Smoluchowski picture, we assume that the random
walkers, the 3 particles, are initially randomly distribut-
ed on the fractal lattice, and that 8 is the trap. The
theory clearly neglects many-body efFects, and is expected
to be applicable in those cases in which traps form a
minority species.

Aux, it is expedient to first form the generating function
of the J(n), a quantity that we denote by J(z),

f (ro;z) =p (ro, z)/p (0;z) . (4)

Since, when ro is allowed to range over the entire space,
we have

J(z)= g z "J(n)= g z"g' f„(r0)=g' g f„(ro)z"
n=0 n=0 r0 r n=00

—:g' f (ro, z),
I'O

where f (ro;z) is the generating function of the f„(ro)
with respect to n L.et p„(r) be the propagator for the po-
sition of the random walk after n steps. It is known that
when ro&0 the function f(ro, z) can be expressed in
terms of the generating function of the free-space propa-
gator of the random walk [i.e., p (r;z) —= g„p„(r)z"] as

II. ANALYSIS

We first define some of the exponents that characterize
properties of the unbiased random walk in unbounded
space. The exponent d characterizes anomalous
difFusion in the sense that the mean-squared displacement
after n steps satisfies the asymptotic relation

2/d
& '(n)&-n

where we have omitted a multiplicative constant. When
the medium is rigorously translationally invariant,
d„=2, while on fractal media, d„&2. The second ex-
ponent needed in our analysis is the fractal dimension df,
which is a measure of the density of the medium, in the
sense that the mass of the medium within a radius R
scales as M(R) —R f. Finally, the fracton dimension d,
is defined in terms of df and d by the relation
d —2df /d

Our initial results are presented for the reaction
3 +8—+8, where the trap is immobile. The first quanti-
ty of physical interest to us is the Aux into the trap. The
position of the trap is taken to be the origin of coordi-
nates. The Aux may be found in terms of the expected
number of distinct sites visited by the random walker in n

steps, a quantity which we denote by (S ( n ) }. The flux
into a trap at step n can be identified with the expected
number of random walkers from the medium that first
reach the origin at step n. Because of the assumed global
symmetry of the random walk, the probability that a ran-
dom walker initially at ro first reaches the origin at step n
is equal to the probability that a random walker at the
origin first reaches ro at step n. If this probability is
denoted by f„(ro), then the Aux into the trap at step n,
J(n), can be regarded over contributions from each indi-
vidual site in the medium. That is, J(n) is the sum of
f„(ro) over all ro

J(n)=g' f„(ro),

where the prime indicates that the sum excludes a contri-
bution from ro=0. To discuss the large n behavior of the

g p (ro, z) = 1/(1 —z),
I'p

it follows from the combination of Eqs. (3) and (4) that

J(z) =
p(0;z) 1 —z

—p (0;z)

The result given in this last equation is exact. To find
the asymptotic behavior of J(n), we can recast the results
in terms of the expected number of distinct sites visited in
n steps, (S(n) }.The generating function for this quanti-
ty is known to be

S(z)= y z"(S(n)}=
n=0 (1—z) p(0;z)

which allows us to express J(z) in terms of S(z) as

J(z)=(1—z) —1 .S(z)
z

The behavior of J(n) in the limit n ~ oo can, by an argu-
ment based on a Tauberian theorem for power series, be
related to singular behavior of J(z) in the limit z~l.
This is equivalent to the assertion that Eq. (7) implies that
as n~~,

J(n)-(S(n) }—(S(n —1)}-d(s(n) }

This relation has been also been suggested by a heuristic
argument by Kopelman and Argyrakis. The asymptot-
ic dependence of (S(n) } on n for fractals has been found
by Alexander and Orbach to be

d, /2S(n) —n ' (9)

for d, ~ 2, with the result that J(n) scales as

i —d ZZ
n

This prediction has been tested for a random walk on a
two-dimensional infinite percolation cluster at criticality
in a simulation based on the method of exact enumera-
tion. The result of this simulation is given in Fig. 1,
which is a log-log plot of the cumulative number of ran-
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FIG. 1. A plot of the cumulative Aux into the trap as a func-
tion of step number, for a random walk on an infinite percola-
tion cluster at criticality in two dimensions. The data were ob-
tained by the method of exact enumeration, and each point is an
average of results obtained from 100 clusters.

FICx. 2. Two sets of data for c„(r) on the Sierpinski gasket
plotted as a function of lnr for n=2000. The upper line
represents the profile along one side of the fractal and the
second is for a line bisecting the fractal.

dom walkers trapped by step n. In this plot the expected
value of the slope should be approximately equal to 0.66.
Our simulated results are consistent with a slope equal to
0.67+0.01. In contrast to the result shown in Eq. (10),
the asymptotic form of the two-dimensional Aux is in-
versely proportional to inn and the three-dimensional Aux
is asymptotically a constant.

We next consider the eA'ective repulsion of the random
walkers due to the presence of a trap. One measure of
this quantity is simply the form of the probability profile
or, equivalently, the concentration in the neighborhood
of the trap. A more specific measure of the depletion
zone is the expected distance of the trap from the nearest
untrapped random walker as a function of n. Let c„(r)be
the concentration profile resulting from an initial uniform
distribution of A particles and let p„(r~ro) be the proba-
bility that a single random walker, initially at ro, is at r at
step n, in the absence of any trapping boundaries. Be-
cause the medium is assumed to be isotropic
p„(r~ro) =p„(r~Iro) and c„(r)=c„(r);that is to say, only
the radial dependence is required to describe diffusive
motion in the fractal medium.

Let us assume that the concentration profile in the
neighborhood of the trap is proportional to a power of r:

1 —d /dc„(r)-3 (n)r -r /n (1 1)

where the dependence on n is found by assuming that the
fiux J(n) is proportional to the gradient of concentration
at the trap. The dependence of ( r (n) ) on n given in Eq.
(1) can be used to show that a =d —d&. Figure 2 shows
some simulated data confirming the form of the profile
suggested in Eq. (11).

A calculation of the expected distance from the trap to
the nearest untrapped random walker, (L (n) ), following
the analysis of Ref. 6 requires that one first find a func-
tion Q (L,n ), defined to be the probability that the
nearest-neighbor distance is greater than or equal to L at

step n. This, in the continuum limit, is expressible in
terms ofp„(r ro) as

L oo

Q(L, n)=exp —c f dr f drop„(rIro)
0 0

(12)

where c is the initial uniform concentration. Substitution
of the profile given in Eq. (11) into this equation suggests
that Q (L, n), at least for sufficiently small L, has the scal-
ing form

Q(L, n)-exp
EL"-

i —d //2

n
(13)

where K is a constant. The function (L (n) ) is found in
terms of Q(L, n) as

(L(n)) =f Q(L, n)dL . (14)
0

On substituting Eq. (13) into Eq. (14), we find that the
scaling behavior of (L(n)) is

( )
(I —d, /2)/d

(15)

Figures 2 and 3 summarize data for c„(r) and (L (n)) on
the Sierpinski gasket obtained by the method of exact
enumeration. It is known that the dimensions for the
Sierpinski gasket are d&=ln3/In2-1. 58, d„=ln5/ln2
-2.32, and d, =ln3/ln5-0. 68. The two sets of points in
Fig. 2 correspond to the concentration profile taken along
one side of the fractal medium and through a line bisect-
ing the fractal medium. The slopes of both of these lines,
except in the very close-in region, is found to be 0.73,
which is to be compared to the value 0.737 predicted by
the expression in Eq. (11) where the value of a is given in
the text. The line in Fig. 3 has an estimated slope of
0.133 as opposed to the predicted 0.136. Results ob-
tained from a Monte Carlo simulation yield an estimated
slope of 0.142. All of these values are in excellent agree-
ment with the scaling theory that we have developed.
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FIG. 3. A plot of ln(L (n) ) as a function of inn for the Sier-
pinski gasket. The results were found by the method of exact
enumeration.
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(L(n) ) -(d (S(n) ) /dn) ' n- (16)

Figure 4 shows a log-log plot of data obtained from
Monte Carlo simulations of (L (n)) ) on a Sierpinski gas-
ket, allowing for a fixed trap and moving particles, a
moving trap and fixed particles, and a moving trap in the
presence of moving particles. The exponent, which has
been found numerically, for the case of the moving trap
and stationary particles is 0.34+0.02, to be compared
with the exponent predicted by Eq. (16) to be equal to
0.32. When the trap is static, the exponent is found to be
0. 142+0.005, in agreement with the prediction of Eq.
(15). Figure 4 also shows some data on (L (n) ) when
both the 3 particles and B trap are allowed to move with
the same diffusion constant. It is evident from the figure
that (L (n) ) is proportional to a power of n, but there is
no theory predicting what the exponent should be in this
more complicated case.

We mention that our scaling theory for a single trap in
the presence of a swarm of walkers gives a result for the

To this point we have been discussing a theory based
on a stationary trap and a swarm of mobile particles.
More generally, one should consider the case in which
both the trap and the ambient random walkers are
mobile, but such a theory is not presently available even
for diffusion and reaction in a translationally invariant
medium. ' However, one can make some progress in dis-
cussing the case of a mobile trap and stationary swarm by
resorting to a scaling argument. When the trap is mobile,
we suggest that the property determining the principal
kinetic features of the system is the efficiency of the trap
in exploring unvisited sites. The efficiency will be
identified with the quantity d(S(n))/dn We wil.l argue
that ( L (n ) ) is inversely proportional to the efficiency, so
that the more new sites are visited, the smaller the dis-
tance to the closest unvisited walker. This leads to the
prediction

FIG. 4. Data for (L (n) ) as a function of n on a log-log plot
obtained by the simulation of a random walk on a Sierpinski
gasket consisting of 9843 sites. Cyclic boundary conditions
have been used. Each point represents an average of 1000 runs.
The three sets of points are (A), moving trap, fixed particles;
( ), moving particles, fixed trap; ($), moving particles and trap
(D& =D&), where the di6'usion constants are proportional to
the probability that a particle moves on a given step. The asso-
ciated estimates of the exponents are indicated in the text.

Aux that agrees with the prediction of a heuristic ' theory
based on the CTRW that incorporates a pausing-time
density of fractal form [g(t)-T /t +'] provided that
the parameter d is set equal to 2/a. However, such a
theory cannot predict all of the features found in the frac-
tal picture, exemplified by the probability proNe or
(L (n) ). This is not too surprising since the fractal be-
havior in the two types of models arises from different
mechanisms. There is no analog of the anomalous
pausing-time density at a single site in models of trans-
port on a fractal medium. The concentration profile in
this model in the neighborhood of the trap is given by the
expression in Eq. (11),while the analogous result given by
the CTRW in one dimension is proportional to x

In future work we will discuss the case of mobile parti-
cles in the presence of a trapping surface as suggested by
applications of random-walk theory to phonon migration
in a turbid medium. Also, for this case it will be shown
that some properties predicted by a pictured based on the
CTRW differ from those obtained for fractal motion by
simulation and scaling arguments.
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