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Diffusion of walkers with persistent velocities
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We describe some properties for a phenomenological model of superdiffusion based on a generali-
zation of the persistent random walk in one dimension to continuous time. The time spent moving
to either increasing or decreasing x is characterized by a fractal-time pausing time density,
g(t) —T /t +', with 1 &ct &2. For this system it is shown that asymptotically p(0, t) —1/t'~ . The
form of the profile is shown to be Gaussian near the peak and to fall off'like tx " ' near the tails,
and the survival probability is asymptotically proportional to exp( —Bt/L ). These results are
confirmed by numerical calculations based on the method of exact enumeration.

I. INTRODUCTION

Considerable recent interest has been focused on the
attempt to understand superdiftusive physical systems.
The definition of a superdiffusive system is that the dis-
placement of a random walker in the dimension scales

2/d
with time as a power law, ( r )-t, where the fractal
dimension d„of the walk is less than, rather than greater
than, 2. A number of physical systems exhibit such be-
havior. ' One example of such a system, originally
studied by Matheron and de Marsily was suggested as a
model for ground-water transport in stratified media
characterized by varying pressure in the direction of the
strata (so that the average velocity in each stratum is a
random variable). A second example is provided by
coherent wave propagation through disordered multiple-
scattering media.

Properties of the continuous-time random walk (hence-
forth CTRW) on a translationally invariant lattice have
been used by a number of investigators as a simple way to
mimic those of transport in a disordered medium since
the pioneering work of Scher and Lax. ' Most models
that are based on the CTRW (Refs. 11 and 12) for trans-
port in random media use an assumption that the
pausing-time density P(t) has a fractal-time behavior,
that is

g(t)- T /t'+

for t /T ))1, where 0 & o; & 1, and T is a parameter hav-
ing the dimensions of time. Such a pausing-time density

has no finite integer moments greater than 0, and in
consequence, is known to change the probability distribu-
tion for the displacement of the random walker at time
t. '3

In this paper we explore a number of properties of the
continuous-time generalization' of the persistent random
walk' which incorporates superdiftusion with a continu-
ously variable exponent in contrast to the model in Ref. 7
in which it is shown that d =

—,. The pausing-time densi-

ty in this model is characterized by a pausing-time densi-
ty having a finite first, but infinite second moment. The
model for which an expression for (x ) was given in Ref.
14 consists of a persistent random walk in continuous
time for which the pausing-time density has the property
given in Eq. (1) with 1 & a & 2, and in which the displace-
ment x is related to the time in a single sojourn (that is,
moving either right or left) of duration t by

f (x, t)=o(x+vt),

where U is a constant velocity. The further assumption
made is that the initial step by the random walker is
equally likely to be in the positive or negative direction.
Such a model is obviously symmetric, and was shown' to
have the property that the mean-squared displacement
has the asymptotic behavior

(x')-t'
For the purpose of studying further properties of the
model we simulated a lattice version of the persistent ran-
dom walk in one dimension in which time is discrete. It
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is known that the persistent random walk can be regard-
ed as a multistate walk. ' The model of the present paper
is a two-state model, in which the two states are + and

Our simulated results o,re for a model more general
than that implied by Eq. (2) in that motion in the two
states are characterized by a biased difFusive component.

The probability that a single sojourn time in either one
of the states in our model is equal to n has the property

g„=&In +', n =1,2, 3, . . .

where X is a normalizing constant and 1 &a &2. In the
+ state the random walk takes a step either to the right
with probability p+ =(1+e)/2 or to the left with proba-
bility p =(1—e)/2, and in the —state these probabili-
ties are reversed. After a sojourn in any given state, the
random walker randomly chooses a new state. ' This
difFers slightly from the model of Ref. 14, but the asymp-
totic statistical properties of both models are readily
shown to be identical. The model of the persistent ran-
dom walk that we have just defined reduces to the most
elementary walk when e=0 and t/i„ is proportional to a
single exponential in n, and for @= 1 it corresponds to the
random walks studied in Ref. 14. All of the simulations
were carried out using the method of exact enumeration.
Notice that the model of Ref. 14 corresponds to the
choice e = 1 in the discrete analog. Our simulations indi-
cate that the scaling relationship in Eq. (3) also remains
valid when 0 (e ( 1. This can be checked analytically
from the theory given in Ref. 14.

We will examine some features of the probability of be-
ing at x at step n, p„(x), for the displacement of such
one-dimensional lattice random walks in the limit of long
times. We also derived an expression for the survival
probability at long times of a random walk between two
traps located at x =+I.. Our model allows one to calcu-
late the form of the tails of the curve p„(x), which are
significant for determining the moments of the displace-
ment

The paper is structured as follows. In Sec. II we evalu-
ate p (x, t), the probability density of the displacement for
the continuum model in the limit of large time, compar-
ing the analytical results to those obtained by numerical
simulation. Section III is devoted to the distribution of
first-passage time and ends with a general discussion of
the significance of the results.

II. PROBABILITY DENSITY FOR DISPLACEMENT

When g(t) has the asymptotic behavior indicated in
Eq. (1), its Laplace transform, P(s), can be expanded in
the neighborhood of s=0 as

g(s) - I —s'r+ (sT, )

where both T and T& are constants with the dimensions
of time, and 1 (o. & 2.

Let p(x, t) be the probability density for the displace-
ment of the random walk at time t, conditional on the
first step being taken in the positive or negative x direc-
tion with probability —,', and let P(co, s) be the Fourier-

p (co,s)— 1 [1—g(z)][1+/(z)]
[1—Q(z)Q(z ) ] z

where Re means "real part" of the function in
parentheses.

Let us first analyze the properties of P(co, s) in the re-
gime in which both m and s are small, which allow us to
expand g(z) using Eq. (5). This regime corresponds, in
the time-space domain, to having both (t/T) and x be
large. Let X be the constant k=T, /T. A straightfor-
ward but tedious expansion of Eq. (7) to the lowest two
orders of z yields

P(cu, s)- — 1 ——(z +z )+ (z +z ")+1 A,

s 2 2s

(8)

Since we can represent z in the form of an integral as

—a —zgd
r(I —a) o

it follows that one can replace Eq. (8) by an integral rep-
resentation, using the identities

z +z—1 — —
1 [s cos(cuug)I (2—a) o p

+cousin(coup) ]e
(10)

(z +z )= 1

2s sI (2 —a)

X $ M U COS Q)V

+2scuu sin(coup) ]e

Thus Eq. (8) is seen to be expressible in terms of the in-
tegrals

,~ cos(cuu g)
Cp —f e

,&
sin(coup)

d~Sp= e
o P

The combination of Eqs. (8), (10), and (11) allows us to
rewrite Eq. (8) as

1
P(co s)—

s I(2—a)

2
COU

C
s

COU S
s

(12)

Laplace transform of this function, i.e.,

P(co, s)= f e' "dx f e "p(x, t)dt .

To write the expression for P(co, s) in a compact fashion
we let z =s +iv ~, and z =s —ivy, where both s and co are
to be regarded as real variables and the parameter U is
defined in Eq. (2). An exact representation of P(co, s) for
the particular model under consideration has been shown
tobe' '
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The expression in this last equation constitutes a start-
ing point for finding an approximation to two quantities
of interest, namely the probability density for remaining
at the origin, p(O, t), and the probability density p(x, t)
for large x, defined by a suitable scaling limit. To find the
first of the two quantities we note that the Laplace trans-
form of p(O, t), which will be denoted by p(O, s), can be
found from P(cu, s) by

l'1 I I

J
a a a a

I
a 1 a 1

1.7

P(O, s)= f "P(cu, s)dtu .
1

2~ oo
(13)

4

We do not know P ( co, s ) exactly, but we do have an ap-
proximation to it in Eq. (12). The form of that equation
does not allow us to perform the integration over co indi-
cated in Eq. (13). However, the joint assumption that Eq.
(12) is the lowest-order term in the expansion of an ex-
ponential and that the principal contribution to the value
of the integral comes from the neighborhood of ~=0 al-
lows us to insert the approximation

1 A, (cou)
P(to, s) ——exp — c~

—c~(eau)
s I (2 —ct) ' s

a a a I a a a a I a a a a I a a a a

O.a5 0.1 0.15 0.2

FIG. 1. Asymptotic behavior of the exponent of time in
p(O, t) for a=1.5 and @=0.5 ( ), 0.8 (()), and 1.0 (+). Results
of the exact enumeration calculation were then fit to the form
p(O, t) = 3 /t'~S, 3 being a constant. The convergence of P to
the true value a as a function of t is indicated in the figure.

(where c, , cz are constants of no relevance to our argu-
ment) into Eq. (13). The resulting integral is a convergent
one. The integral in Eq. (13) can be evaluated by trans-
forming the variable co to a new variable p, by setting
co=ps ' /U. In this way we find

p(x, s) = f exp
1 (cpu)

&S 0 S

1 (eau)
exp

ITS 0 S

cos(cuu)dco

P(O,s)-, , z f exp( —Ap +Bp 's' "~ )dp
1

(~uu)' + ' ' dc'
2

exp —3p dp, (15)

where A is the constant A,c, /r(2 —a), and we have
dropped a term consistent with the limit s ~0. Since the
integral in the second line is a constant, we can make use
of a Tauberian theorem for Laplace transforms' to infer
that

Kp(x, t)—
t 1/

x
1 —K'

t2/

The integrals are readily evaluated and, by means of a
Tauberian theorem, lead to the following approximate
Gaussian form for p (x, t) in the neighborhood of the ori-
gin

p(o, t)— 0a x
exp —K'

t1/ t2/
This differs from the behavior suggested by the often-
made assumption of transport in a disordered medium,
that the asymptotic behavior of p (0, t) is related to (x )
by

p(O, t)-C/(x )' (17)

where C is a constant. The result so obtained for the
asymptotic behavior of p (O, t) was checked numerically
(cf. Fig. 1) because of the nature of the many approxima-
tions in finding it.

One can calculate the shape of the curve around x=0
by starting from the Laplace transform p(x, s). The in-
tegral representation of p(x, s) is obtained from the
Fourier transform in Eq. (13) as

where K and K' are readily calculated constants.
Numerical simulations on the discrete system strongly

support the asymptotic expression for the time depen-
dence in Eq. (16) for p„(0), not only for the value of e= 1

in the transition probabilities but also for e & 1. Figure 1

shows the asymptotic behavior of the exponent n in p„(0)
for +=1.5 and several values of e: 0.5, 0.8, and 1.0.
These support the assertion that this exponent is indepen-
dent of the value of e.

We can make use of the approximation in Eq. (12) to
predict the form of the scaling behavior of p (x, t) at long
times. When we insert the expressions for the integrals
C

&
and S

&
explicitly in this equation,
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1 A, (cuu) ~,~ cos(coup)
d

s I(2—a) o
1 mn t

p (x, t) ——I"(1+a )sin u
7T (1+a) (27)

A, (cuu)
exp

s I(2—a)
sz cosz

dZ
cov z

—1

A, (cou) ~,~ sin(cuu()
desI (2—a) o

Numerical simulations support this asymptotic behav-
ior for sufficiently large x Ibut note that when x exceeds
(ut), p(x, t) must be identically equal to 0] F. igure 2(a)
shows a plot of p (x, t) for e= 1 and a=1.5. Based on
Eqs. (19) and (27) we can roughly summarize the expres-
sions for p (x, t) as

A, (cou)+ expsI"(2—a) o

SZ SlilZ
dZ

cou za —I (20) 1
x &t"

1 /~

It will always be assumed that both s and co are positive.
Since we are interested in the behavior of the tails of
p (x, t) for large but fixed values of t, we will work in the
limits co, s —+0 together with the assumption that

X
1/a

0, x)t.
p (x, t) — 1

t1/

—(1+a)
t &x &t (28)

lim co/s~const . (21)

In these limits the last two terms on the right-hand side
of Eq. (20) are of the same order of magnitude, i.e., they
are O((cou) /s ). But because of the condition imposed
in Eq. (21) we can assert that

Figure 3 shows a plot of p(x, t)t' as a function of the
scaled variable x/t' for o, =1.5 and several values of t:
200, 400, 600, 800. As it can be seen the collapse of the
data on a single curve supports the result in Eq. (28).
Also this form is consistent with the requirement that

(cuv) «s . (22) 10' ~ 1 f ~ I I ~ I ~ I I

This allows us to approximate P(co, s) by

1 (cou)
p(co, s) ———A

s s 2
10

1 (cou)
1 —3

s s 10
-3

C4

1 1

I+a( '
s

1

s+ A (cov)

where 3 is the constant

10

10 ~ I I i I ~ I

10
I ~ I I I I

100

oo

1(2— ) Io

cosz
s

slnz

Z
a —

1
dZ

10' ~ ~ I I

I I

't ~ I

~ ~ 1 I ~ ~

(24)

It is shown in the Appendix that A is indeed positive as
required for our derivation of results.

One readily inverts the Laplace transform in Eq. (23)
to show that

10

10

H

10-8

p(co, t)-exp[ —A (cou) tj, (25) 10

4

valid at large t. The inverse transform of this function
can be expressed as

10

10-14 j I ~ I I I I

p(x, t)- XQ
exp( —u )cos, du,

mvt1/ vt" (26)

which can be expanded in an asymptotically convergent
series, of which the lowest-order term is'

10 100 1000

FIG. 2. (a) Log-log plot of probability density p(x, t) for a=1
and a=0.5. (b) Log-log plot of probability density p(x, t) for
@=0.5 and a=1.5. From the top, the curves are for t=100,
200, 300, 400, and 500.
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10
1 T+(t)-—
n t

(31)

H

0. 1—

ll ' ~

U

The probability that n steps are made before one is made
that is as large as L /u is approximately

0„—1 —%
L L

(32)
U

0. 01

0. 001
0. 01 0. 1

I ~ I I I I I

10
a t/&t&

0(t)—
L

We next connect the value of the discrete parameter n to
the continuous time t by using a relation suggested by
renewal-theoretic considerations, n —t/(t ), which con-
verts Eq. (32) to

CL

FIG. 3. Log-log plot of t' p(x, t) as a function of the scaled
variable x /t ' for a = 1.5 and several values of t: 200, 400, 600,
and 800.

A

uT (uT) t
(t&

Hence the survival probability is

(33)

p (x, t) be normalized. We can write approximately
—(1+a)

(uT) tS (t) —exp (t) I (34)

1/n t 1/a t 1/a t 1/ (29)

It is also readily verified that the approximate form in Eq.
(28) implies the asymptotic behavior of (x ) given in Eq.
(3).

When e(1, the probability density p(x, t) clearly ex-
hibits an extra regime which appears in ordinary
dift'usion. Figure 2(b) shows a plot of p(x, t) for e=0.5

and a = 1.5. The extra diffusive regime is obviously to be
expected since there are now two sources of variability,
that inherent in g(t), in addition to fluctuations in the
direction of the steps. The width of this extra region is
asymptotically proportional to t ' . It should be noted
that the actual slope in the linear region of the log-log
plot of p (x, t) in Figs. 2(a) and 2(b) is in fact about 20%
greater than 1++. This is probably due to not having
reached the asymptotic regime.

III. DISTRIBUTION OF FIRST-PASSAGE TIME

9 (t) =f ltd(r)dr (30)

is the probability that a single sojourn last longer that a
time t. This probability behaves asymptotically as

In this section we present an argument suggesting the
form of the distribution of first-passage time (t) for a
random walker between two traps separated by a distance
L. A formalism for calculating the survival probability of
such a random walker is given in Ref. 19, but we present
a more heuristic derivation of this quantity leading to re-
sults in agreement with our simulations. Consider a line
of length L, in the limit L ~~. In order for the random
walker to exit the line, it must at some time make a step
whose length is the order of magnitude of L. When the
velocity is constant, as in the present case, the probability
that the displacement in a single sojourn is greater than
L /u is %(L /u), where

1n(S(t)) — Kc "'+ 't "—~'+ ' (36)

where K is a readily determined constant. When +=2
the time dependence of this result coincides with the
one-dimensional result of Donsker and Varadhan and
when a decreases, longer steps are taken by the walker,
and therefore the survival probability decreases.

IV. DISCUSSION

(1) The probability density for being at the origin
p (O, t), whose asymptotic form is given in Eq. (16) de-
creases more slowly than the corresponding density for
random walks on a translationally invariant line or for

If this prediction is taken seriously, the mean trapping
time should scale with the length as L In Fig.. 4(b), the
mean trapping time is plotted as a function of L in a log-
log scale. The plotted points indicate a slope in agree-
ment with this prediction.

As a final point we consider the trapping problem in
one-dimension with the two-state random walk con-
sidered in this paper. The trapping problem is defined in
terms of an infinite line, for which the probability that a
given interval (x,x +dx) contains a trap is equal to cdx,
where c is the trap concentration. One is required to find
the survival probability of a walker averaged over all
values of length separating adjacents traps. Equation (34)
gives the survival probability conditional on such a
length being equal to L. The survival probability aver-
aged over all intervals is then

(S(t))=c f LS(t L)e ' dL . (35)
0

On the assumption that the time is large, an approxima-
tion to the value of (S(t) ) may be found through the use
of the method of steepest descents, leading to the esti-
mate of the leading term in in(S(t) ):
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(b)- FIG. 5. Two-point velocity correlation ( v (0)v (j) ) =C (j) as
a function of j for a=1.5 and n =3000. Here U (n) is the veloci-
ty of the random walker at step n,

results obtained for the case a=1 using quite difFerent
analytical and numerical methods.

10

10
10 100 L 1000

FIG. 4. (a) Asymptotic behavior of the length exponent y in
the survival probability which is fitted to a form
Sl (t)-exp( —at/L ) plotted as a function of 1/L ' '. Our data
indicate the convergence of y to the conjectured value y=o, .
From the top, the curves are for the values o.=1.75, 1.5, and
1.25. (b) Average time for the walker to get trapped for
u = 1.25.
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APPENDIX: PROOF OF THE POSITIVITY
OF A DKFINKD IN KQ. (24)

Let P be the constant s/(cvv) . In Eq. (24) we use the
representation

random walks on fractals. This result stems from the fact
that the probability density has no characteristic length
scale, which leads to a failure of Eq. (17).

(2) The present model introduces long-range correla-
tions between the steps of the walker characterized by a
two-point velocity correlation function with a power-law
behavior C(j)-j', as suggested by the plot in Fig. 5
for the case a=1.5 and n =3000. It is interesting to note
that Peng et a/. ' have studied a random walk in which
the long-range correlations are of the same form, but in
which p(x, t) is Gaussian over the entire range of x, in
contrast with our present results in which the Gaussian
form only holds in the neighborhood of the origin.

After this work was completed, we learned of similar

e ~+d
I (a —1) o

and interchange the orders of integration with respect to
g and z, carrying out the integration with respect to z
first. This leads to the alternate representation

I (2 —a)1 (a —1)

X f "g 'dg f e '~+&'(cosz —psinz)dz
0 0

(A2)

which is manifestly positive.
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