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Results of calculations of double excitation of helium to n=2 states for fast projectiles of
charge Z are presented. Nonzero Z > contributions for single and double excitation occur only
when time-ordering contributions from the second-order amplitude are nonzero. For double exci-
tation, electron correlation must also be nonzero to obtain Z?> terms. The time-ordering effects
arise from virtual off-energy-shell intermediate states. As with second-order amplitudes for Tho-
mas singularities in electron capture, the energy-nonconserving amplitude is connected to the
second-order energy-conserving amplitude by a dispersion relation. Comparison is made with ex-

periment.

Higher-order terms in perturbation expansions contain
information absent in simpler first-order terms. While
first-order Born contributions are useful' in evaluating
basic cross sections for excitation of a single atomic elec-
tron by a high-velocity projectile of charge Z, higher-
order terms in Z are required for either: (i) multiple exci-
tation in the absence of correlation, or (ii) understanding
the nature of intermediate states of the collision. Leading
higher-order contributions to observable excitation scat-
tering probabilities and cross sections vary as Z*. These
higher-order Z3 terms contain information about how a
scattering event proceeds, information not included in the
simpler first-order Z? terms. For example, both time-
ordering? and intermediate energy-nonconserving contri-
butions® are present only in higher-order amplitudes.
This information is useful in characterizing few and
many-body processes in scattering of atoms by fast
charged particles.

Observations by Barkus ez al.* of Z? effects, related to
single ionization and excitation in atomic collision with
positive and negative pions, were made over 30 years ago.
In the last decade, observations of double ionization in
helium by protons and electrons>® have led to various cal-
culations and interpretations’ ~'2 of observed Z? effects.
Experiments in the last few years have been performed to
measure differences in high-velocity scattering by protons
and antiprotons and by electrons and positrons.'>!* These
differences may be attributed to higher-order effects since
the leading-order Z 2 effects give no difference. A non-Z?
dependence of the double excitation of helium at velocities
of 1.5 MeV/amu (or 7.7 atomic units) have been recently
reported by two groups.'#!> In this paper we present an
interpretation of Z 3 effects and compare detailed calcula-
tions with experiment. We demonstrate that a nonzero
Z3 contribution in single- and double-excitation cross sec-
tions requires the presence of time-ordering effects. For
double excitation, electron correlation is also necessary !¢
for the Z 3 term to be nonzero.
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|£) in scattering a particle of charge Z from an atom may
be expressed '© in the interaction representation'’ as

a=<f|Texp[—ifV(t)dt]li>. (D)

Here T is the time-ordering operator? and V contains a
sum of Coulomb interactions between the projectile and
each of the electrons in the atom, namely
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The perturbation (or Born) expansion in Z is given'® by
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where V is linearly proportional to Z.

The zeroth-order term vanishes since the states are
orthonormal. In the first-order term the time-ordering
operator plays no role since only one time is involved and
T may be replaced by unity. For single or double excita-
tion the integral over ¢ is purely real.'” However, this
first-order term is zero for double excitation if there is no
correlation. Then ¥V is a sum of single electron operators'¢
and

Sy =2 ooV (o))~ (of]9k) =0
J

for orthogonal states.'® Hence we may represent the
first-order term in Eq. (2) by —ic,Z where ¢, is a real
coefficient which is nonzero in double excitation only if
electron correlation is nonzero.

The second-order term in Eq. (2) may be analyzed by
setting T=1+(7T—1). Here T =1 is the limit in which
time-ordering effects vanish. Hence we define T—1 to be
the operator which carries the effects of time ordering.
Keeping this in mind and using the step function ©, the

intermediate state propagator from the e — ' factors be-
tween V' (¢) and V(¢') in Eq. (3) is'®
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The principal-value term P[1/(Q —¢)] vanishes in the
limit 7— 1. Thus the —izd(Q — ¢) term in Eq. (5) cor-
responds to 7=1 and the P[1/(Q —¢)] term corresponds
to T—1, which carries the effects of time ordering. We
note that in the second-order term 7— 1 may be replaced?
by 26(t —¢') —1=2(© —8) where ©=1/2 so that T— 1
corresponds to a time variation of the integrand in Eq. (2)
from its average values. In this sense 7—1 may be re-
garded as a time correlation. Using this in Eq. (2) it may
be shown that all matrix elements for both single and dou-
ble excitation are real!’ so that the second-order term
may be represented by Z 2(ic;—c,) where ¢ arises from
T=1 in Eq. (3) and c; arises from the operator 7—1
which gives the effects of time ordering.
Collecting terms, Eq. (2) may be expressed as

a=ic1Z—(G2—ic))Z*=—ilc\—c2Z)Z—&,Z%, ()

where all the ¢’s are real in double excitation. We have
seen that a nonzero c; carries spatial correlation and a
nonzero c; carries time ordering. We note that ¢, which
has no time ordering, may carry some electron correla-
tions and does include the lowest-order independent elec-
tron approximation, where a reduces to a simple product
of first-order probability amplitudes for double excitation.

Cross sections o and scattering probabilities |a|? may
be expressed by

o= lal?aB= [ (c}z?~2c1c:Z*+c3Z*+53Z*)dB
=C{z?-2CnZ*+C3z*+Ciz*+0(Z"), (%)

where B is the impact parameter of the projectile. The
difference in double excitation by particles of opposite
charge is given by

o(—=)—o(+)=4C,|Z]|3. 6)

This is nonzero only if effects due to both spatial correla-
tion (in ¢;) and time ordering (in c,) are present.

The time-ordering term c; also represents effects of en-
ergy nonconservation in intermediate states during the
collision. This may be seen in Eq. (3) where T—1 is asso-
ciated with P[1/(Q —e)] which restricts €= Q so that in-
termediate energy is not conserved. The energy noncon-
serving contributions are purely quantum mechanical and
may be ascribed to virtual intermediate states. Energy-
conserving intermediate states, corresponding to the
—ins(Q —e¢) terms in Eq. (3), also contribute to the
double-excitation probabilities and cross sections for the
¢, terms. The energy-conserving terms may be directly
related to on-shell physically observable processes, and are
also present in classical calculations. It may further be
that ¢, and ¢, obey a dispersion relation, namely

ca(e) = —%Pf_ww c;(il: da, (7a)
_ ] = c,(Q)
a@=+Lipf 22"aa. (7b)

Such a dispersion relation has been found to hold in the
vicinity of a Thomas singularity in electron capture in a
calculation?® using the Schrodinger representation.

We have evaluated (4) using correlated configuration-
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interaction (CI) wave functions for the initial and final
states. The effective charge Z.g of the helium atom was
varied to minimize the ground-state energy. For Z.g
=1.76, the initial state wave function,

[i) =0.9916|152) —0.1251|1s2s) —0.0230|25 %
+0.0251|2p 2,

gives an energy within 1.6% of the exact energy. The final
states were (2s2p('P)|=1.0(2s2p|, and (p2('D)|
=1.0(2p?|.

In arriving at the second-order amplitudes in (4), we
have inserted a complete set of two-electron, correlated
states in (2), have performed the energy decomposition
(3), and then have used an average-energy approximation
to perform the sum by closure. We chose the degenerate
energy E of the intermediate states to be 51.8 eV above
the ground state, which is in line with the reasoning of
Lodge,?' Day,?? and Harley and Walters?* except that in
this present case we have two ionization thresholds and
have chosen E to be midway between them. An additional
argument in support of choosing the intermediate-state
energy to be in the range of the singly-ionized states is
that these are precisely the states that play the major role
of interfering with the bound states (at about 60 eV above
the ground state) in the observation process.'*!>

Cross sections for projectile-impact excitation into the
2s2p('P) state are shown in Fig. 1. The proton-to-
antiproton ratio is a factor of 3 in the projectile energy
region of 0.1 to 0.3 MeV/amu but decreases to 9% at 1.5
MeV/amu where Giese et al.'> made their observation
(for which the error bars mask a definitive statement
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FIG. 1. Cross section for the excitation of helium into the
252p('P) state. The solid is the second-order result for protons
and the dot-dashed curve is for antiprotons. The first-order
(dotted curve) and (uncorrelated, energy-conserved second or-
der) independent-electron approximation (IEA), (dashed curve)
are also shown. The solid circles are the close-coupling result of
Fritsch and Lin (FL, Ref. 24). The solid diamonds are experi-
mental results of Giese et al. (Ref. 15) and the open circles are
data from Pedersen and Hvelplund (Ref. 14) who summed the
2s52p('P) and 2p2(' D) cross sections.
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about differences due to the sign of the projectile charge).
Also shown are the close-coupling calculation of Fritsch
and Lin?* at 1.5 MeV/amu and the experimental results
of Pedersen and Hvelplund'4 for excitation into either
252p('P) or 2p*('D) at 1.84 MeV/amu. One may see
that our result is almost all first order at 1.5 MeV/amu, so
the difference in magnitude from experiment is not due to
our use of a closure approximation. Figure 2 shows the
cross sections for excitation into the 2p2('D) state. Even
though the first- and second-order contributions (not
shown) are of the equivalent magnitude over the entire en-
ergy range in this case, projectile charge differences are
only of order 10%. Our result is in near agreement with
the data of Giese et al.'> and lies above the result of
Fritsch and Lin by a factorof 2or 3 (p ¥ ore 7).

Our analysis gives some insight into the nature of Z3
terms in double excitation. However, this analysis does
not explicitly distinguish between various specific physical
mechanisms such as shakeoff, TS1 (two step with one in-
teraction with the projectile), or polarization,’ ~!%2425
which have been proposed to explain observa-
tions.*~61271525=29 1 our opinion, this question of the
specific nature of the mechanism for double excitation is
still both interesting and open. In our analysis we have ig-
nored interference effects between the Auger resonance
and the continuum background, which is consistent with
Fano’s interpretation.’® If the continuum background
varies with the Auger electron energy and the Fano g pa-
rameter?’ is not larger than one, then interference with
the continuum background could be non-negligible for
this data. It is safer to compare the sum of the 2s2p and
2p? results for experiment and theory. Then our calcula-
tions still lie well above experiment, however. Coupling to
continuum intermediate states, ignored by both us and
Fritsch and Lin,?* could be significant. Our calculations
use configuration-interaction bound-state wave functions
with real coupling coefficients. It is not clear to us that
these terms remain real for continuum states. Hence here
we avoid analysis of important data for double ionization.
Our analysis may be applied to single excitation with the
understanding that ¢, is generally nonzero with or without
electron correlation and that interference with the ioniza-
tion continuum is ignored. Hence for a nonzero Z > term,
time ordering is essential in a single-excitation cross sec-
tion, but electron correlation is not. For higher-order
terms in Z it is evident that odd-Z contributions to |a|?
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FIG. 2. Excitation into the 2P2('D) state. The notation is
the same as in Fig. 1.

disappear when energy-nonconserving virtual intermedi-
ate states are eliminated since even and odd terms in Z
contributing to the amplitude a then differ by a factor of i
from the even terms.?'3> However, further understanding
of the pattern of time-ordering and energy nonconserva-
tion in higher order terms in Z remains open to further in-
vestigation.

In summary we have shown that Z3 contributions to
atomic excitation contain time-ordering contributions
from the Z? amplitude. These time-ordering contribu-
tions may also be regarded as contributions from energy-
nonconserving intermediate states of the collision. For
double-excitation correlation must be present, in addition
to time ordering, for a nonzero Z 3 term to occur. Proton
versus antiproton cross sections for excitation into the
252p('P) state differ by a factor of 3 in the energy re-
gion between 0.1 and 0.3 MeV/amu. At other energies,
and all energies in this region for the 2p2('D) final state,
such differences are of order 10%.
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