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We show that the stationary transverse patterns, formed by the interaction of the modes of a
frequency-degenerate family, are selected by the laser according to a specific variational principle.
We discuss the phenomenon of spatial multistability, which consists in the coexistence of two or
more different configurations for the same values of the control parameters. We establish a general
connection between laser physics and hydrodynamics, by reformulating the dynamical equations of
the laser in the form of hydrodynamical equations for a compressible fluid, similar to the law of
mass conservation and to the Bernoulli equation. This result provides a general framework for the
discussion of the relations between optical and hydrodynamical turbulence.

I. INTRODUCTION

In a companion paper, ' to be referred to hereafter as I,
we analyze the stationary transverse patterns that emerge
from the competition among the transverse cavity modes
belonging to a frequency-degenerate family with
2p +l =q fixed, where p and l are the radial and the an-
gular indices of the modes, respectively. We showed that
by varying the control parameters of the system one
meets several different patterns, which were calculated
theoretically and observed experimentally in a Na2 laser.
Most of these patterns exhibit the presence of a crystal of
phase singularities, which have a structure quite similar
to the vortices that are familiar, for example in hydro-
dynamics and superconductivity.

In this paper (II), we address some questions which
concern mainly the general principles that govern the
phenomena of transverse spatiotemporal pattern forma-
tion and dynamics in lasers. First of all, it is highly
desirable to find some general laws which rule the selec-
tion of the spatial patterns, at least in the case of the
states with a stationary output. In this paper we give the
solution to this problem for the special case of a
frequency-degenerate family. Precisely, we formulate a
variational principle, which governs the selection of the
stationary patterns for any value of q; we define a general-
ized free-energy functional V of the electric field, such
that the stable stationary configurations correspond to
the local minima of V. Hence the intensities and the rela-
tive phases of the modes in the stationary solutions are
fixed by this minimality requirement; the transitions from

one pattern to another, which are observed by varying
the control parameters, are also governed by the general-
ized free energy.

The second part of this paper focuses on an interesting
aspect that emerges from the results of I, namely, the
phenomenon of spatial multistability. Precisely, under
appropriate conditions, we find that two or more station-
ary solutions coexist for the same values of the parame-
ters. The simplest example of spatial bistability was
demonstrated in Ref. 3, in the case where q =1, in which
only two modes compete with each other and give rise to
a bistability between two patterns which differ in their
transverse field configuration, but not in their intensity
distribution. Here we show the possibility of multistable
behavior, also among patterns which differ in their inten-
sity configuration. This phenomenon is potentially very
interesting in the perspective of applications to the field
of optical information processes, associative memories,
and pattern recognition. At variance from the standard
optical multistability, in which the system is able to pro-
duce outputs of different intensity under the same para-
metric conditions, in the case of the spatial multistability
the outputs differ basically for the transverse
configuration of the field.

The aim of the last part of the paper is, on the one
hand, to generalize some of our results beyond the case of
a frequency-degenerate family of modes and, on the other
hand to substantiate the connection between lasers and
hydrodynamics which was elaborated in Sec. IV of I in
the discussion of the vortex nature of phase singularities.
Hence we start from the set of dynamical equations, re-
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cently derived in Ref. 4, that govern the competition of
the complete set of transverse modes which correspond
to a given value of the longitudinal index of the modes.
In the limit of adiabatic elimination of the atomic vari-
ables we reformulate the laser equations in a way that en-
ables us to establish a general connection with the case of
hydrodynamics. Precisely, we reshape the dynamical
equations of the laser in the form of "laser hydrodynami-
cal equations" for a compressible Quid, similar to the law
of mass conservation and to the Bernoulli equation. This
result can help to clarify the connection between optical
and hydrodynamical turbulence.

In Sec. II we formulate the variational principle for the
selection of stationary patterns in a frequency-degenerate
family of modes; this principle is generalized in Sec. III to
include the possibility of a coherent signal injected into
the cavity. Section IV is devoted to the topic of spatial
multistability. In Sec. V we remind the model of Ref. 4
and discuss the issue of cooperative frequency locking.
In Sec. VI we derive the hydrodynamical equations for
the laser.

II. THE CASE OF A FREQUENCY-DEGENERATE
FAMILY OF MODES: DYNAMICAL EQUATIONS

AND VARIATIONAL PRINCIPLE
FOR PATTERN SELECTION

(2.1)

or in the form
X gpss (t)Bpi (p 0')
p, l, i

where A~&, (p, tp) a. nd B~&, (p, tp) are the Gauss-Laguerre
and the Gauss doughnut modes, respectively, described
in Sec. II of I. The prime indicates that the sum is re-
stricted to the modes of the degenerate family with
2p +l =q. The modal amplitudes f„&; obey the time evo-
lution equations

(2.2)

Throughout this paper we will use the same notations
of I and therefore we will not repeat here their meaning.
However, let us recall the equations which govern the dy-
namics of the frequency-degenerate family of modes.

The slowly varying envelope of the electric field is writ-
ten in the form

F (p, tp, t) = g' f„i;(t) A~i; (p, tp),
p, l, i

(1 id)f~I, —2C—f dy f dppA i, (p, (p)P(p., y, t)
0 0

which are coupled with the atomic equations

(2.3a)

=y i[F(p, tp, t)D(p, y, t) —(1+id)P(p, yt)],at
BD = —)

~~~
I Re[F*(p,y, t)P (p, cpt)]+D (p, tp, t) —y(p)]at

The modal amplitudes g„&; obey a set of equations identical to Eqs. (2.3a), but with the replacement of A
&; by B *&;.

At steady state the amplitudes f &, obey the equations

h(p q)Ap'

1+6. + IF(p, y)i

(2.3b)

(2.3c)

(2.4)

in the case of the modes g &;, one has a set of stationary equations identical to Eqs. (2.4) provided one replaces A &;(p, y)
and A~ I; (p, tp) by BP; (p, tp) and B~,I, , (p, y), respectively.

We note that if one multiplies both sides of Eqs. (2.4) by f &, , perform the sum over the modes of the family, take into
account Eq. (2.1) and the identity

&' If„i; I'= f dq f "dpplF(p, q)I', (2.5)
p, l, i

(2.7)

which follows from the orthonormality of the modes 3 &;, one obtains the equation

2C Ff'dq f dppIF(pq)I'= f'dq f dpp'1+6'+ IF (p, q )I'
(2.6)

which generalizes in a straightforward way the well-known steady-state equation of the plane-wave theory. In Sec. VI
we will show that Eq. (2.6) remains valid even beyond the case of a degenerate family. Let us now introduce the func-
tional

V= f deaf dpp[IF(p, y)I 2Cy(p)in[i+6, +IF(p—, y)i ]J,

where it is understood that the field F is given by Eq. (2.1)
or (2.2). Thus, V is in fact a function of the mode ampli-
tudes fbi; and of their complex conjugates f *I, (or,
equivalently, of the mode amplitudes g &,

and of their
complex conjugates g *&, ) with 2p + l =q, i = 1,2.

By using Eqs. (2.1) and the orthonormality of the

av
af„*„

Similarly, the complex conjugates of Eqs. (2.4) read

(2.8)

modes 3
&, , one verifies easily that the stationary equa-

tions (2.4) can be written in the form
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BV
r)fpi|

(2.8')
principle is obtained if one introduces the cubic approxi-
mation, valid near the laser threshold, which consists in
replacing

In the same way, the steady-state equations for the ampli-
tudes gp/; can be reshaped in the form

OV av
~gp// gp/i

(2.9)

Hence the stationary solutions correpond to the station-
ary points of the functional V, which therefore plays the
role of a generalized free energy in this system, which lies
far from thermal equilibrium. A necessary condition for
the stability of a stationary solution is that it corresponds
to a minimum of V; this condition becomes sufficient in
the good cavity limit k « @II,yj in which the atomic vari-
ables can be adiabatically eliminated by setting
r)P/Bt =dD/dt =0 in Eqs. (2.3b) and (2.3c) so that one
obtains the set of equations for the modal amplitudes

dfi; „.,
av

dr Qf *i,
(2.10)

dv, av df, i; av df,*i;dr, df „dr df*„dr.

together with their complex conjugates; the normalized
time ~ is equal to ~t. In the case k &&ylI, yj one can ex-
clude the possibility of instabilities which lead to the on-
set of spontaneous oscillations because V is a monotoni-
cally decreasing function of time. As a matter of fact, we
have

1 1

I+~'+IF(p, q)I' I+a'
IF(p, q )I'
(I+6 )

(2.12)

in Eq. (2.6) and, correspondingly, in approximating the ln
term in the potential (2.7) as follows:

in(1+6'+ IF(p y)l')

1. 1+~ + IF('~)l'--' IF('~)l'
(I+a'P 2 (I+a')" (2.12')

F~F*; (2.13a)

The functional V in the cubic approximation is analyti-
cally calculated in Ref. 6 for the case 2p+l =2 as a func-
tion of g„gal, lg3I, 8&+03, where 92 and i93 are the
phases of the amplitudes gz and g3 corresponding to the
two doughnut modes of the family (the phase of g, is set
equal to zero by definiteness). The expression of V shows
immediately that it has a minimum for 02+ 03=~; as we
have shown in Sec. III B of I, this result remains true also
beyond the cubic approximation, because all the stable
multimode stationary patterns of the case 2p + l =2 have
02 + 03 7T as the numerical analysis shows.

It is important to observe the symmetry properties of
the generalized free energy (2.7). It is clear that the value
V does not change if one performs the following opera-
tions:

(a) phase conjugation

dV
d7.

2
Bv

p, lief pl,i

&0 (2.1 1)

so that, by using Eqs. (2.10) and their complex conju-
gates, we obtain

(b) parity transformation

(c) rotation

(2.13b)

The absence of oscillations arises from the fact that all
the interacting modes have the same frequency, so that
frequency competition is completely eliminated.

In the case of a frequency-degenerate family of modes,
as we are considering here, the phenomenon of coopera-
tive frequency locking is in principle not necessary to
generate stationary transverse patterns, simply because
the modes have by definition an equal frequency. It must
be kept in mind, however, that in real lasers, due to the
residual asymmetries of the cavity, the modes of the fami-
ly are in general not exactly degenerate in frequency',
hence the cooperative frequency locking plays a role in
synchronizing the modal frequencies. In addition, the
locking process fixes the relative phases of the modes in
the stationary patterns, which are selected according to
the variational principle dictated by the generalized free
energy V. As a matter fact, this principle determines the
values of the moduli If i; I

or lg i;I of the modal ampli-
tudes in the steady states, as well as their relative phases.
In order to find the stationary states, it is essential to al-
low for complex values of the amplitudes f i;, because in
all multimode stationary solutions at least one of the rela-
tive phases is di6'erent from zero.

A simple example of application of the variational

0'+ 0'0 . (2.13c)

f dip f dp

pl

F�(p
y) I

in Eq. (2.7) must be replaced by

f "dv f "dppap)IF(p, y)l', (2.14)

This implies that if F(p, qr) is a stable stationary state, all
the configurations obtained by performing one of the
operations (2.13) correspond to other stable stationary
states, for the same values of the parameters.

It must be noted that there is no translational symme-
try even in the case of a fiat pump profile y(p)=1 (i.e. ,
P~ ~), despite the fact that in this case the potential V
does not change under this operation. As a matter of
fact, by performing a translation, one obtains a
configuration of the field that can no longer be expressed
as a linear combination of the modes of the frequency-
degenerate family.

In the resonant case 6=0, the generalized free energy
V can be easily extended to include the case of radially
dependent losses that can simulate the presence of an
aperture (compare Ref. 36 in I). As a matter of fact, the
term
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where the function g(p) describes the radial distribution
of the losses.

We note that the potential V is directly a functional of
the field F, so that its expression (2.7) does not depend on
the particular choice of Gauss-Laguerre or Gauss-
Hermite modes as the basis.

The presence of the generalized free energy V becomes
especially interesting if one includes noise in the descrip-
tion, as is done in Ref. 6. As a matter of fact, if the noise
is additive one can immediately obtain the stationary dis-
tribution for the modal amplitudes.

y6 6;,6,;, , (3.1)

where y is the normalized amplitude of the incident field,
which is assumed real for definitess. Equations (2.3b) and
(2.3c) remain unchanged.

Correspondingly, in the expression of the generalized
free energy (2.7) one must add the contribution

y f dq f dppA , , (p, q)F(p—,—y)+cc , (3. 2. )

which, using Eq. (2.1) and the orthonormality of the
modes A~&, , becomes equal to

(3.3)

With this inclusion, the steady-state equations have still
the form (2.8) also in the presence of the injected field.

We note that the same considerations hold if we con-
sider, instead of an amplifying medium, a passive absorb-
ing medium, as in the standard configuration of optical
bistability. In this case we must add the injected field
and set g(p) = —1 in the equations.

In both the active and passive cases, the injected signal
introduces a breaking of the cylindrical symmetry if the
mode p l i is not symmetric.

IV. SPATIAL MULTISTABILITY

A very interesting phenomenon that emerges from our
investigations is that there are regions of the parameter
space of the system in which two or more stable station-
ary states coexist. This means that for such values of the
parameters the system displays two or more distinct at-
tractors in its phase space, and according to the initial
conditions the system approaches one or the other attrac-
tor.

The simplest example of this phenomenon is provided

III. THE CASE OF AN INJECTED SIGNAL

Throughout this paper, with the exception of this sec-
tion, we assume that the laser is running freely. Here,
however, we show briefly that our treatment can be easily
generalized to the case in which the system is driven by
an external coherent field (laser with injected signal). Let
us assume for the sake of simplicity (a) the resonant con-
dition 6=0, (b) that the input field has a frequency coo
equal to that of the laser, and (c) that it has the transverse
configuration of a mode (p, l, i) belonging to the
frequency-degenerate family.

In the right-hand side of the dynamical equations (2.3a)
one must add the term

by the case 2p+ l = 1, in which the two doughnut solu-
tions p =0, l = 1, i = 1,2 coexist for all values of the pa-
rameters for which they are above threshold. ' The two
doughnut solutions have the same transverse intensity
configuration, but different field configurations, which are
obtained from each other by performing the transforma-
tion (2.13b). By using the astigmatic detection tech-
nique, one transforms different field patterns, which are
obtained from each other by the transformation (2.13b),
into distinct intensity patterns, so that one can distin-
guish, for example, the two doughnut configurations.
For instance, in the case 2p+l =1, the two doughnut
configurations are transformed in the Gauss-Hermite
modes TEM&o and TEMO& respectively.

In the case 2p +l =2, there is a region of the parame-
ter space where the four-hole (4H) pattern coexists with
the oval, and another domain where the 4H coexists with
the doughnut patterns. With respect to Fig. 5 of I, the
4H-oval domain lies in region 4H-O, while the 4H-
doughnut region is region D-4H.

In both cases, one has for the first time the
phenomenon of bistability between different intensity pat-
terns. However, from the viewpoint of the field, one has
an effective situation of tristability, because for the
doughnut and oval configurations using the astigmatic
detection technique one can distinguish the two different
field configurations connected by the transformation
(2.13b). Of course, in presence of cylindrical symmetry,
all patterns can be arbitrarily rotated around the origin,
and therefore we do not consider as different the
configurations that are obtained from one another by ro-
tation. If, however, one introduces into the system a
small rotational asymmetry, one can fix the position of
the 4H pattern, for example, by setting one of the sides of
the square, formed by its four phase singularities, parallel
to the axis of the astigmatic lens. In this case, one has
the possibility of two different stationary field
configurations for the 4H pattern, which can be obtained
from each other by the parity transformation (2.13b).
Thus, by using the astigmatic technique one can distin-
guish four different field patterns, which produces a case
of tetrastabi li ty.

In the case 2p+l =3 the numerical analysis of Sec.
III C of I shows the existence of several domain of multis-
tability between different intensity patterns (see Figs. 15
and 16 of I). In particular, in the narrow shaded region
of Fig. 16 four different intensity patterns coexist, with 3,
5, 7, and 9 phase singularities, respectively.

It must be noted that the phenomenon of spatial
multistability is basically different from what is usually
meant by optical multistability. As a matter of fact, in
ordinary optical multistability one has that the system
under identical conditions is able to produce outputs of
completely different intensity. In the case of spatial
multistability, on the other hand, the system produces—
again under identical conditions —outputs that differ in
their transverse configuration much more than in their
total intensity.

We believe that the phenomenon of spatial multistabili-
ty can find useful applications in such fields as, for exam-
ple, optical information processing. For instance, one
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can conceive of the construction of optical associative
memories based on the principles elaborated here; this
would represent a concrete realization of the general
scheme recently formulated by Haken and collabora-
tors. ' This point will be elaborated in a separate publi-
cation.

V. BEYOND THK CASK
OF A FREQUENCY-DEGENERATE FAMILY

where

—2C f"dc'f "dp PAp«(p, cp)P(p, cp, t)
p p

(5.6)

Eq. (5.1) can be reformulated as the following set of equa-
tions for the modal amplitudes fp«'.

dfpl = —k (I i b—, '+ i ap, )fp„

We drop now the assumption that the envelope F is
given by a superposition of the modes of a frequency-
degenerate family. Precisely, we now assume that the
reference frequency is the mode-pulled frequency
given by formula (2.5) of I with co =too, where coo is the
frequency of the fundamental mode p =I =O. In Ref. 4,
by introducing an appropriate set of assumptions, we de-
rived the following time evolution equation for the en-
velope F (p, cp, t):

BF .a
Bt

= —k 1 id, ' i —(
—'—V ——p +1)

a CgpI COp

a = —(2p +1)=pl k
(5.7)

A. Stationary-intensity solutions
and cooperative frequency locking

The stationary-intensity solutions are governed by the
phenomenon of cooperative frequency locking. ' They
have the form

and copI denotes the frequency of the modes Aph;, which
does not depend on the index i.

X F (p, cp, t ) 2CP (p, c—p, t ) (5.1)

F(p, cp, t) =exp( i 6t)F&—(p, cp),

P (p, y, t) =exp( i6t)P&(p—, q&),

D(p cp t)=DS(p cp)

(5.8a)

(5.8b)

(5.8c)
where V'~ is the transverse Laplacian

1 () 1 c)

~p P ~P p
(5.2)

a is the frequency separation between the modes p =0,
I =0, and p =1, / =0, measured in units of the cavity
linewidth k, and b, ' is given by Eq. (2.9) of I with q =0.

Cgp COp CO~ ~p
Ql

k yq
(5.3)

Equation (5.1a) must be coupled with the atomic equa-
tions

where 5 denotes the frequency offset between the com-
mon oscillation frequency co&, cooperatively selected by
the modes in the locking process and the reference fre-
quency Qp. By following the same procedure outlined in
Sec. VII of Ref. 10, and using Eqs. (5.4), (5.5), and (5.7),
one can derive from Eqs. (5.1) the formula

6= k7 l Xp, l, i pl I~pli I

k +)'i y, , l„ lf, «
I'

(5.9)

which, using Eq. (2.5) of I (with co replaced by coo) and

Eq. (5.7) can be rephrased as a formula which gives the
comxnon oscillation frequency co& in the cooperatively
frequency-locked state:

BP =y i [F(p, cp, t )D (p, cp, t) (1+i b, ')P (p, cp, t) ], —(5.1')
~P, l I Ph & PhIf

(5.10)

with

kQ)~ +Q~copr

k+ (5.11)
(5.1")

Equations (5.1) include all the modes of the cavity which
correspond to a given f]Ixed value of the longitudinal in-
dex of the modes. By introducing the expansion

Equation (5.10) states that the common oscillation fre-
quency is given by the average of the frequencies of the
modes [pulled by the atomic line according to the mode-
pulling formula (5.11)] weighted over the distribution

If~«I of the intensities of the various modes. Equation
(5.10) generalizes to the case of a cavity with spherical
mirrors the result obtained in Ref. 10 for a Cartesian cav-
ity geometry.

(5.4)F(p, cp, t) = g fp«(t) Apl, (p, cp),
p, l, i

where the sum is extended to aII the values of the indices

p and 1 (p, 1 =0, 1,2, 3. . . ), and taking into account the

identity B. Connection with the case of a frequency-degenerate family

BD yli[Re[F*(p, q, t)P(p, cp, t)]+D(p,cp, t) y(p)] . —

(„'V~~—p +1)A „.= —(2p+1)Ap„, (5.5)
If we consider only the amplitudes fp«with 2p +1 =q

Axed, the frequency locking is automatically assured be-
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cause all the modes have the same frequency co .
From Eqs. (5.10) and (5.7) the common frequency of

oscillation of the modes is now

kco~ + p&cx)&
~s ~o+

k+y~
(5.12)

It is easy to verify in this case that the set of equations
(5.6) and (5.1') and (5. 1") is completely equivalent to the
equations (2.3) that we used to describe the frequency-
degenerate family.

In fact, when we consider only the modes with
2p + l =q, the quantity ka

&
represents the difference

ai~ —
coo [see Eq. (5.7)]. Hence, using the definition of b,

[given by Eq. (2.9) of I] and Eqs. (5.3) and (5.12), we ob-
tain

a' —a„= o ~o

k k k

(5.13)

cc)~ coo
Ql (5.14)

If we now make the change of variables

F(p, cp, t) =exp( i5t)F'(p—, y, t),
P (p, y, t) = exp( i ot)P'(p, y, t)—,

(5.15a)

(5.15b)

we observe, with the help of Eqs. (5.13) and (5.14), that
the equations for F', I", and D derived from Eqs. (5.6)
and (5. 1') and (5. 1")are identical to Eqs. (2.3).

VI. LASER HYDRODYNAMICS

In this section, we perform a first step in the direction
of generalizing the results of this paper and of I beyond
the case of a frequency-degenerate set of modes. In doing
that, we will reshape the laser equations in a form which
is reminescent of the structure of the hydrodynamical
equations. This formulation will allow us to derive a
Bernoulli-type equation which governs the motion of the
phase singularities in the transverse plane, similar to the
case of a compressible Auid with vortices.

Even if the following analysis can be extended to the
general case, we now perform the adiabatic elimination of
the atomic variables, which is valid in the "good cavity"
limit k «y~~, yz. We set the time derivatives equal to
zero in the atomic equations (2.3b) and (2.3c); thus by in-
serting Eq. (2.11) of I (with b, replaced by b, ') into Eq.
(5.1), we obtain

In order to reformulate Eq. (6.1) in the form of hydro-
dynamical equations, "we introduce the quantities [com-
pare Eqs. (2.19), (2.20), and (4.21) of I]

a~=IFI', v= —Va, (6.3)

where o. plays the role of the density of a Auid in motion
and v that of the velocity field, consistently with the anal-
ogy of the laser with a fluid developed in Sec. IV of I
[note, however, that o. and v defined by Eq. (6.3) are adi-
mensional]. Clearly the vector field v is orthogonal to the
equiphase lines. With some algebraic manipulations, Eq.
(6.1) and its complex conjugate can be cast in the form

Ba +V (o.v)= —2o 1— 2Cy
a7. 1+(b,') +o. (6.4)

= ——'(ve)'+ ' v' '"+a
a~ 8 8 i /2

a( i 2Cyb, '

I+(b, ') +o (6.5)

cl7j

ai 2
+ '(Vri) P=p(—t) (Be—rnoulli's equation), (6.7)

with p an arbitrary time-dependent function, as a conse-
quence of the fact that w=VXv=0 over the transverse
plane. Such a result still holds also for the singular veloc-
ity field described by Eq. (4.15) of I, which is a pseudogra-
dient field due to the presence of the contribution V/3. In
this case il is simply replaced by (q/2m)C&=il+(q/2ir)13
[see Eqs. (4.19) and (4.20) of I], which is multivalued due
to 13. Then we have (by setting p =0)

= —~ (VC )'+P
Bt 4m

(6.g)

where the spatial derivatives are performed with respect
to the spatial coordinates normalized to the beam waist
ur. We recall that it is convenient to consider the vectors
in the full three-dimensional space, taking into account
that o. and v do not depend on the longitudinal coordi-
nate z.

Next, let us show the connection with the case of hy-
drodynamics. Let us consider the Euler equation for the
velocity field v of the Auid

Bv = —(v V)v+VP
at

= —
( V X v) X v —

—,
' Vv +VP,

where P is the pressure term. In the case that v=vil,
with il a smooth function over the transverse plane (see
Sec. IV of I), Eq. (6.6) can be integrated (Bernoulli's
theorem) to give the following equation for il:

a~ 2
= —[1 id, ' —i—( —'Vi —p + 1 )—]F

(1—i 6')F
1+(~ )'+~F~' '

where we have introduced the normalized time

(6.1)

(6.2)

which holds in all points in the transverse plane with the
exception of the singularity points with nonzero vorticity
r=r . Notice that the present case of Auid with vorticity
confined to a discrete set of points is the simplest possi-
ble, since no information is required about the interaction
between the Auid and the vortex cores, i.e., the regions
where m&0. Models where the vorticity field is distribut-
ed over finite regions instead of points involve further
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equations that take into account the dynamics of the de-
grees of freedom describing the vortex-core inner struc-
ture.

Now, recalling that the velocity field is coupled to the
mass density scalar field o. via the equation

in the case of a frequency-degenerate family.
On the other hand, we see that Eq. (6.5) has the same

form of the Bernoulli equation (6.8) provided one intro-
duces the identifications

Bo +V (ov)=0
at

(6.9)
2 2Cp a Vz iy2+ a g + a(1 2) 2CX~

32tr' 4 2 1+(b,') +o.

we can compare Eqs. (6.4) and (6.5) with Eqs. (6.9) and
(6.8) respectively. The optical equation (6.4) differs from
(6.9) because of the nonvanishing right-hand side which is
originated by the real part of 1 —2CP, that plays the role
of a dissipative term in the Maxwell equation (5.1). This
prevents the quantity

f dP J dppo, (6.10)

which represents the total mass, to be a conserved quanti-
ty for the optical Quid dynamics as in the hydrodynami-
cal case. At steady state, by integrating both members of
Eq. (6.4) all over the transverse plane, we obtain for (6.10)
the expression

and
(6.12)

q= —a,
2

(6.13)
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where P represents the pressure term for the optical fiuid,
which turns out to be o. dependent. Hence the velocity
potential 4 no longer evolves independently of 0. and Eq.
(6.8) couples with Eq. (6.9) via the pressure P(c7, V cr).

We hope that the analysis of this section will provide a
general framework for the discussion of the relation be-
tween optical and hydrodynamical turbulence.

(6.1 1)

which generalizes the steady-state equation (2.6) obtained
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