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Rate of microcrack nucleation

Leonardo Golubovic* and Shechao Feng
Department of Physics, University of California, Los Angeles, California W024

(Received 30 October 1990)

We propose a phenomenological model for microcrack nucleation in a solid under constant exter-
nal stress. We argue that the kinetics of the crack nucleation process is qualitatively different from
that occurring in simple metastable states such as supercooled liquids or supersaturated solutions.
This difference is caused by irreversible processes such as surface diffusion that restructure micro-
crack surfaces. This restructuring inhibits microcrack healing and thus yields a microcrack nu-

cleation rate that is much faster than that obtained by directly applying nucleation laws appropriate
to metastable states in liquids or solutions.

The mechanisms and physical properties of fracture
and failure have attracted the attention of many pure and
applied researchers over many years. ' However, fun-
damental aspects of the fracture physics, such as the very
nature of the state of a stressed solid and the role of
thermal Auctuations, were addressed only quite recent-
ly. Nishioka and Lee, and, more recently, Blumberg
Selinger et al. treated a stressed solid as a metastable
state. Within this approach, the failure threshold corre-
sponds to a metastability limit, or spinodal point, at
which the external stress as function of strain reaches its
maximum.

A related issue is that of crack nucleation, which is, in
many respects, analogous to that of the stable phase
droplets in a supercooled liquid, ' as demonstrated in a
recent simulation. An inspiration for such a picture of
crack nucleation is contained already in the pioneering
work of GriKth. ' He established a criterion for crack
growth by estimating the energy cost of creating a crack
of length 2L in a solid under a uniaxial stress 0. perpen-
dicular to the crack (see Fig. 1). Creation of the crack, in
a two-dimensional solid (d =2), costs an energy of the or-
der

E(L)=gL —cr L /2Y .

/////////

/////////

FIG. 1. Crack geometry. 2L, crack length; d, maximal crack
opening displacement; y (x), crack profile; s (L), the distance
from the crack tip for which y [L —s (L)] is equal to the atomic
size.

The first term in (1) is the energy cost of creating the
crack's edges by breaking atomic bonds. Thus ga, with a
the atomic size, is of the order of a bond energy. After
crack creation, its edges will separate, with maximal
opening displacement (see Fig. 1) of the order

d =La /Y, (2)

with Y the Young modulus. The crack opening relaxes
the stress in a domain of size L and lowers the elastic en-

ergy by an amount of the order L o /2Y. This yields the
second term in (1), which, in contrast to the first one, en-

ergetically favors crack growth. [To simplify the discus-
sion, in Eqs. (1) and (2), and in the following, we suppress
various numerical factors of order unity. ] Energy (1),
which can be considered as the potential energy of the
crack, reaches its maximum at L equal to the critical
Gri%th length L,

L =g Y/o.

corresponding to the energy

E =E(Ls)=g Y/2o. (4)

The crack state with L Lg is unstable: For L & Lg an
increase of L costs a positive amount of energy —this
hinders the crack growth for L &L . For L &L, the
crack growth decreases the potential energy. This leads
to a very rapid growth: At L of the order a few Lg the
crack tip speed is already of the order of the speed of
sound.

Crack growth may proceed even for L & Lg, for exam-
ple, due to thermal fluctuations, as was nicely demon-
strated in a recent Monte Carlo simulation. This results
in the phenomenon of "delayed fracture, " in which the
stressed solid remains undamaged, until it eventually
breaks, with a lifetime dependent on the temperature and
the applied stress. This phenomenon is believed to be
directly related to processes of microcrack nucleation and
growth. Energy (1) is analogous to that of a stable phase
droplet in the phenomenological Zel'dovich theory of nu-
cleation processes in metastable states. ' We shall refer
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to this picture as the conventional theory of crack nu-
cleation. In this approach, the energy Es in Eq. (4) can
be interpreted as the energy barrier for the crack nu-
cleation process. The nucleation rate R&—or the time
t& needed for a crack to be nucleated out of a perfect
solid —can be estimated by an Arrhenius law'

R v = 1/t~ —exp( E~ /—k~ T), (5)

at temperature T «Es/k~ (k~ is the Boltzmann con-
stant).

Implicit to the activation law (5) is the assumption that
the dynamics of the crack size can be described by a
Langevin equation of the form

dL dE
( )

dt dL
(6)
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with E(L) as in (1). Here n (t) is a thermal noise contri-
bution to the "velocity" dL /dt with the correlation func-
tion (n(t)n(t') ) =2FT5(t —r'); F is a phenomenological
"mobility" (inverse friction) constant. With these as-
sumptions, the application of the classical Zel'dovich
theory, the overall physical picture of nucleation is iden-
tical to that in other nucleation phenomena: The crack
size L (t), with L (0) «Ls, evolves in a diffusive manner
until, eventually, it crosses L after a typical time of the
order t~, and starts an explosive growth [see Fig. 2(a)].

During the nucleation process [0&L(t)&L ], the crack
size "velocity" dL/dt can be both positive (growth) and
negative (healing). We emphasize that this conventional
theory allows also for a complete healing of the solid,
which occurs if L ( t) goes to 0 at some t & 0 [see Fig.
2(b)].

Recent numerical simulation of a thermal equilibrium
model defined in such a way to allow complete healing of
the solid yields results that are in agreement with the
above picture of crack nucleation. By using the estimate
g -=a Y, ' Eqs. (3), (4), and (5) yield

Ls =a ( Y /cr ), (7a)

R& = I /r& —exp[ gLs /—k~ T]

=exp[ —(Y/o )'(T /T)] (d =2), ('7b)

where T =ga/k~ is a characteristic temperature com-
parable to, but typically bigger than, the solid's melting
temperature. Note that for a realistic temperature
T & T or T «T, and small strains o /Y, R~ as given
by (7b) is extremely small. Moreover, even for a relative-
ly large strain, say o /Y'of the order 10%, and an unreal-
istically high T of the order T, Eq. (7b) would still pre-
dict that the nucleation time t& is proportional to a num-
ber exceeding the number of atoms in any realistic solid.
Thus the estimates based on the conventional theory sug-
gest that the crack nucleation is physically totally ir-
relevant. If so, most realistic solids would break only in
the vicinity of the spinodal point ' where stress as a
function of strain reaches its maximum and the solid
loses its mechanical stability. In practice, however, many
brittle materials fracture in the regime in which the
stress-strain relationship is still linear to a good approxi-
mation and the strain is of the order 10%. In these cases
the crack nucleation and growth processes are believed to
play an important role in the mechanism of fracture.
However, the estimate equation (7b), derived from the
conventional nucleation theory, seems to give much too
small a nucleation rate to explain these observations.

In this paper we shall argue that the kinetics of the
crack nucleation is in fact much faster than that of the
conventional diffusive dynamics equation (6), which
yielded, for a two-dimensional (2D) solid, the estimate
(7b) for the nucleation rate. We will argue in particular
that, for a 2D solid,

R~=1/t~-exp[ —( Y/o. )(T /T)] (d =2),

FIG. 2. (a) A typical crack size trajectory L(t) as a function
of time t, for the case of the Langevin dynamics uninhibiting
crack healing. L~, Griftith length; t&, nucleation time. (b) A
crack trajectory corresponding to complete crack healing. (c)
Crack size dynamics in the presence of surface processes inhib-
iting its healing. For L (L;„ these processes are suppressed
and the dynamics is similar to that in (a). For L;„&L(L~,
healing is possible at length scales shorter than the length scale
s(L), corresponding to the time scale At(L). At longer scales
crack size dynamics has the character of a directed diffusion.

instead of Eq. (7b). While the temperature dependence of
the nucleation rate (8) is the same as in Eq. (7b), the
dependence on the stress is significantly difFerent. Note
that, for a weak strain cr/Y«1, the rate in Eq. (8) is
much bigger than that in Eq. (7b). The difference be-
tween these two results arises from surface processes such
as surface dEfI"usion, " which restructure crack edges and
inhibit microcrack healing.

These processes are ignored in the conventional crack
nucleation model (6) [and thus in Eq. (7b)], which allows
for uninhibited microcrack healing. We assert instead
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that a microcrack is a long-lived object whose size L
grows via some kind of directed diffusion in the range of
microcrack sizes

L;„=a(Y/o') &L &L =a(Y/o ) (9)

as depicted in Fig. 2(c). Here, in addition to the Griffith
length L, a new length scale L;„emerges: Cracks with
L & L;„evolve according to Eq. (6) and may heal
completely —these microcracks are, like vacancies, an-
nealed defects of a solid. On the other hand, cracks in
the size range (9) may never heal completely. Their size
evolves according to a directed diffusion process for
which dL/dt is, on average, positiue [see Fig. 2(c)]. This
is in sharp contrast to the Langevin dynamics (6) [com-
pare Figs. 2(c) and 2(a)]. Note that, at weak strains
cr /E &(1, a /L;„=L;„/L =o./Y &(1. Thus, in a
brittle solid, where fracture occurs at strains cr/Y of or-
der 5 —10%, the size range for L in Eq. (9), which corre-
sponds to the regime with the directed diffusion in Fig.
2(c), can be very large. As gL;„/kz T=ga Y/
o.k~ T= T Y/o T, Eq. (8) can be rewritten in the form

R~ —exp( —gL;„/k~ T) (d =2), (8')

which is similar to the first line of Eq. (7b) with Ls, how-
ever, replaced by L;„. Note that the ratio
L /L;„= Y/o. is large for weak strains o. /Y. In this
case the rate predicted by Eq. (8') is enormously larger
than that predicted by the conventional nucleation
theory, Eq. (7b).

We proceed to detail our arguments. Once again, for
simplicity, we will erst consider a 2D solid under a con-
stant uniaxial stress cr (o' « Y), with a crack of size 2L.
In the absence of interactions between the opposing crack
edges, the crack opening displacement d is given by Eq.
(2). In reality, the attractive short-range interactions will
try to close the crack, i.e., to heal the solid. I.et the range
of these interactions be of the order of the atomic size a.
By demanding that d &a, one obtains from Eq. (2) that
L & L;„=a( Y/o. ). For cracks with L &L;„the attrac-
tive forces between the crack edges are important. More-
over, since d & a for L &L;„,various irreversible, pro-
cesses restructuring the profile of the crack edges, such as
atomic migrations via surface diffusion, " or surface
reconstruction, are suppressed. Such processes might
create a mismatch between the upper and lower crack
edges and prevent microcrack healing even when the
external stress is released. However, for a fresh crack
with L (L;„, i.e., d &a, surface processes which re-
structure the crack edges are suppressed and the kinetics
of its size can still be well described by a standard
Langevin dynamics, Eq. (6), with E (L)=gL. Then the-
typical time scale for activating a crack of size L;„, t&,
behaves as t

&

—exp(E;„/kz T), with

E;„=E(L;„)=gL,„=gaY/o. = kz T Y/cr .

Thus we have

t, —exp(gL;„/k~ T)=exp[( Y/o )( T /T)] . (10)

A crack of size L;„will grow until, after another time

Equations (10) and (11) imply our main result, Eq. (8), for
the crack nucleation rate R&=1/t~ =1/(t, +t2) in a 2D
solid.

It remains to justify Eq. (11). To this end, we note that
the distance between the crack edges y (x) as a function of
the distance from the crack center, x (see Fig. 1) is'

y =d [1—(x/L) ]' (12)

with d as in Eq. (2). Equation (12) is derived by ignoring
the short-range attractive interactions between the crack
edges, which have a range of the order of atomic size a.
So, the crack profile deviates from (12) in the vicinity of
crack tips, only when y(x) &a (see Fig. 1). Let s(L)
denote the distance from the crack tip for which the dis-
tance between the crack edges is equal to the atomic size
a (Fig. 1). It is then straightforward to show from Eqs.
(2) and (12) that

s(L)=a Y /Lo (13)

We will term the interval [L —s(L)] &x &L as the ttp'
zone. Thus, within the tip zone the distance between the
crack edges is smaller than the atomic size. Note that, by
(13) and (9), as L increases from L;„to L, the length of
the tip zone s (L) decreases from s (L;„)=L;„))a to
s(L )=a.

Introduction of the tip zone length s(L) allows us to
discuss qualitatively the inAuence of various irreversible
surface processes, such as surface reconstruction or sur-
face diffusion, " on the kinetics of a crack with size in the
range L,„&L &L . For such a crack, the maximal
crack opening displacement, Eq. (2), is bigger than the
atomic size a. This, for example, allows atoms to migrate
freely along the crack edges via the process of surface
diffusion. " This process might create a mismatch be-
tween the upper and lower crack edge and thereby
prevent crack healing, even when the external stress is
released completely. This suppression of the solid's heal-
ing, by the restructuring of crack edges, is obviously even
stronger if the external stress is held constant, as
presumed here. Thus, in contrast to microcracks with
L &L;„, a microcrack with size L in the interval
L;„&L&L behaves more like a quenched defect of the
solid. Nevertheless, some healing of the solid is still pos-
sible within the crack tip zone: Atoms diffusing along
crack edges and restructuring them cannot enter the tip
zone in which the distance between crack edges is smaller
than the atomic size a (see Fig. 1). This implies that the
evolution from the size L to the size L', with L' —L
smaller than the tip zone length s(L), can still be de-
scribed by the Langevin dynamics, Eq. (6), which neglects
the restructuring of crack edges inhibiting crack healing.
Thus, the dynamics of the crack size, growing from L to
L +s (L), can be described by the Langevin equation (6)
with the constraint L (t) )L, imposed by the surface pro-

scale t2, its size reaches the GriSth length Lg At time
scales t ) t~=t, +t2 the nucleation process is over and
the crack size will start to increase rapidly. In the follow-
ing we will argue that, like t„

t, -exp(gL;„/k~T) .
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cesses that create mismatch between crack edges and in-
hibit crack healing. So, the time At(L) needed for the
crack size to grow from L to L +s (L) can be estimated
from the Arrhenius law b t(L) —exp(AE/ks T), with
AE =E[L +s(L)] E—(L) and E(L)=-gL. Thus
b,E=—gs(L), and

bt(L)-exp[gs(L)/k~T] . (14)

Once the crack size has reached L+s(L), the crack
will continue to grow to the size L +s (L)+s(L +s (L))
governed by the Langevin dynamics Equation (6) with
the directed growth constraint L(t))L+s(L), which
will take a time of the order

bt(L +s(L))-exp[gs(L +s(L))/ks T],

Rz —1/t, —1/t2 -exp [ gL;„Iks T],—

Eq. (8'), depends crucially on the length scale L;„,while

being practically independent of the Griffith length L
[see, for example, the integral (16) which is, at low T,
dominated by its lower bound L;„rather than by its
upper bound L ]. In the absence of surface restructuring
processes, on the other hand, the rate depends dominant-
ly on L via R& —exp( gL /ks T), Eq. —(7b). Since
L;„/L =o/Y, the rate estimate in (8') is, at weak
strains o /Y; enormously larger than that in Eq. (7b).

Let us emphasize some important consequences of our
new picture of microcrack nucleation.

(i) The crack nucleation rate, at low T and cr, is much
bigger than that predicted by naively applying the con-
ventional nucleation theory, i.e., Eq. (5), appropriate for
the nucleation processes in supercooled liquids, super-
saturated solutions, and other simple metastable states.

according to Eq. (14). This process continues until L (t)
reaches the Griffith length L when the nucleation pro-
cess is over and rapid fracturing process takes over.

As time scales longer than ht(L), the crack size
evolution has a directed character, since
L (t +b, t)=L (t)+s(L (t)) is bigger than L (t). This is il-
lustrated in Fig. 2(c) [note that the crack healing,
dL/dt &0, is possible only on time scales shorter than
b, t (L), corresponding to the length scale s (L)]. One can
characterize this directed evolution by introducing the
mean crack size velocity which characterizes its growth
from L to L +s (L) during the time At(L) estimated by
Eq. (14):

v(L)=s(L)lbt(L)-s(L)exp[ —gs(L)Ik~T] . (15)

Now we can estimate the time t2 needed for a microcrack
size to grow from L;„to L:

dL, ~a dLt2= J —I exp[gs(L)/ksT] . (16)
min V min S

At low T, this integral is dominated by its lower bound at
L =L;„, where-s (L) attains its maximal value
s (L;„)=L;„.Thus t2 -exp(gL;„ Iks T). This justifies
Eq. (11) and completes the derivation of our main result
stated in Eqs. (8') and (8). Note that the corresponding
nucleation rate

R~-exp[ E(L )Iks T]—
=exp[ —g(L ) IksT]
=exp[ —( Y/~r ) ( T /T) ] (d =3) . (17)

Here T =ga /k~ is a characteristic temperature com-
parable to the melting temperature of the 3D solid, and

g =a Y. On the other hand, our new picture of the crack
nucleation process yields, in analogy to Eqs. (8) and (8'),
the nucleation rate R&-exp[ —g(L;„) /ks T], where

L;„ is, as before, the crack size for which the maximal
crack opening displacement d equals the atomic size a.
L;„can be estimated from Eq. (2), which is valid also for
penny-shaped cracks in 3D. This yields the same esti-
mates for L;„as in 2D, Eq. (9). Thus

R& —exp[ —( Y/cr) (T /T)] (d =3) . (18)

The causes of this are irreversible processes, such as sur-
face diffusion, which restructure crack edges. We assume
that these processes are sufficiently rapid to hinder crack
healing. To justify this assumption we note that the typi-
cal time scale for surface diffusion behaves at low T as
exp(ga Ik~ T)." This time scale is much smaller than the
typical crack growth time scale, which, by Eq. (14),
behaves as exp[g s(L)/k sT]. We recall that s(L), Eq.
(13), varies from L;„))a to a, as L increases from L
toL .

(ii) Our picture indicates that a solid under a stress is
not a simple metastable state with microcracks being
direct analogs of, say, the subcritical stable phase drop-
lets in a supercooled liquid. There a subcritical droplet
has a single metastable state that is analogous to cracks
of sizes L &L . In contrast to this naive analogy, we
propose a picture of the nucleation process that can be
qualitatively interpreted as a passage of a given crack
through a sequence of quasimetastable states: a crack
spends within each of these states a time of the order
b. t (L), Eq. (14), during which its length increases from L
to L+s(L), with s(L) given by Eq. (13) [see Fig. 2(c)].
At times scales shorter than b, t (L), the crack state is like
a metastable state in which crack healing is allowed, as
depicted in Fig. 2(c), and L(t) evolves according to the
standard Langevin dynamics equation (6). As the crack
size grows from 0 to L~, it passes through N quasimetast-
able states, where

La dLE= =(L /L;„)~—=(Y/o)~»l .
o s(L)

We stress that these states are not true metastable states
that occur, for example, if the crack potential energy
E(L) in Eq. (6) has multiple minima. In this case one
may have returns from a state corresponding to a bigger
L to one corresponding to a smaller L. On the other
hand, for the quasimetastable states, these returns are
forbidden by the surface restructuring processes.

(iii) Our discussion can be extended to microcracks in a
three-dimensional solid. For a penny-shaped crack of ra-
dius L, Eq. (1) is replaced by E(L)=gL cr L /Yy—ield-
ing Ls as in Eq. (3) and, within the conventional crack
nucleation theory, the estimate
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Note that the difference between the estimates (17) and
(18) is significantly larger than that between the corre-
sponding results in 2D, Eqs. (7b) and (8).

(iv) Our theory ignores some potentially interesting as-
pects of the fracture physics; for example, plastic defor-
mations in the vicinity of crack tips (which, however, can
be weak in a brittle solid, as appears to be the case for
iron whiskers ' ).

In conclusion, in the present work we propose a simple
phenomenological theory of microcrack nucleation in

stressed solids, which accounts for the e6'ects of irreversi-
ble processes restructuring crack surfaces. These pro-
cesses, by inhibiting crack healing, significantly enhance
the microcrack nucleation rate.

We acknowledge useful conversations with R. L.
Blumberg Selinger, Z.-G. Wang, and W. M. Gelbart.
This work is supported by U.S. Defense Advanced
Research Projects Agency under Grant No. Army
DAAL 03-89-K-0144.

On leave from Boris Kidric Institute of Nuclear Sciences, Insti-
tute of Theoretical Physics, Vinca, P.O.B. 522, 11001 Bel-
grade, Yugoslavia.

A. A. Griffith, Philos. Trans. R. Soc. London Ser. A 227, 163
(1920); see also, L. D. Landau and E. M. Lifshitz, Theory of
Elasticity, 2nd ed. (Pergamon, Oxford, 1970), pp. 144—149.

N. F. Mott, Engineering 165, 16 (1948).
3Statistical Models for the Fracture of Disordered Media, edited

by H. J. Herrman and S. Roux (North-Holland, Amsterdam,
1990); A. Kelly and N. H. Macmillan, Strong Solids, 3rd ed.
(Clarendon, Oxford, 1986); L. M. Latanision and J. R. Pick-
ens, Atomistics of Fracture (Plenum, New Y'ork, 1983).

4M. Parrinelo and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980);
J. Appl. Phys. 52, 7182 (1980); J. R. Ray and A. Rahman, J.
Chem. Phys. 80, 4423 (1984); T. F. Soules and R. F. Busbey,
ibid. 78, 6307 {1983);R. A. La Violette, Phys. Rev. B 40,
9952 (1989).

5K. Nishioka and J. K. Lee, Philos. Mag. A 44, 779 (1981).

R. L. Blumberg Selinger, Z.-G. Wang, W. M. Gelbart, and A.
Ben-Shaul, Phys. Rev. A 43, 4396 (1991).

7Z.-G. Wang, U. Landman, R. L. Blumberg Selinger, and W. M.
Gelbart, Phys. Rev. B (to be published).

S. S. Brenner, in Fiber Composite Materials (American Society
for Metals, Metals Park, OH, 1965), p. 11;J. Appl. Phys. 33,
33 (1962).

9S. S. Brenner, in Grototh and Perfection of Crystals, edited by R.
H. Doremus, B. W. Roberts, and D. Turnbull (Wiley, New
York, 1958).
E. M. Lifshitz and L. P. Pitaevski, Physical Kinetics (Per-
gamon, Oxford, 1981),p. 427—431.

~ ~C. Herring, in Structure and Properties of Solid Surfaces, edit-
ed by R. Gomer and C. S. Smith (University of Chicago
Press, Chicago, 1953), pp. 5—72; J. Appl. Phys. 21, 301 (1950);
W. W. Mullins, ibid. 28, 333 (1957}.
D. Broek, Elementary Fracture Mechanics, 4th ed. (NijhofF',

Dordrecht, 1986), pp. 94—97.


