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We analyze the interaction and the competition of a set of transverse cavity modes, which belong
to a frequency-degenerate family. The laser turns out to be able to realize several different station-
ary spatial patterns, which differ in the transverse configuration of the intensity or of the field and
are met by varying the values of the control parameters. A striking feature that emerges in almost
all steady-state patterns is the presence of dark points, in which both the real and the imaginary
part of the electric field vanish and such that, if one covers a closed loop around one of these points,
the field phase changes by a multiple of 2~, which corresponds to the topological charge of the
point. We show in detail the analogy of these phase singularities to the vortex structures well known
in such fields as, for example, hydrodynamics, superconductivity, and superAuidity. In our case, at
steady state, these singularities are arranged in the form of regular crystals, and the equiphase lines
of the field exhibit a notable similarity to the field lines of the electrostatic field generated by a cor-
responding set of point charges. We analyze in detail the patterns that emerge in the cases
2p+l =2 and 2p+l=3, where p and l are the radial and angular modal indices, respectively, and
we compare the results with the experimental observations obtained from a Na2 laser. The observed
patterns agree in detail with those found by theory; in particular, they exhibit the predicted phase
singularities in each pattern. The transitions from one pattern to another, that one observes under
variation of the control parameters, basically agree with those predicted by theory.

I. INTRODUCTION

The analysis of temporal, spatial, and spatiotemporal
phenomena is the central theme in the broad field of non-
linear dynamical systems. In the case of nonlinear optics,
the last 15 years witnessed very extensive investigations
of the temporal effects such as, for example, the onset of
spontaneous oscillations in the output intensity emitted
by a cavity filled with a nonlinear material, quasiperiodic
or chaotic behavior. ' One of the major results in this
framework was the experimental observation of Lorenz-
like chaos in far-infrared (FIR) lasers. The dominant in-
terest in the time aspects was due mainly to the use of the
plane-wave approximation, which assumes the uniformity
of the electric field in the planes orthogonal to the direc-
tion of propagation of the radiation beam. This approxi-
mation drastically simplifies the mathematical complexi-
ty of the models used to describe nonlinear optical sys-
tems, but, on the other hand, it eliminates all the spatial
effects that may arise in the transverse directions. It is
most interesting, therefore, to eliminate the rigidity im-
posed by the plane-wave approximation, because one can
expect to find in optics phenomena similar to those which

are familiar in other fields such as, for example, nonlinear
chemical reactions, hydrodynamics, and biology. In
these fields the spatial effects are due and are controlled
by diffusion, whereas in optics the role of diffusion is
played by diffraction.

Apart from a number of pioneering works in the
1960s, " the systematic investigation of transverse
effects started in relatively recent times. It was initially
devoted to passive systems' ' and only later focused
also on laser systems. ' Two special issues on trans-
verse phenomena in nonlinear optical systems will appear
soon in the Journal of the Optical Society of America.

The onset of spatial and spatiotemporal phenomena in
laser is governed by the interaction and competition
among the modes of the empty cavity, which is in turn
controlled by the spatial configuration of each mode with
respect to that of the available gain and of the loss profile,
and by the different frequency of each mode. In general,
we can distinguish three regimes of operation in the laser.

(i) The single-mode regime, in which one transverse
mode dominates over the others and imposes its frequen-
cy and its spatial configuration.

(ii) The standard multimode regime, in which at least
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two transverse modes give a significant contribution to
the output field and, because of their different frequen-
cies, interfere with one another, giving rise to an output
intensity which oscillates in time, also with respect to the
transverse configuration. According to the number of
competing modes, the oscillations may be periodic, quasi-
periodic, or chaotic. From a spatiotemporal viewpoint,
the behavior can vary from simple to apparently very
complex. The issue of complexity, and the possible rela-
tions with spatio-temporal turbulence, are presently a
matter of investigation.

(iii) The cooperatively frequency-locked multimode re-
gime, ' ' ' in which at least two transverse modes con-
tribute significantly to the output field, and lock to a
common frequency with which they oscillate in a syn-
chronized way. The locking concerns also the relative
phases of the modes, so that the output intensity has a
stationary transverse configuration, exactly as in the case
of the single-mode regime. The common oscillation fre-
quency, cooperatively selected by the modes, corresponds
to the average of the modal frequencies, weighted over
the intensity distribution of the modes in the stationary
state. The prediction of the phenomenon of cooperative
frequency locking has received experimental confirmation
recently.

In this joint theoretical-experimental investigation we
focus on the case of a ring laser with spherical mirrors
and with cylindrical symmetry around the laser axis. We
assume conditions such that the gain line can excite only
a frequency-degenerate family of Gauss-Laguerre modes,
i.e., the modes such that 2p +l =q with q fixed, where p
and I are the radial and the angular index of the modes.
In this condition there is no frequency competition
among the modes, so that the phenomenon of cooperative
locking is necessary for the formation of stationary states
only in the sense of producing the phase locking.

We analyze in detail the cases q =2 and 3, in which the
competition involves three or four modes of the empty
cavity, respectively. We find that the laser is able to real-
ize a number of different stationary spatial patterns that
are met by changing the values of the control parameters
such as, ' for example, the pump parameter or the width of
the pumped region. It must be noted that these station-
ary configurations of the laser must not be confused with
"modes of the active resonator. " As a matter of fact, in
the empty resonator, the Gauss-Laguerre modes can be
linearly superimposed in all possible combinations,
whereas in the filled cavity, each stationary state is an at-
tractor in the phase space of the system, such that the
system approaches one or the other of these attractors,
without possibility of realizing any linear combination of
them. The variation of the control parameters induces
continuous and discontinuous transitions among the
different transverse patterns which are found both in the
numerical computations and in the experimental observa-
tions, with a very satisfactory qualitative agreement be-
tween theory and experiment. An example of such tran-
sitions is the process of spontaneous breaking of the cy-
lindrical symmetry theoretically predicted in Ref. 23 and
experimentally observed recently.

In the process of transverse pattern selection of the

laser field, the phase of the envelope of the electric field

plays a crucial role. A striking feature in the laser pat-
terns, which we calculated and observed experimentally,
is the presence of isolated points in the transverse plane
which are characterized by the following features.

(a) In correspondence to these points both the real and
the imaginary parts of the electric field vanish, hence
these points appear as dark spots in the laser-beam sec-
tion.

(b) Around each of these points the modulus of the
electric field raises from zero in the form of an inverted
cone with a more or less steep gradient.

(c) If one performs a closed counterclockwise loop
which surrounds one of these points, the phase of the en-
velope of the electric field changes by a quantity equal to
+2am, where m is a positive integer.

The phase variation of +2~m, which is the phase-
gradient circuitation, implies that the electric-field phase
is a multivalued function and the point in question is a
singularity of the phase. In the literature, +m is called
"topological charge. " This nomenclature arises from the
striking similarity of the phase gradien-t field lines (in the
present case the phase is that of the electric field) with the
field lines of the magnetic field generated by a set of
straight wire currents. The circuitation around the wires
on a reference transverse plane is the topological charge
of the plane punctured by the wires. This type of exotic
configurations of the field is well known in condensed-
matter physics, where the onset of configurations with
defects in the medium leads to states of the system which
are thermodynamically favorable. Defects are also called
"topological excitations, " since they describe a spatial
complexity of topological type. They configurate as
vortices in superAuid media, spin vortices in magnetic
spin systems, and dislocations in crystals, ' and corre-
spond to singularities of the phase of the order parameter
which locally describes the physical state at each point of
the medium. In the present context, the electric field

plays the role of a complex-valued order parameter
whose phase singularities are mathematically described,
by the same analytical structure of two-dimensional
pointlike vortices in hydrodynamics.

The properties (a)—(c) are fulfilled also in the "optical
vortices" recently discovered by Coullet and collabora-
tors in their two-dimensional analysis of the model for-
mulated in Ref. 19. A major difference arises, on the oth-
er hand, from the fact that the vortices of Ref. 33 can be
generated in any position of the transverse plane, whereas
the singularities which appear in the stationary
configurations of our laser system are located in precisely
defined positions, even if they are able to move during the
transient evolution towards the stationary configuration.
In addition, in the case of the structures that we analyze,
the equiphase lines of the laser field exhibit an impressive
similarity with the field lines of the electric field generat-
ed by a set of point charges; this similarity is absent in
the case of the optical vortices of Ref. 33. For these
reasons we prefer to designate with the name "phase
singularities" the dark points in our laser patterns, in-
stead of using the nomenclature "optical vortices. "

A dominant feature of our phase singularities is that
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they are arranged in the form of regular geometric ar-
rays, i.e., crystals which are reminescent of the ionic crys-
tals recently realized in ionic traps. For this reason we
call these structures phase singularity crystals.

In Sec. II we introduce the dynamical equations which
govern the competition among the modes of a frequency-
degenerate family and calculate the stationary solutions
corresponding to a single Gauss-Laguerre mode as well
as the two-mode (also called doughnut) stationary solu-
tions and discuss their stability; finally, we define the no-
tion of phase singularity.

Section III is devoted to the description of the dift'erent
patterns that arise in the case of the simplest frequency-
degenerate families, namely q =1, 2, and 3. We specify
the region in the parameter space where each pattern ap-
pears, and the continuous and discontinuous transitions
from one pattern to another that one finds when the con-
trol parameters are varied.

In Sec. IV we illustrate in detail the analogy between
the phase singularities that we find in the transverse
configuration of the electric field and the well-known vor-
tex structures in Auids; on the basis of the concept of or-
der parameter, this analogy is extended to other fields as
superconductors, superfluids, and so on.

Section V is devoted to the experimental results; we de-
scribe the laboratory setting, illustrate the experimental
observations, and compare them with the theoretical pre-
dictions. Some concluding remarks are given in Sec. VI ~

II. MODE-MODE COMPETITION
OF A FREQUENCY-DEGENERATE FAMILY OF MODES

We consider a ring laser with spherical mirrors and as-
sume that the length of the active region is much smaller
than the Rayleigh length of the cavity. This cir-
cumstance allows us to neglect the longitudinal variations
of the beam width and field phase along the active sam-
ple. Actually this restriction is not essential for the na-
ture of the results that we will derive and can be easily
dropped; however, we prefer to use it in order to keep our
calculations as simple as possible. Hence, for a cylindri-
cally symmetrical cavity, the transverse profile of the cav-
ity modes is described by the functions

broadened system of two-level atoms with transition fre-
quency ~, and linewidth y~, and that the excited region
has a Gaussian transverse shape of radius r; i.e., the
transverse configuration of the equilibrium population in-
version is described by the function

y(p)=exp( —2p /li& ), $=2r /w . (2 3)

We observe that our choice of the Gauss-Laguerre modes
(2.1) as the basis is in part arbitrary; we might use, alter-
natively, the Gauss-Hermite modes TEM„, or the
Gauss doughnut modes 8 I; introduced in Sec. II C. The
fact that the pump profile is cylindrically symmetrical
makes it more convenient to use the Gauss-Laguerre or
Gauss doughnut modes, because a subset of the modes
(precisely those with l =0) are cylindrically symmetric.

A. Nonlinear dynamical equations and steady-state equations

An important property of the Gauss-Laguerre modes is
that their frequency depends on the transversal mode in-
dices p and l via the combination 2p +l, a situation that
produces mode degeneracy. We assume now that the
atomic line is near resonance with a frequency-degenerate
family of transverse modes corresponding to a given
value of the longitudinal modal index, and such that
2p +l =q, with q fixed. We call co the common frequen-
cy of the modes of the family. We suppose, in addition,
that all the other cavity modes either suffer from large
losses, or their frequency separation from the atomic line
is much larger than the atomic linewidth; therefore only
the modes belonging to the frequency-degenerate family
take part in the laser emission. Hence the laser field has
the form

E(p, ip, z, t) ~F(p, q&, z, t)exp( i' t+—ik z)+c c , (2..4.)

where F is the normalized slowly varying envelope,
k =co /c is the common wave number of the modes of
the family, and co is the mode-pulled frequency

cog k +coq g j
COq— (2.5)

7l
k is the cavity damping constant

2
A 0(py)= L (2p )e2'

cT
(2.6)

Api;(p, y)= —(2p')' '= 2 p f

(p +l)!

1/2 where T is the transmissivity coefficient of the mirrors
and X is the total length of the ring cavity. In turn, the
envelope F can be expanded as follows:

cos(ly), i =1
XL(2p)e X'.

(i )
(2.1)

F(p, gp, t) = g' fpi, (t) Api&(p, qr) &

p, l, i
(2.7)

where p =0, 1, . . . is the radial index and l =0, 1, . . . is
the angular index, p denotes the radial coordinate
r =(x +y )'~ normalized to the beam waist w, and L
are Laguerre polynomials of the indicated argument.
The functions 2

&, obey the orthonormality relation
2.7r oo

dP P Apl!(P& 0') Ap I'i (P&9') &pp'~ll'&ll' .
0 0

We assume that the active medium is a homogeneously

where the prime indicates that the sum is restricted to the
modes of the family. The modal amplitudes f i; obey the
time-evolution equations

dt
= —k (1 ib)f—

2C I d'Pf PPApii(P&V') (P&'P&t)

(2.8)
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5 is the detuning parameter

q q a qCO 6) CO~ CO

k y~

C is the pump parameter

aI.
2T

(2.9)

(2.10)

=yi[F(p, tp, t )D (p, y, t) —(1+iA)P (p, y, t)],

(2.8')
I

~,i;(p V»~, I;(p V»

where u is the gain parameter per unit length of the field
and I. is the length of the active region; I' is the normal-
ized slowly varying envelope of the atomic polarization.
Equation (2.8) must be coupled with the atomic Bloch
equations, which read

aD
)'11[Re[F (P p t)P(P m t)]+D(P m t) X(p)I

I+6, + iF(p, qr)i
(2.11)

(1 i b, )F(p—, y)
1+~'+iF(p, q )i'

so that Eqs. (2.8) become

(2.12)

(2.8")
where D is the normalized population inversion and yii is
its relaxation rate. In Eqs. (2. 8') and (2. 8") it is under-
stood that F is given by the expansion (2.7); thus Eqs.
(2.8) form a self-contained set of equations for the vari-
ables f~&;, P and D. In the steady state one obtains
from Eqs. (2. 8') and (2. 8")

Of course, Eqs. (2.12) admit the trivial stationary solution

f &;
=0 for all the choices of the indices p, l, and i in the

family.

B. Single-mode stationary solutions

The set of stationary equations (2.12) admits also exact
single-mode solutions, in each of which only one trans-
verse mode is excited, while the amplitudes of all the oth-
er modes are exactly equal to zero. Thus the solution in
which the mode (pli) is excited obeys the steady-state
equation

2CI(", =(I+6, )

I df' f dpp~ I (P m)x(P) (2.14)

In the limit of a fiat pump profile [i.e., for g~ ~, which
implies g(p)=1], using Eq. (2.2) we obtain immediately
that all single-mode stationary solutions have the same
threshold 2C,h,

= (1+b. ). On the other hand, the situa-
tion of f finite favors the modes of the family which lies
nearest to the laser axis. For example, when q is even,
the family contains one cylindrically symmetrical mode
with I =0, which has the lowest threshold.

The cylindrically symmetrical solutions (p0) are stable
beyond threshold for an interval of C values which de-
pends on p and tends to zero as P tends to infinity. On
the other hand, all the asymmetrical single-mode station-
ary solutions are unstable. As a matter of fact, the mech-
anism which determines the stability is spatial hole-

o o 1+6'+ A'„(P,qr)if, I,
. i' '.

which determines the behavior of
i f~l; i as a function of

the pump parameter C, while the phase or foal; remains
aribitrary. The threshold for this solution, which corre-
sponds to the case f I; =0, is given by

;(p v»)x(p»)-

1+b, '+ 2 ' (,q )if, i'
(2.15)

for at least one choice of (p l i)W(pli) belonging to the
family. In the case of the single-mode stationary solution
corresponding to the asymmetrical modes, the instability
condition is already satisfied immediately above the
threshold C =CII'„",given by Eq. (2.14), where

i f~&; i
=0.

For example, the single-mode stationary solution corre-
sponding to the sine mode is unstable against the growth
of the cosine mode, and vice versa.

C. Two-mode stationary solutions

An especially simple class of multimode stationary
solutions is formed by the states which arise from the
combination of the two modes A

&, , i = 1,2, for l &0, with
equal amplitudes

i f~&; i
and a phase difference of +sr/2 or

—m. /2. These two structures have the form
1/2

&~i;(p, y) = — (2p')' '2 pI
(p +l)!

'
1 /2

+ilXL (2p )e ~ e —'+ (2.16)

where the index i =1,2 means that i =1 (i =2) corre-
sponds to the + ( —) choice. Hence they have the same
intensity configuration which corresponds to one or more
rings around the origin; for this reason these structures
are usually called doughnuts. On the other hand, the
field configuration is different for the two states and is not
cylindrically symmetrical. As a matter of fact, the two
patterns (2.16) are obtained one from the other by per-

burning and cross-saturation. The single-mode station-
ary solution (pli) becomes unstable when another mode of
the family (p l i )W(pli) experiences a residual gain which
exceeds the losses; precisely, the instability condition is
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the modulus of g &,
is determined by a state equation

identical to Eq. (2.13), upon substitution of A~&; by ~B~i;~

and f &, by g .
&,

In Eq. (2.13), in the doughnut case, the
integration over cp can be replaced by a factor 2~, be-
cause the integrand is independent of y. The same holds
for the expression (2.14) of the threshold.

When q =2p + l is odd, the doughnut state with l = 1

has a domain of stability immediately above threshold
and becomes unstable when the pump parameter C is in-
creased enough, with the exception of the case q =1,
where the solutions remain stable over all the parameter
space. On the other hand, all the other stationary solu-
tions of the doughnut type, for any value of q, are unsta-
ble immediately above threshold, but become stable when
C is increased, over a suitable interval of C values. The
functions 8 &; obey the orthonormality relation

J

deaf

dppBPi, (p, y)B, ,'(p, y)=5 .5»5, ,' . (2.18)
0 0

D. Phase singularities

With the exception of the symmetrical single-mode sta-
tionary solutions, all other stable stationary solutions
display isolated points in the transverse plane, where
both the real and the imaginary parts of the electric-field
envelope vanish simultaneously, so that these points ap-
pear as dark spots in the distribution of the output inten-
sity. In addition, if one considers a closed counterclock-
wise loop l (Fig. 1) which surrounds one and only one of
these points S, one has that the total variation of the
phase of F over the loop is an integer multiple of 2~; pre-
cisely, if we set

F = IFle'

we have

(2.19)

Re F(S):0

Im F(S) = 0

forming the parity transformation g —+ —y or the phase
conjugation operation.

The doughnut stationary states have the form

(2.17)

AC&= J V4 dl=+m2vr, (2.20)

III. DETAILED ANALYSIS OF SPECIFIC CASES

We shall now consider explicitly the behavior of our
system in the cases 2p + l = 1 (two degenerate modes),
2p +1 =2 (three degenerate modes), and 2p +I =3 (four
degenerate modes), restricting our analysis to the tuned
(b, =0) configuration, and solving the dynamical equa-
tions of our model. In all cases it is possible to use the
basis of cavity modes A~&; [Eq. (2.1)] as well as the basis
of the doughnut modes B~&; [Eq. (2.16)]. The main quali-
tative di6'erence between these two possible choices is
that the intensity profile of all modal functions is symme-
trical in the latter case, It is equivalent to expand the
electric field F(p, qr, t) on either basis. In our description
we choose the basis of the Gauss-doughnut modes B

&;

because they can be stable steady states of the system,
and in addition this choice allows one to discover simple
relations between the amplitudes and the phases of the
modal amplitudes when the laser operates in a multimode
regime. Hence we write at steady state

where m is a positive integer. We call these structures
"phase singularities, " because they correspond to singu-
larities of the vector field V@.

We also call the number +m or —m "charge" of the
singularity; this is a topological charge, as explained in
the Introduction and in Sec. IV. We will also see that
there is a remarkable similarity between the equiphase
lines of F(p, y) and the lines of force of a corresponding
set of point electric charges.

It must be kept in mind that, if one considers the whole
electric field E instead of the envelope F, the equiphase
lines rotate around each phase singularity with an angu-
lar velocity equal to the mode-pulled frequency 8; this
effect arises from the factor exp( ice t—) in Eq. (2.4). Pre-
cisely, the lines rotate clockwise (counterclockwise)
around positively (negatively) charged singularities.

These phase singularity structures are very similar to
the "optical vortices" predicted in Ref. 33, which are re-
lated in the same way to the simultaneous vanishing of
ReF and ImF, and to the property (2.20). On the other
hand, a distinctive feature of the phase singularities that
we find here, with respect to the optical vortices of Ref.
33, is the fact that they are arranged in the form of regu-
lar arrays, as we will see from several examples in the fol-
lowing. Hence we propose to call these structures phase
singularity crystals, a name which emphasizes their simi-
larity, for example, with ionic crystals in traps. It is
noteworthy that, even if the instability which leads to the
onset of multimodal patterns arises from spatial
holeburning, i.e., by a gain mechanism, the process of
pattern formation is dominated by the phase, which gives
rise to the singularities crystals.

F(p, p)= g'g „B„(p,V ),
p, l, i

(3.1)

FIG. 1. In correspondence to point S both the real and the
imaginary part of the electric field vanish. The total variation
of the phase of E over the loop l is equal to an integer multiple
of 2~.

where the sum is restricted to the modes of the degen-
erate family.

Despite the fact that the intensity patterns of both
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2CI+1,
where

(3.5)
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'IT
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d 4 2pe
P P 1+2pe ~x,

(3.3)

where x, =V2/m~ .
~

(' =
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pe px, )

(3.6)
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I =(2C) dp4p
o (1+2 2 —2P 2 2pe x) (3.6')
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(a) —2 8 —4 2(4p —8p +2)e P —8p e P xz 3dp4p, ' yp &O.
0 (1+2P4e —2p X2 )2

(3.14)

~021

&022 =

1/2

2p 2e —
P e + 2i cP

2

7T

' 1/2
1 2

2pe Pe

(3.7b)

(3.7c)

The single-mode steady-state equation for mode A, 0
reads explicitly

(1 2 2)2e 2p
1=2Cf dp4p P, y(p),

1+{1—2p2)2e
—2P &2

(3.8)

while the doughnut solutions obey the stationary equa-
tion

4 —2p
1=2CJ dp2p, y(p),

1+2p4e —2P &2

where x, are the scaled amplitudes
' 1/2

(3.9)

FIG. 4. Equiphase lines for the doughnut pattern (a) case
2p + l = 1, (b) case 2p + l =2. The phase separation between ad-
jacent lines is m/8 in both figures.

io(P V»g)+ o2i(P V»g2

+022(P~ 9')g3 (3.15)

%'e have systematically investigated the modal struc-
ture of the stable multimode stationary patterns in our
system by solving the dynamical equations of the model.
First of all, we must notice that in the expression (3.15)
there is an overall arbitrary phase factor that we select,

Figure 5 shows the regions of stability predicted by Eqs.
(3.13) and (3.14) in the two-dimensional parameter space
(C, f). Line 1 gives the lasing threshold for the
single-mode solution IFig. 6(a)] according to Eqs. (3.11),
while lines 2 and 4 give the instability thresholds
governed by Eqs. (3.13) and (3.14), respectively. The las-
ing threshold for the doughnut solutions lies between
lines 1 and 2, but we have not drawn it because these
solutions are stable only on the right of line 4.

Summarizing, we can say that in region S (Fig. 5) only
the symmetrical A, 0 single-mode steady-state solution is
stable, in regions 4H and O-4H all the three stationary
solutions with the configurations (3.7) are unstable, while
in regions D-4H the A10 solution is unstable and the B02;
solutions are stable.

Therefore we expect that in regions 4H and 0-4H and
possibly in region D-4H some stable multimode station-
ary solution exists, given by a linear combination of the
three modes of the basis:

1/2
2

Igio I,

Ig()2(; i) I,

(3.10a)

(3.10b)

2C

The threshold for the A10 solution is

2C(io) (it' +1)
g (g"+1)

while for the doughnut steady states it is

2C(02') y'(,),2+ 1 )3

(3.11)

(3.12)

—22
( —4p +8p —2)edp4p, y(p) )0,

0 1 + ( 1 —
2p2 )2e

—2P x 2

and the other two steady states are unstable for

' (3.13)

It is evident that 2C,'h, ' 2C,'h, ', where the equality
holds in the limit of fiat pump profile g~ cc.

The analysis of the stability of the single-mode station-
ary states yields the following results: the A10 steady
state is unstable for

C)

1.0
I

1.5
I

2.0 2.5
I

3, 0 3.5

FIG. 5. Case 2p + l =2. Phase-space diagram in the plane of
the control parameters C, g. The abbreviations S, 4H, 0, and
D denote, respectively, symmetrical, four-hole, oval, and
doughnut, and correspond to the patterns shown in Figs. 6(a),
6(b), 6(c), and 6(d), respectively. The letter in each region indi-
cate the stable patterns.
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(a) (b) of this configuration is therefore characterized by the re-
lation

lg2 I

= Ig3 I, (3.17)

FIG. 6. Case 2p + I =2. Transverse intensity distribution for
the stable patterns. (a) Cylindrically symmetrical Gauss-
Laguerre mode p = 1, I =0; (b) the four-hole configuration; (c)
the oval configuration; (d) doughnut.

and its intensity profile is shown in Fig. 6(b). We call this
the four hole -(4H) pattern since it has four black spots in
its intensity profile. The domain of existence of the 4H
mode is the whole region above line 2 of Fig. 5. The tran-
sition from the single-mode state A]o to the 4H-mode
state, which arises at line 2 in Fig. 5, corresponds to the
phenomenon of cylindrical symmetry breaking analyzed
in Refs. 23 and 28. Simultaneously, also the parity sym-
metry y~ —y is broken.

On the other hand, taking as an initial condition a pure
doughnut solution in region D-4H and moving out from
this region, a new pattern arises that has still a close
resemblance to a doughnut, but with some distortion due
to the small contributions of the other two modes. If the
initial state of the system was, for definiteness, a pure
mode Bo2&, the modal composition of the new
configuration is such that

(3.18)

for definiteness, in such a way that the amplitude g& is
real and positive, so that Eq. (3.15) can be reformulated
in the following way:

i 02F(p 0 ) ~ 10(p 0 )gl ++021(p 0 ) Ig2 le

+&022(p, v»lg3le '. (3.16)

Each pattern generates an infinity of other possible pat-
terns by rotation. From expansion (3.16) we note that if
we perform a rotation of an angle yo, this is equivalent to
changing the phases of the amplitudes of the doughnut
modes from 02 to 02+2yo and from 03 to 83—2yo. This
implies that under rotation 82 and 03 can be varied arbi-
trarily, but their sum 02+83 remains fixed. Hence the
structure of each stationary multimode pattern depends
only on the four quantities g„lg2I, Ig3I, and 82+83,
while the orientation of the pattern in the transverse
plane is determined by the particular values of t92 and 03.
In all the rnultimode stationary solutions that we calcu-
lated, we found that 02+83 7T.

The multimode stationary configurations emerge in a
continuous way when one leaves the domains of stability,
that is, region S for the A, o solution and region D-4H for
the doughnut solutions. For example, if one starts from a
pure mode A, o in region S and passes through line 2 of
Fig. 5, the system reaches a new stationary state where
mode A, o is still dominant, but the two doughnut modes
are present, too, with equal weight. The modal structure

The intensity profile of this pattern is shown in Fig. 6(c),
and because of its overall shape we shall refer to it as
oval. The oval exists in the 0-4H region. From the
viewpoint of the intensity the transition from doughnut
[Fig. 6(d)] to oval, which arises on crossing line 4 in Fig.
5, also amounts to a phenomenon of cylindrical symme-
try breaking; it must be kept in mind, however, that the
field is not cylindrically symmetrical in the doughnut
states.

In conclusion, we have four diff'erent kinds of stable
patterns: the A io single-mode solution, the doughnut
solutions, the 4H solution, and the oval solution. The 4H
mode coexists with the two doughnut modes in region
D-4H and with the oval mode in region 0-4H.

Let us now consider the phase singularities and the
equiphase lines of the single-mode stationary solutions.
In the case of the doughnut pattern, there is one singular-
ity in the origin, with an associated charge of +2 or —2
depending on whether we are dealing with a B02, or a
Bp22 mode. The equiphase lines of this structure depart
radially from the origin and look exactly like the case
2p +I = 1 [Fig. 4(b)]. On the contrary, the A, o single-
mode solution does not possess any pointlike phase singu-
larity because the field phase does not depend on y.

The description of the phase singularities in the
multiple-mode configurations requires a more detailed
analysis. Given a general field of the form (3.16), it is
possible to substitute the explicit expression (3.7) for the
modal functions so that by combining the two equations
ReE=O and Imr =0 one finds the following pair of
equations:
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Img2+ Img3
tan(2@) =

Reg3 —Regs
(3.19)

v'2g,
2p

V 2g
&

—cos(2cp)(Regs +Reg3 ) —sin(2@)(lmg3 —Img2 )

The solutions of Eq. (3.19) are four angles:

(3.20)

y=y+k —, k =0, 1,2, 3,
4 4 (3.21)

In Cartesian coordinates (x =p cosy, y =p sing), Eq. (3.21) defines the two perpendicular lines

1
y =tan(y)x, y =—

tan(y)

In turn, (3.20) is the equation of a conical centered at the origin. Therefore it is clear that the system formed by Eqs.
(3.19) and (3.20) has at most four real solutions, which implies that the maximum number of phase singularities of the
degenerate family 2p + l =2 is four.

Upon substitution of Eq. (3.19) into Eq. (3.20), and taking into account that the condition 92+83=~ is always
satisfied in the multimode stationary solutions, we obtain the following equation for the distance p of the phase singu-
larities from the origin:

p+=
2g)

(3.22)

(1—2p )Img& +&2p [cos(2y)(lmg2+ Img3 )+sin(2@)(Reg2 —Reg3 )]
=const .

(1—2p )Reg&+v'2p [cos(2y)(Regz+Reg3)+sin(2&p)(lmg3 —Img~)]
I

Eqs. (3.22) and (3.19) that the 4H solution has four phase
singularities, whose coordinates are

ImF
ReF (3.23)

In order to describe the phase singularities and the equi-
phase lines of the 4H and oval patterns, one has to insert
into Eqs. (3.19), (3.22), and (3.23) the modal composition
of these two patterns.

Let us consider the 4H solution: since the amplitudes
of the two doughnut modes in this pattern are equal, i.e.,
~g2~

=
~g3 ~, it is a straightforward matter to show from

p =p =1/&2, y= +—.+ ' 4 4
(3.24}

They are placed on the vertices of a square (Fig. 7), and
each of them has a charge equal to either +1 or —1;
singularities located on the same diagonal have the same
sign, so that in this case the crystal is neutral. The equi-
phase lines show a close resemblance to the lines of the
electrostatic field generated by a corresponding set of
point charges.

On the other hand, the oval has only two phase singu-
larities; in fact, condition (3.18) implies that only the
equation for p+ admits a solution, the right-hand side of
the equation for p being negative [Eq. (3.22}]. Obvious-
ly, the converse is true if one considers an oval with a
dominant 80~2 doughnut mode. The charges of the phase
singularities are equal in sign, each amounting to +1 or
to —1 depending on the doughnut contribution which is
dominant in the pattern. As in the case of the doughnut
modes, the phase singularity array has a net charge of
+2. The equiphase lines display the expected similarity
to the lines of the electrostatic field generated by two
electric charges of equal sign, as Fig. 8 shows.

We have also performed scans in the parameter space
(C, llj) in order to describe transitions between stable pat-
terns. For example, while keeping f constant, one can
gradually and slowly sweep C, moving from region D-4H
to region S, following the dashed line drawn in Fig. 9,

-0.5 0
X

0.5

FICx. 7. Equiphase lines for the pattern of Fig. 6(b). 1=m/4,
3=3m/4, 5=5m. /4, 7=7m/4.

Phase singularities which lie on the same line have the same distance p+ or p from the origin. The equiphase lines are
determined by the equation
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FIG. 14. Case 2p+l =3, stable patterns. Black areas indicate high local light intensity. (a) Doughnut pattern, p =1, l =1; (b)
doughnut pattern, p =0, l =3; (c), (d), (e), and (f) show the patterns with 3, 5, 7, and 9 phase singularities, respectively.
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and the four phase singularities arrange themselves in
such a way that they form the crystal associated with the
4H solution, with p+=p =1/&2. Thus, the oval-4H
transition is discontinuous.

If we perform the same sweep on the parameter C but
in the opposite direction, we find only the transition from
the 3 single-mode solution to the 4H solution, as pre-10
dieted theoretically in Ref. 23 and observed experimental-
ly. This means that it is possible to have hysteresis
among the 4H, the oval, and the doughnut patterns.

Finally, Fig. 13 shows a view of IFI for the 4H pattern
from below. We see the presence of four inverted cones
centered at the phase singularities, and we note the simi-
larity of these structures with the case of optical vortices,
as it appears from the comparison with Figs. 4 and 5(a) of
Ref. 33.

C. The case 2p +1=3

It is easy to verify that 2C,'„',"~ 2C,'z, ', again the equality
holds in the limit P~ ae.

The linear stability analysis of the doughnut states is
more complicated than in the previous case 2p +I =2 be-
cause of the coupling between the modes; the instability
conditions for each pair of doughnut modes are

[(I, I2)—+4I ]' +I1+I2—2)0, (3.32)

where

22 —22p2( 2 2p2 )2e 2P

o [1+p (2 2p )
—e ~x, 2]

(3.33a)

2 3 -22
2 (2 2)3e 2P

[1+ (2—2p ) e ~ x12]
In this case the nondegenerate family consists of the

four modes

+i
( ) = —(2p')' '(2 —2p')e e+™, (3.26a)111 Pr V

2 3 —4(2 2)3(2 2 2)3 —4P

(3.33b)

B ( )= —(2p )' (2—2p )e e '&, (3.26b)112 P& 0
Xy(P)x, 2,

for the B11,. solutions, and

(3.33c)

(2P») p', +—3t„2 3/2

Bo31(P 9')= ~—
2 )3/2

o32 P 'P

(3.26c)

(3.26d)

22 —22
1=2Cf dp4p, y(p),p(2 —2p )e

1+p (2—2p ) e ~x, 2

(3.27)

while the stationary equation for the other pair B03;
(i =1,2) is

The single-mode steady-state equation for the first pair of
doughnut modes B»; (i = 1,2) reads

36 2 —2p )

[6+(2p ) e ~x34]
(3.34)

for the B03' solutions.
In addition to the doughnut states which we found

analytically, there exist other four stable stationary
states, which are linear combinations of the modes (3.26).
The intensity patterns of these solutions are shown in
Figs. 14(c)—14(f). We call these three-hole (3H), five-hole
(SH), seven-hole (7H), and nine-hole (9H) patterns, re-
spectively.

23 —22
1=2Cf dp4p, y(p)

(2 2)3e 2P

6+(2p ) e ~x34

where x,. are the scaled amplitudes

1/2

I g 1 1 t I r

1/2

lgo3(' —2)l, 1 —3,4.

(3.28)

(3.29)

2C

The intensity patterns of these solutions are shown re-
spectively in Figs. 14(a) and 14(b). The threshold for the
B 1 1 solutions is

(4'+ 1)'
thr 4 ~4+ 2)

while for the B03. solutions the threshold is

2( {03i) ('+1)
thr 8

(3.30)

(3.31)

I

2

FIG. 15. Case 2p+1=3. Phase space diagram in the plane
of the control parameters C and f. The diagram indicates the
domain of existence of the patterns shown in Fig. 14 (see text).
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V v=8„u,+8~v~&0,

whereas the rotational condition is

V X v =e, ( 8 v~
—

B~u„)%0 .

(4.1)

(4.2)

be the velocity field; v is assumed to be rapidly vanishing
at infinity for consistency with the fact that voids have
finite extension. For the sake of comparison with the
laser case, we consider a Cartesian orthonormal basis
Ie,e,e, ] and we assume that v is two dimensional, i.e.,
v=U„e„+U~e~with v„,U~ independent of z.

For a Quid the compressible condition is

A (r) = —g m 1n~z —z.
~

—= — a(r),J4~ J
J

(4.10)

where z =x +iy, z =x +iy .. We remark that the
coeKcients m are required to be integers in order to en-

sure the single-valued state of the order parameter field
%'—which we shall introduce later —over the x-y plane.

The most interesting feature of the scalar field u is that
it can be seen as the real part of the analytic function

where q is a positive real factor with the dimensions of
the vorticity and mJ is a positive or negative integer, is
easily found to be

Equations (4.1) and (4.2) imply that v can be represented
as a sum of an irrotational term and a divergenceless
term:

f (z) = g m ln(z —z ) .
J

(4.11)

v=Vg+VX A,
where g=g(x, y) and A has the form

(4.3)
The points z =z are branching points of f (z). This im-
mediately follows by observing that the imaginary part of

is

A=e, A (x,y) . (4.4)

Hence using the identity V X V X A =V'( V A) —V' A one
obtains

V v=V Vg=V g&0,
VXv=VXVX A= —V AWO,

(4.5)

(4.6)

in[(x —xo) +(y —yo) ]= 1

4m.

satisfies the equation

V'0 =5"'( r —ro) =5(x —xo )5(y —
yo ),

(4.8)

which show that the compressibility and irrotationality of
the Quid are described by the scalar potential g and the
vector potential A, respectively. The quantity V X v is the
uorticity field of the Quid and is denoted by w, whereas
V g describes the distribution of sources and wells in the
space and represents the hydrodynamical counterpart of
the charge distribution in electrostatics. On the other
hand, the condition (4.6) has no electrostatic counterpart,
since the electric field is irrotational. The circulation of v
along a loop y in the plane (x,y) is directly connected
with w through the Stokes theorem:

C = f v dl= f f w dS (dS=e, dxdy), (4.7)

where Sr is the region of the (x,y) plane contained in y;
C describes the rotational activity of the Quid in the re-
gion Sz, i.e., the vorticity in Sz. Therefore, w represents
the density of vorticity of the field v in the plane. Let us
specialize the above discussion to the case when w is a
distribution such that V A is a sum of Dirac 6 functions.
In this case w is nonzero in a discrete set of points in the
plane that corresponds to the points where the 5 func-
tions are centered. Now, recalling that the Green func-
tion on a plane

1 y yJP=lmf = g m 4, 4—:tan
J J

(4.12)

where each phase @ is, of course, a multivalued func-
tion. Therefore N is singular for z =z in the sense that
it is increased by 2~k whenever one goes around the
point z k times. 4 s equiphase lines are identical to
those shown in Fig. 4.

The correspondence between the phase singular points
and the velocity field singular points, where the vorticity
is nonzero, is established as follows. Since f is analytic
for each zAz. , we have the Cauchy conditions

a„a=B,P, a,a = —a.I3, (4.13)

which connect the real part a with the imaginary part /3

of f. This is equivalent to the vector equation [see Eqs.
(4.4) and (4.10)]

VP= —VX(e,a)= VX A .=2~
q

(4.14)

Now, with the help of Eqs. (4.3) and (4.14), the velocity
field associated with a pointlike vortex configuration is
given by

v= Vq+ VP,
2n

which, by using Eq. (4.12), reads

(4.15)

v=V7)+ g mJV4, .

J

N

=Vq —q ym,27T

(y —y )e —(x —x )e

(y —y ) +(x —x~)
(4.16)

with ~v~ ~~ at the phase singular points z =z, . Taking
into account Eq. (4.15), the vorticity in a region S will

be

the solution of the equation C =f vdl= f r/3Vdl, (4.17)

—V A = g q m. 5' '(r —r. ),
J

(4.9) where one can show, by a direct calculation using Eq.
(4.16), that
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f VP d1=2m g'77 mj (4.18)
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with

N+
P+= g m,

—tan
j=1 JX X

+ I=)0 (4.25)
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and the coordinates (x —,y
—

) are the phase singularity
points obtained from the equations ReF =0 and ImF =0,
I-+ are the topological charges of the N+ positively

charged singularities and m are the moduli of the %
negatively charged singularities.

As an example, we can consider the 4H configuration
described in Sec. III, where @ is given by Eq. (3.23),
X+ =X =2, and (x —,y,.

—), j =1,2 are fixed by Eq.
(3.24). Figure 19 shows the difference between @ and the
topological phase P defined by Eqs. (4.24) and (4.25) for
the 4H configuration: one can see that @—I3 is topologi-
cally trivial, in the sense that all phase singularities disap-
pear. Then the role played by the factor ~F~e' is the fol-
lowing: since e'~ contains all the information concerning
the phase singularities, then e' simply represents the
"deformation" which connects the electric-field phase N
to the pure. topological term I3. A, is trivial because the
circulation of VA, (a true gradient involving the compres-
sible condition) is vanishing everywhere.

The further factor ~F~ ensures the exponential decay of
the electric field out of the core of the laser beam, and it
is characterized by the fact that its zeros just coincide
with the phase singularity points.

We conclude by observing that indeed the optical de-
fects that we discovered have the same analytic structure
of pointlike vortices and, upon assuming F as the order
parameter field of the laser, it is possible to get all the
relevant hydrodynamical quantities such as v, w, etc. for
our optical fluid. In the final section of a companion pa-
per, we stress further this parallelism by reducing the
time-evolution equation for F to a pair of hydrodynami-
cal equations; this also allows us to fix the parameter q
for the optical fluid. Leaving for the moment the propor-
tionality constant q unspecified, we plot in Fig. 20 the
field V4 ~v for the patterns shown in Figs. 14(c), 14(d),
and 14(e), respectively.
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FIG. 20. Behavior of the field VN ~ v in correspondence to
the three patterns shown in Figs. 14(c), 14(d), and 14K',e), respec-
tively. The arrows indicate the direction of the field VN in each
point; the length of the arrow is proportional to ~V'@~, i.e., to
Ivl.

In the following we describe an experimental study on
the transverse radiation patterns of a traveling-wave laser
which operates under conditions where various families
of frequency-degenerate transverse resonantor modes can
be excited selectively. The gain medium of the laser con-
sists of sodium dimer (Naz) vapor, optically pumped in a
three-level configuration by an argon-ion laser. One of
the main characteristics of this type of laser is the
velocity-selective optical excitation of the Doppler-
broadened molecular vapor by the pump laser, which
strongly favors oscillation in a traveling wave copro-
pagating with pump field. ' Another consequence of the
narrow-linewidth optical excitation is that under typical
experimental conditions, the free spectral range of the
laser resonator is significantly larger than the linewidth of
the lasing transition. This implies that Na2 lasers usually
oscillate in a single longitudinal mode.

The narrow gain line of a Naz laser allows us to selec-
tively excite various higher-order transverse-mode reso-
nances of the laser resonator by tuning their eigenfre-
quencies into resonance with the gain medium. The ex-
perimental system described below makes use of this fact
and permits us to study the field patterns formed by the
individual families of frequency-degenerate Ciauss-
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Laguerre transverse modes TEM I of order
2p + I =q = 1, 2, or 3, while transverse modes of higher
order are suppressed by an intracavity aperture. With
respect to the selective excitation of groups of cavity
modes of equal transverse order, our experiment thus
realizes a situation very similar to the one considered in
theoretical part of this paper.

In our experiment, the optical ring resonator of the
laser supports the Gauss-Laguerre transverse modes of a
cylindrically symmetric linear cavity because the astig-
matic aberrations of the various optical elements of the
resonator compensate each other. The experimental set-
up nevertheless must be expected to deviate to some ex-
tent from a perfect cylindrical symmetry because it is
subject to perturbations like air currents, residual
misalignments of resonator and pumping geometry, and
optical imperfections. The mathematical description
given in Secs. II—IV aHows no predictions on the effects
of such perturbations on the stability of the expected field
patterns and phase singularity structures, since for the
sake of clarity it assumes an optical system of perfect cy-
lindrical symmetry. One of the main objectives of our ex-
perimental study was to test the validity of the theoretical
model of Secs. II—IV under the realistic condition of im-
perfect cylindrical symmetry of the optical system.

A. Experimental setup

The experimental setup is shown in Fig. 21. The
sodium-dimer vapor laser is collinearly pumped by the
approximately Gaussian output beam of a single-
frequency A, =488 nm argon-ion laser. The collimated
pump beam is superimposed with the intracavity field by
means of a Brewster prism which also selects one particu-
lar molecular transition of the Na2 molecule as the lasing
transition. The pump laser was tuned to the center of the
Doppler-broadened (6,43)X 'X+ —( 3,43 )B ' ll

„

transition

FL M& Pr2

PZT

LI

q Ce

FIG. 21. Experimental setup. The output beam PB of the
pump laser is collirnated by focusing lens FL (focal length 0.5
m) whose distance to the Na2 cell can be varied (see text). The
laser ring resonator is formed by plane outcoupling mirror M1
(power transmission 2%%ug) and high-reAecting concave (radius of
curvature 0.713 m) mirror M2; Prl: intracavity Brewster prism;
Ap: iris aperture. The Brewster prism Pr2 separates the laser
output from the transmitted part of the pump field. BEx is a
beam expansion lens. Detector D, Lock-in circuit LI and
piezoelement PZT form a servo loop locking the selected
higher-order transverse-mode resonance of the resonator (see
text) to the peak of the gain line of the laser medium.

of Na2. At a temperature of the sodium heat-pipe cell of
approximately 700 K and a helium buffer gas pressure of
10 mbar, approximately 70%%ui of the pump laser power
was absorbed in the 40-mm-long Naz vapor zone. As a
lasing transition with relatively high gain at low pump in-
tensities, the A, =525 nm (Q13) transition from the upper
level of the pump transition was selected by the intracavi-
ty prism.

The transmission of the outcoupling mirror and ab-
sorption losses in the gain medium together led to a total
loss coefficient for the intracavity field per round-trip of
~X/c=0. 05. Typical pump intensity values for laser
threshold were in the range of 0.01—0.2 W/mm, with the
actual value depending on the selected transverse-mode
resonance of the cavity and on the degree of collimation
of the pump beam. The resonator losses were sufficiently
small to obtain comparable intensities of intracavity and
pump field for pump levels well above the lasing thresh-
old. An approximately linear variation of the laser out-
put power with pump power was observed in the experi-
mentally studied pump intensity range of less than 2
W/mm . Under these conditions, the gain resonance line
of the Na2 laser is expected to be approximately Lorentzi-
an with a width mainly determined by the collisional re-
laxation between the lower levels of the pump and laser
transitions. ' The linewidth of the lasing transition was
yz/2m=50 MHz. Traveling-wave operation in a single
longitudinal mode was obtained under al1 operating con-
ditions which were studied. As a result of the Brewster-
angle optical surfaces inside the cavity, the polarization
of the laser output was constant and uniform over the
beam cross section.

As shown in Fig. 21, the optical ring resonator of the
Naz laser uses one concave and one plane mirror. The
free spectral range of the resonantor is c/X =420 MHz.
The optical round-trip path X in the cavity is equal
within +2 mm to the radius of curvature r of the concave
mirror. The resonance conditions for higher-order trans-
verse modes in this ring resonator are equivalent to those
of a linear cavity with the plane and the concave mirror
spaced by 2X =r. As a result, the eigenfrequencies of the
families of Gauss-Laguerre modes TEM &, of transverse
order 2p +1=q (q =1,2, 3) are equally spaced between
the TEMOO resonances of subsequent longitudinal orders
s." If the emission of higher-order transverse modes
with q ) 3 is suppressed (see below), the families of
Gauss-Laguerre modes of order q = 1, 2, or 3 can be ex-
cited selectively by tuning their eigenfrequencies into res-
onance with the gain medium (see Fig. 22). A particular
feature of this quasisemiconfocal cavity configuration is
that transverse modes of higher order 2p+l =4k+q
(k =1,2, . . . ) and longitudinal order s —k are frequency
degenerate with those of transverse order 2p + l =q
(q =1,2, 3) and longitudinal index s. An emission of field
patterns formed by the corresponding sets of degenerate
transverse modes of different longitudinal and transverse
orders can be expected if higher-order transverse modes
are not suppressed by a suitable intracavity aperture. In
order to permit a straightforward comparison with the
theoretical results, most of the experimental observations
described in the following were made with a circular
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2p+ i =0
S=J

2p+1=0
s=j+1

C4

C4

O

2p+i=1
S=J

2p+ i = 2
5 =J

i'

2p+ i =3
S=J

Resonator length [ A j

FIG. 22. Sketch of the tuning characteristic of the experi-
mental laser system showing the modal composition of the laser
output as a function of the resonator round-trip length. The
resonator length is given in units of the gain line center wave-
length k. For Gauss-Laguerre resonator modes TEM», (p angu-
lar, I radial, s longitudinal mode index) of transverse order
2p +l 3, the order and the longitudinal index of the family of
degenerate modes contributing to the laser emission are indicat-
ed above the individual emission peaks.

aperture inserted into the resonator. Its diameter was
chosen such that a further reduction of the diameter
would have led to a significant increase of the laser
threshold for the selected transverse-mode resonance of
the cavity. In this way, large diffraction losses were in-
troduced for all transverse modes except for the mode
families of order 2p + l = 1, 2, or 3, so that only the reso-
nant lowest-order transverse cavity modes were above
laser threshold.

The Brewster windows of the Na2 cell and the oblique
reAection at the concave resonator mirror introduce as-
tigmatic distortions of the intracavity field. In general
such distortions destroy the cylindrical symmetry of the
resonator, thereby leading to oscillation in Gauss-
Hermite rather than Gauss-Laguerre modes. In this
case, generally beat oscillations or pulsations are ob-
served in the laser output. They arise from the interfer-
ence of nearly degenerate transverse modes, which are
not phase locked, and oscillate at slightly different optical
frequencies. Stationary emission with frequency-locked
transverse modes can be expected only if the differences
between the eigenfrequencies of the excited modes are
significantly smaller than the resonator linewidth, ' '

which in our system is K/2m=3. 5 MHz. This regime of
stationary laser operation was realized in our experiment
in the following way.

For the optical resonator shown in Fig. 21, the astig-
matic distortions of mirror and Brewster windows com-
pensate each other to some extent. The residual astigma-
tism was compensated by a slightly asymmetric ray pas-
sage through the intracavity prism; the required rota-
tion of the Brewster prism in the plane of the resonator
was 1'. The criterion for a sufficient compensation of

astigmatism was the absence of mode-beating oscillations
in the laser output when the transverse-mode resonances
of order q = 1, 2, or 3 were excited. Outside the range of
frequency locking, transverse-mode beat frequencies in
the range of 0.5 —5 MHz were observed.

Our theoretical analysis predicts that the shape and the
stability of the field patterns forming in the considered
laser system are strongly influenced by both the width of
the transverse gain distribution and by the strength of
pumping. The corresponding control parameters g and
C introduced in Eqs. (2.3) and (2.10) denote the normal-
ized Gaussian envelope radius and the normalized peak
value of the small-signal gain coefficient of the transverse
gain distribution, respectively. If one assumes a linear
relation between optical pump intensity and small-signal
laser gain, and that they have equal transverse profiles,
the experimental value of the control parameter g is
given by the ratio of the Gaussian envelope diameters of
the pump field and of the intracavity laser field in the Na2
cell. Correspondingly, the experimental value of the
pump parameter C is proportional to the peak intensity
in the center of the transverse section of the pump laser
field. For a given value of g, the ratio between the actual
pump power and the pump power for laser threshold,
P/P, h, is therefore equal to the relative pump level
C/C, h, . In the experimental setup, the envelope radius
of the intracavity field in the Na2 cell was given by
w =280 pm according to the fixed resonator geometry.
The pump beam diameter was set to various values cover-
ing the range 1 (g(4 by choosing suitable distances be-
tween the vapor cell and the lens collimating the pump
beam. The intensity of the pump field was varied by
changing the output power of the pump laser. Within the
pump power range used in the experiments, the width
and shape of the approximately Gaussian intensity profile
of the pump laser showed no dependence on its output
power.

B. Experimental observations

The stationary intensity patterns produced by the Na2
laser were recorded photographically using a (24X36)-
mm camera whose lens was replaced by a beam expan-
sion lens (focal length 20 mm) approximately 150 mm in
front of the image plane. We note that the photographs
shown here visualize the intensity distribution in the
transverse section of the laser output without correctly
reproducing the actual average output intensity, which
may differ appreciably when the control parameters are
changed. Figure 23 shows the output pattern of the laser
for the case that the first-order transverse modes
(2p +1 =1) of the cavity are in resonance with the gain
medium. The observed annular, cylindrically symmetric
intensity distribution is in qualitative agreement with the
predicted shape (see Fig. 2). This emission pattern is also
known as the TEMo& hybrid mode. The TEMO& pattern
has a single phase singularity with a phase accumulation
of +2~ or —2~ around the symmetry center where the
intensity is zero. Similar to ear1ier experiments with a
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FIG. 23. Output intensity pattern of the laser for the case
2p + l = 1 (see text). The experimental parameters were
P/P, „,=3, /=2. 1, diameter of intracavity aperture 1.2 mm.

helium-neon laser, the corresponding bistability of the
optical phase pattern of the Na2 laser could be demon-
strated with the use of astigmatic imaging. In agreement
with the predictions of Sec. III A, the TEMO& pattern was
found to be stable in the whole pump intensity and pump
beam collimation range that was studied (the correspond-
ing range of the control parameter space is indicated in
Fig. 25).

Figure 24 shows the four types of stationary patterns
which were observed when the Gauss-Laguerre modes of
order 2p +l =2 were in resonance with the gain medium.
The shapes of these patterns are in full qualitative agree-
ment with the predicted shapes shown in Fig. 6 and cor-
respond, respectively, to the cylindrically symmetrical,
the 4H, the oval, and the doughnut configurations de-
scribed in Sec. III B. It was found that the angular posi-
tion of the patterns shown in Figs. 24(b) and 24(c), whose
intensity distributions are not rotationally symmetric,
was highly sensitive to the alignment of the pump beam
and even to air turbulence. In fact, no preferred angular
position exists for a pattern forming in a system of per-
fect cylindrical symmetry. Our experimental observa-
tions indicate that the angular position of patterns of bro-
ken cylindrical symmetry was in practice determined by
the residual deviations from cylindrical symmetry in the
experimental system.

For the case 2p+l =2, the inhuence of intensity and
collimation of the pump beam on the stability of the vari-
ous emission patterns has been studied in the whole ac-
cessible control parameter range. The results are summa-
rized in Fig. 25. The comparison with the calculated dia-
gram shown in Fig. 5 indicates a large agreement with
respect to the basic arrangement of the various domains
of stability in parameter space. In particular, the predict-
ed destabilization of the cylindrically symmetric patterns
of the types shown in Figs. 24(a) and 24(d) for increasing
pump levels also was observed experimentally. A more
detailed study of the transition from emission in a
Gauss-Laguerre TEM&o mode |Fig. 24(a)j to emission in a

ill J. ilL IRI I L .. I IUI

FIG. 24. Output intensity patterns observed for the case
2p+l =2. (a) P/P, „„=1.5, /=1. 0; (b) P/P, „„=4.0, /=1. 0
(4H); (c) P/P, „„=2.3, /=2. 1 (oval); (d) P/P, „„=2.0, /=3. 9
(doughnut). In all cases the diameter of the intracavity aperture
was 1.3 mm. The small-scale structures in the photographs are
diffraction patterns caused by dust particles on a glass surface
close to the camera. This complication was avoided for the oth-
er photographs shown here.
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field pattern of broken symmetry [Fig. 24(b), 4H] has
been carried out recently.

Cases of bistability of the transverse field configuration
were identified by the observation of hysteresis and
switching when the pump beam was slightly displaced
and then brought back to its original, approximately cy-
lindrically symmetric position. Figure 25 shows the ob-
served domain of bistability where the two intensity pat-
terns shown in Figs. 24(b) (4H) and 24(c) (oval) were
found to be both stable. For /=2. 1 and 2.4, switching
between these two patterns could be induced by sweeping
the pump intensity over the limits of the bistable range.
With the same astigmatic imaging technique used also in
the case of the TEMo, pattern (see above), bistability of
the field pattern without change of the intensity pattern
could be demonstrated for patterns of the type shown in
Figs. 24(c) and 24(d).

For the eA'ect of the control parameters on the stability
of the field patterns formed by the transverse modes of
order 2p+l =2, we also observed significant discrepan-
cies between theoretical and experimental results. In par-
ticular, a domain of bistablity where the 4H and the

0.9 ~

p~~p ~~g limni&

0.5 ~

Ip

(W/mm2)

0.25 '

0
2 4

FIG. 25. Experimentally determined stability diagram for the
case 2p + l =2. The figure shows the stable emission patterns as
a function of pump-beam collimation parameter P and pump-
beam peak intensity I~. The types of the stable patterns are
represented by symbols relating to the patterns shown in Fig.
24. For a given value of g, the pump power was varied to iden-
tify the pump power levels where certain types of patterns be-
came stable or unstable; the corresponding pump intensity
values are indicated by horizontal bars. The thick line connect-
ing the lowest-lying bars denotes the laser threshold. The other
lines roughly indicate the arrangement of the various domains
of stability as it can be inferred from the experimental observa-
tions. A domain where two different intensity patterns are
stable lies in the approximate center of the diagram and for
/=1. 6 extends to the pump power limit. The arrows denote
the continuous changes of the shapes of the emission patterns
which were observed when the pump intensity was varied. The
diameter of the intracavity aperture was 1.3 mm.

FIG. 26. Output intensity patterns observed for the case
2p +1=3. (a) P/P, „„=1.2, /=1. 6; (b) and (c) P/P, h„=2.0,
/=2. 1 (both patterns are stable for these parameters values); (d)
P/P, „„=1.6, 1(j=3.9. In all cases the diameter of the intracavi-
ty aperture was 1.6 mm.
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doughnut patterns of Figs. 24(b) and 24(d) are both stable
was not found, and the experimentally observed domain
of bistability of the patterns of Figs. 24(b) and 24(c) is
smaller than predicted. An unexpected phenomenon is
also the continuous transition from the 4H pattern to the
oval pattern for small P and increasing pump intensity
(see Fig. 25). It may be noted that a common feature of
these observations is the dominance of the oval pattern of
Fig. 24(c) and the reduction in size of the stability domain
of the 4H pattern of Fig. 24(b). Up to now, the origin of
the discrepancies between predicted and observed stabili-
ty characteristics is not clear. Our initial assumption
that the deviations are related to the residual uncompen-
sated astigmatism of the resonantor could not be verfied,
as the same observations were made after various align-
ment procedures.

Figure 26 shows the four types of field patterns ob-
served when the transverse modes of order 2p+l =3
were resonantly excited. The characteristics of the pat-
terns shown in Figs. 26(a) —26(d) agree with the numeri-
cally determined patterns shown in Figs 14(a), 14(d),
14(c), and 14(b), respectively. The photographs of Figs.
26 and 24 clearly demonstrate the structural relationship
of the patterns forming for 2p + I =3 and 2: even if the
modal composition of both sets of patterns is dissimilar,
the only characteristic difference is the additional phase
singularity in the center of each of the patterns of the
2p +l =3 configuration. The location of the domains of
stability of related patterns in the experimental control
parameter space was found to be very similar. In particu-
lar, one also observes a domain of bistability where the
patterns of Figs. 26(b) and 26(c) are both stable. Patterns
with seven and nine phase singularities of the type shown
in Figs. 14(e) and 14(f) were observed at some occasions
for control parameters close to the stability domain of the
five-singularity pattern of Fig. 26(b). The observations of
these patterns were not completely reproducible, prob-
ably because the experimental stability domain of these
patterns is very small.

A characteristic modification of the shape of the emit-
ted patterns was observed for the case where the diameter
of the intracavity aperture of the laser was increased
beyond the values indicated in Figs. 23 —26 so that
higher-order frequency-degenerate transverse modes
could contribute to the laser emission (see Sec. VA). In
all cases except the one noted in the following, the bright
peripheral regions of the patterns simply increased in size
without further changes of the basic structure of the pat-
tern. One example for this effect is shown in Fig. 27(a),
which should be compared to Fig. 26(a). A particular
phenomenon was observed under conditions where the
laser emitted a pattern of the type shown in Fig. 26(b).
Upon increasing the aperture diameter, here four addi-
tional phase singularities are formed and integrated into
the regular arrangement of the other phase singularities
[see Fig. 27(b) j.

VI. CONCLUDING REMARKS

In Sec. IV we have demonstrated in detail the analogy
between the phase singularities that are formed in the in-

teraction of the transverse modes belonging to a
frequency-degenerate family and the defects called vor-
tices in such fields as, for example, hydrodynamics, su-
perconductivity, and superAuidity. A point which
remains to be elucidated is the relation between these
phase singularities and the optical vortices discovered by
Coullet and collaborators. In the steady state, the opti-
cal vortices occupy positions that depend on the initial
conditions, whereas the phase singularities discussed in
this paper are arranged in the form of regular crystals.
Our phase singularities arise from the interaction of few
modes, whereas the vortices of Ref. 33 are the result of
the interplay of a very large number of modes. However,
it is not at all obvious that phase singularities are intrinsi-
cally different from optical vortices. As a matter of fact,
on the local scale around the zero-field points, the vor-
tices of Ref. 33 have the same structure as the singulari-
ties in this paper. Coullet and collaborators consider an
essentially isolated optical vortex which exhibits a large-
scale spiral structure for the equiphase lines; however, if
several vortices and antivortices are brought together, the
spiral structure can disappear, and the configuration can
be much more similar to those we find in our analysis. In
order to clarify the relation with the optical vortices, it is

FIG. 27. Output intensity patterns for the case 2p+1=3.
Here the diameter of the intracavity aperture is su%ciently large
(2 mm) to have no longer any effect on the size of the emitted
patterns (see text). All other experimental conditions for the
mode patterns (a) and (b) are identical to those of Figs. 26(a) and

26(b), respectively.
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presumably necessary to extend the analysis beyond the
case of a frequency-degenerate family and beyond the sit-
uations in which the system approaches a stationary
state. Particularly interesting is the theoretical and ex-
perimental investigation of cases in which the system de-
velops turbulent dynamics, showing complex spatiotem-
poral behavior of the optical vortices or phase singulari-
ties, possibly giving rise to a "defect-mediated tur-
bulence, " as predicted by Coullet and collaborators.

The comparison between the theoretical predictions
and the experimental data for the case 2p + I =2 exhibits
a satisfactory amount of qualitative agreements. There
are, however, also some discrepancies, which arise mainly
from the fact that the domain of existence of the 4H
configuration in the (C, g) plane of the control parameter
is much more restricted in the experimental picture. A
possible explanation for this fact is that in our calcula-
tions we do not include an element which is present in the
experiment, namely, the aperture. Or, more precisely, we
consider only the limit of infinite aperture. We are now
extending our calculations by considering the aperture in
the form of a radially dependent loss parameter, as de-
scribed in Ref. 36. Preliminary results for the case
2p+l =2 show that the theoretical predictions move in
the direction of increased agreement with the experimen-
tal results, in the sense that the domain of existence of the
4H configuration in the (C, lb) plane is reduced, and there
is no region in which the 4H and the doughnut patterns
coexist.

Note added in proof

The possibility of generating defects in the electromag-
netic field was first predicted, and extensively analyzed, in
an outstanding series of papers by Berry, Nye, and colla-
borators [see, for example, J. F. Nye and M. V. Berry,
Proc. R. Soc. London, Ser. A 336, 165 (1974); M. V. Ber-
ry, J. F. Nye, and F. J. Wright, Philos. Trans. R. Soc.
London Ser. A 291, 453 (1979); F. J. Nye, Proc. R. Soc.
London Ser. A 387, 105 (1983); Refs. 32, 38, 41, 54, 59,
and 65 in the list of references in Ref. 46], which is re-

viewed in Ref. 46 of this paper. These authors considered
the linear, scalar wave equation and identified several ap-
propriate solutions that display a wide variety of defects
such as, for example, dislocations. These patterns can ex-
hibit rich and complex structures, sometimes on different
spatial scales simultaneously, including the subwave-
length scale. Especially interesting is the elliptic umbilic
diffraction catastrophe, which displays a crystal-like fine
structure of dislocation lines predicted and experimental-
ly observed by the same authors.

With reference to the classification of defects given in
Ref. 46, from a three-dimensional viewpoint our phase
singularities correspond to screw dislocations. This fact
is immediately seen if we consider the complete phase of
the electric field which, according to Eqs. (2.4) and (2.19),
is given by

P —co +kz,
where (() is the phase of the envelope F. Clearly, if we
move along the longitudinal axis z the equiphase lines in
the transverse planes generate equiphase surfaces which,
in a transverse neighborhood of the singularity, have a
helix shape. Our patterns display a transverse spatial
variation that develops on a scale much larger than a
wavelength. They arise spontaneously from the mode-
mode competition induced by the interaction of the radi-
ation field with the nonlinear medium. The nonlinearity
of the dynamics is in this case the essential element which
governs the phenomenology, via a well-defined set of in-
stabilities. The controlled variation of the parameters ac-
tivates the various instabilities and primes the transition
from the nonlasing state to laser emission, or the transi-
tion from one pattern to another.

ACKNOWLEDGMENTS

We thank N. B. Abraham for some stimulating discus-
sions at an early stage of this work. This research was
carried out in the framework of the ESPRIT Basic
Research Action on "Transverse Optical Patterns. "

Also ac Physik-Institut, Universitat Ziirich, Ziirich, Switzer-
land.

J. Opt. Soc. Am. B 2 (1) (1985), special issue on instabilities in
active optical media.

J. Opt. Soc. Am. B 5 (1) (1988), special issue on nonlinear dy-
namics of lasers.

Instabilities and Chaos in Quantum Optics, edited by F. T.
Arecchi and R. Harrison (Springer-Verlag, Berlin, 1987).

~N. B. Araham, P. Mandel, and L. M. Narducci, in Progress in
Optics, edited by E. Wolf (North-Holland, Amsterdam, 1988),
Vol. XXV, p. 1; Instabilities and Chaos in Quantum Optics II,
edited by N. B. Abraham, F. T. Arecchi, and L. A. Lugiato
(Plenum, New York, 1988).

5C. O. Weiss and J. Brock, Phys. Rev. Lett. 57, 2804 (1986).
A. M. Turing, Philos. Trans. R. Soc. London Ser. B 237, 37

(1952).
7H. Haken, Synergetics: An Introduction (Springer-Verlag, Ber-

lin, 1977).
G. Nicolis and I. Prigogine, Self Organization i-n Nonequilibri

um Systems {Wiley, New York, 1977).
9A. F. Suchkov, Zh. Eksp. Teor. Fiz. 49, 1495 (1965) [Sov.

Phys. —JETP 22, 1026 (1966)]; R. Cs. Allakhverdyan, A. N.
Oraevsky, and A. F. Suchkov, Fiz. Tekh. Poluprovdn. . 4, 341
(1970) [Sov. Phys. —Semicond. 4, 227 (1970)].

oV. E. Kuzin and A. F. Suchkov, Kvant. Elektron. (Moscow) 2,
53 (1972) [Sov. J. Quantum Electron. 2, 236 (1972)]; I. M.
Belousova, Cx. N. Vinokurov, O. B.Danilov, and N. N. Roza-
nov, Zh. Eksp. Teor. Fiz. 52, 1146 (1967) [Sov. Phys. —JETP
25, 761 (1967)].

"P. W. Smith, Appl. Phys. Lett. 13, 235 (1968); D. H. Austen,
IEEE J. Quantum Electron. QE-5, 471 (1968).

i~J. H. Moloney, in Instabilities and Chaos in Quantum Optics
(Ref. 3), p. 139ff'; Progress in Optics (Ref. 4), p. 1936; and
references quoted therein; N. N. Rozanov, V. E. Semenov,
and G. V. Khodorova, Kvant. Elektron. (Moscow) 9, 356
(1982) [Sov. J. Quantum Electron. 12, 193 (1982)].

W. J. Firth, in Progress in Optics (Ref. 4), p. 219ff and refer-
ences quoted therein; M. Le Berre, E. Ressayre, and A. Tal-



43 TRANSVERSE LASER PATTERNS. I. PHASE. . . 5113

let, Phys. Rev. A 25, 1604 (1982).
~4L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 50, 220 (1987).
~5S. Akhmanov, in Quantum Optics VI, edited by J. H. Eberly,

L. Mandel, and E. Wolf (Plenum, New York, 1990).
' G. Grynberg, E. Le Bihan, P. Verkerk, P. Simoneau, J. R. R.

Leite, D. Bloch, S. Le Boiteux, and M. Duclay, Opt. Com-
mun. 67, 363 (1988); G. Giusfredi, J. F. Valley, R. Pon, G.
Khitrova, and H. M. Gibbs, J. Opt. Soc. Am B 5, 1181
(1988).
P. Hollinger and C. Jung, J. Opt. Soc. Am. B 2, 218 (1985).
A. L. Gaeta, M. K. Skeldon, R. W. Boyd, and P. Narum,
IEEE J. Quantum Electron. QE-22, 2161 (1986).

' L. A. Lugiato, C. Oldano, and L. M. Narducci, J. Opt. Soc.
Am. B 5, 879 (1988).
H. G. Winful and S. S. Wang, Appl. Phys. Lett. 53, 1894
{1988).
L. A. Lugiato, G. L. Oppo, M. A. Pernigo, J. R. Tredicce, L.
M. Narducci, and D. K. Bandy, Opt. Commun. 68, 63 (1988).
L. A. Lugiato, F. Prati, L. M. Narducci, P. Ru, J. R. Tredicce,
and D. K. Bandy, Phys. Rev. A 37, 3847 (1988).
L. A. Lugiato, F. Prati, L. M. Narducci, and G. L. Oppo, Opt.
Commun. 69, 387 (1989).
L. A. Lugiato, G. L. Oppo, J. R. Tredicce, and L. M. Narduc-
ci, J. Opt. Soc. Am. B 7, 1019 (1990).

25J. Opt. Soc. Am. B 7(6) {1990);7(7) (1990); special issues on
transverse effects in nonlinear optical systems.

26J. R. Tredicce, E. J. Quel, A. M. Ghazzawi, C. CJreen, M. A.
Pernigo, L. M. Narducci, and L. A. Lugiato, Phys. Rev. Lett.
62, 1274 (1989}.
C. Tamm, Phys. Rev. A 38, 5960 (1988).
C. Tamm and C. O. Weiss, Opt. Commun. (to be published).
J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
N. M. Mermin, Rev. Mod. Phys. 51, 591 (1979).

~P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987); P. D.
McCormack and L. Crane, Physical Fluid Dynamics

(Academic, New York, 1973).
H. Lamb, Hydrodynamics (Cambridge University, Cambridge,
1932).

P. Coullet, L. Gil, and F. Rocca, Opt. Commun. 73, 403
(1989).

34F. Diedrich, E. Peik, J. M. Chen, W. Quint, and H. Walther,
Phys. Rev. Lett. 59, 2931 (1987).

35H. Kogelnik, in Lasers: A Series of Advances, edited by A. K.
Levine (Dekker, New York, 1966), Vol. 1, p. 295.
It is straightforward to generalize Eq. (2.8) to include
diffraction losses. In fact, one must simply replace the term—kf~„by —k f

deaf

dppA „(p,y)g(p)F(p, y, t), where
the function g(p) describes the radial distribution of the
losses. For g(p)%const, this term has the effect that each
mode has a different loss parameter.
C. Tamm, J. Opt. Soc. Am. B (to be published).

3sP. M. Morse and M. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1983), Vol. I.

39D. R. Tilley and J. Tilley, Superfi'uidity and Superconductivity
(Hilger, Bristol, 1986}.

M. Brambilla, L. A. Lugiato, V. Penna, F. Prati, C. Tamm,
and C. O. Weiss, following paper, Phys. Rev. A 43, 5114
(1991).

4'B. Wellegehausen, IEEE J. Quantum Electron. QE-15, 1108
(1979).

42H. Kogelnik and T. Li, Appl. Opt. 5, 1S50 (1966).
43D. C. Hanna, IEEE J. Quantum Electron. QE-5, 483 (1969).
44See, e.g. , A. E. Siegman, Lasers (University Science, Mill Val-

ley, CA, 1986), p. 647-648.
4~W. W. Rigrod, Appl. Phys. Lett. 2, 51 (1963).
46M. Berry, in Physics of Defects, Les Houches Session XXXV,

edited by R. Balian et al. (North-Holland, Amsterdam,
1980).

P. Coullet, L. Gil, and S. Lega, Phys. Rev. Lett. 62, 1619
(1989);Physica D 37, 91 (1989).










