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We present the theory of a microscopic maser operating on a nondegenerate two-photon transi-
tion between two states of same parity. We start from a three-level Hamiltonian, and discuss both
the one-photon resonant cascade and the two-photon regime, when the intermediate state is far off
resonance. In the semiclassical limit, we derive rate equations for the field intensities and get the
corresponding steady-state values. The vacuum is stable in the two-photon regime but becomes un-

stable for zero detuning {a clear signature of a one-photon process). Solutions displaying true two-

photon operation {intermediate state unpopulated) even with zero detuning are displayed. Using
the full quantum density-matrix approach, we derive a master equation for the field and discuss
both operating regimes, showing that the spontaneous emission may turn the vacuum unstable in

the two-photon case. In the off-resonance two-photon regime, there is a strong correlation between
the fluctuations of the intensities of the two modes. We find a squeezing factor of 50% for the Auc-

tuations in the difference of intensities.

I. INTRODUCTION

Micromasers are quantum oscillators operating on a
Rydberg atomic transition (high principal quantum num-
bers), where the initially excited atoms interact with the
electromagnetic field while crossing a high-Q supercon-
ducting cavity. Very low thresholds may be attained,
down to at most one atom in the cavity at a time. '

These devices provide experimental tests of some very
fundamental models of quantum optics, and exhibit a
great variety of interesting quantum effects, like collapses
and revivals, generation of sub-Poissonian states, '

trapping states, ' spontaneous self-starting, and singular
starting times.

Furthermore, they have allowed the operation of the
first two-photon oscillator, involving a degenerate two-
photon transition between two atomic levels of the same
parity. This device presents additional interesting
features, with respect to the one-photon micromaser,
which are connected to the starting up of the system. '

Classically, the zero-field state is always stable, even if
one is above the oscillation threshold (an injected field is
thus required, in order for the system to build up the os-
cillation. ) Quantum fluctuations may, however, render
this state metastable or even unstable, thus inducing the
system to start oscillating, without need of any triggering
field, in a time which, for micromasers, may be very
small. "

Up to now, only the degenerate case has been analyzed,
both theoretically ' and experimentally. For this
reason, one has missed one of the important features of
the two-photon process, namely, the correlation between

the two photons emitted simultaneously into two
different modes. Such correlations have been studied in
optical parametric oscillators, where an important noise
reduction in the difference of intensities of the two modes
has been demonstrated. "'

In this paper, we extend the previous analysis ' to a
more general situation, where the two photons are emit-
ted into difFerent modes of the cavity (nondegenerate
two-photon transition). We base our treatment on a full
three-level model, instead of a two-level effective Hamil-
tonian. In this way, conditions under which the
effective-Hamiltonian approach is valid can be precisely
stated. We show that, contrary to the laser case, ' ' the
three-level model does not introduce any substantial
correction, in the high-detuning region. On the other
hand, it allows one to go continuously from the two-
photon operating regime (corresponding to the high-
detuning limit —no population in the intermediate state)
to the one-photon resonant cascade process, in which the
intermediate state gets populated.

We consider thus a three-level atom (Fig. 1), with the
upper and lower levels having the same parity. We as-
sume that the atomic lifetimes are much larger than the
time of Qight of the atoms through the cavity, t;„,.
Therefore, the atoms do not decay while crossing the cav-
ity. We also assume that the two cavity modes (frequen-
cies co, and co&) are coupled, respectively, to the upper
and lower transitions, so that we neglect the process in
which the two photons are emitted in reverse order (the
photon with frequency co2 corresponding to the upper
transition). In Sec. II, we show that in order for this to
be true, one must have
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II. THE ATOM-FIELD HAMILTONIAN:
TIME EVOLUTION GF THE PROBABILITY

AMPLITUDES
We calculate in this section the probability amplitudes

which describe the transitions between the three atomic
levels for the system depicted in Fig. 1. The correspond-
ing Hamiltonian has the form

FIG. 1. Energy levels relevant to the nondegenerate two-
photon micromaser.

0 =H, t+HF+Hlnt )

where

H„=E, le &(e I+E; lt ) (~ I+Eflf ) &f I,
HF =isa)]a ia $ +iSCOPa ~a2,

(2.1)

(2.2)

(2.3)

5=co, —(E, E;)jfi— (1.2)

is the detuning between the intermediate state Ii ) and the
energy reached after the emission of the first photon (see
Fig. 1). Equation (1.1) implies that the degenerate case
cannot be obtained as a limit of the present model. On
the other hand, we consider the general situation where 6
can assume any value, including the case of zero detuning
(one-photon cascade maser regime). We pay special at-
tention, however, to the large detuning regime, in which
two-photon transitions without population transfer to the
state Ii ) are expected (the intermediate state acts then as
a virtual state). In this case, we show rigorously that an
effective two-level Hamiltonian may be adopted.

In this two-photon regime, each atomic transition
creates simultaneously one photon in each mode, so that
one expects a strong quantum correlation between the
modes. We show indeed that the variance of the
difference of intensities of the two modes is well below the
classical lower bound (up to 50%%uo), thus providing a clear
signature of that correlation.

This paper is organized in the following way. In Sec.
II we write down the Hamiltonian for the atom-field sys-
tem and solve the resulting equations for the probability
amplitudes of the atom-field states. The corresponding
transition probabilities are then used to get the gain
terms in the field master equation. Adding the cavity
losses, we obtain the dynamical equations both in the
semiclassical approximation (Sec. III), where we neglect
the field fluctuations and the spontaneous emission, and
in the full quantum approach (Sec. IV), from which we
get some exact and numerical results concerning the field
statistical distribution. In the semiclassical approxima-
tion, we find a class of solutions for which the micro-
maser oscillates in the true two-photon regime, the inter-
mediate state remaining unpopulated, even with zero de-
tuning. In the quantum theory, we make a detailed
analysis of the stability of the zero-field state and of the
time-dependent behavior of the system, and we display
the quantum correlations between the two modes. A gen-
eral discussion of our results, as well as the concluding re-
marks, are presented in Sec. V.

lco, —co, l ))b„r,
where I is the linewidth of the one-photon transition to
the intermediate state, and

and a;, a; are the annihilation and creation operators for
mode i (i = 1,2).

If we neglect the couplings of the upper and lower
atomic transitions with modes 2 (frequency co2) and 1

(frequency ro, ), respectively, we get for H;„, in the
rotating-wave approximation

H,„,=lrtQ„a, I
e & ( i

I
+RQ;f a, I

~ ) (f I

+en„a', I~ & &eI+~n,,a', If ) &il,
where

A'0„= —(e ID Ii )QA'co, l2eoV,

(2.4)

(2.5)

+b(N, 1+, N~, t)li, N, +1,N~)

+c(Nl+ 1,N2+ I, t )If,Nl + 1,N2+ 1) . (2.7)

In the interaction picture, the Schrodinger equation is

~ =H,„,l@&, (2.8)

where

H,„,=Rn,„e ' 'a,
I
e & & i

I

+fiA,fe' 'a2li )(fI+H. c. (2.9)

From (2.7), (2.8), and (2.9), we get then the following
equations for the probability amplitudes:

lrII;f = —
& ~ ID lf &v't~, neov, (2.6)

D is the dipole operator and V is the effective volume of
modes 1 and 2 (assumed to be the same for both modes).

The neglected couplings are proportional to a&le )(i I

and a l Ii ) (f I, which, in the interaction picture,
become exp[i(co, co&

—5)t]—a2Ie)(i I
and exp[i(co2 —cg,

+ b. )t ]a, I
i ) (f I. They are therefore nonresonant

and negligible compared to exp( iAt)a, —Ie )(i I,
e px(ibt)a li2)(fl, if condition (1.1) holds. Neglecting
these terms corresponds to a generalized rotating-wave
approximation, where besides the usual condition involv-
ing the transition linewidth I, one has a new one con-
cerning the detuning A. This hypothesis simplifies the
solution of the problem, since then triplets Ie, N„N2),
Ii, N, +1,N2), I f,N, +1,N2+1) corresponding to
different values of X, or N2 become decoupled. Conse-
quently, the Schrodinger equation needs to be solved only
within this three-dimensional space.

A general state in this space can be written as

Ig(t)) =a(N„Nz, t)Ie, N„N2)
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isa(N&, N2, t)IBt =Q„b(N, +1,N2, t)QN, + le

iBb(Ni+ 1,N2, t)IBt =Q/c(N&+1, N2+ l, t)QN2+ le' '+Q„. a(N i iN2, t)QNi+1 e'

inc(N&+1, Nz+ I, t)IBt =Q &b(Ni+ l, Nz, t)QN2+ le

(2.108)

(2.10b)

(2.10c)

These equations are solved by Laplace transform techniques, following the method of Ref. 14. The detailed solution is
presented in Appendix A. The final result for b(N, +1,Nz, t) and c(N, +1,N2+l, t), with the initial conditions
a (0)=1, b (0)=c (0)=0, is

Q„QN, +. 1Q&QNz+ 1 j [cosQt+(ib, /2Q)sinQt]e ' '~ —1]
c(N, +1,N2+ l, t ) =

Q —(b, /2)

b (N, +1,N2, t )= i(—Q„/Q)QN~+ le' '~ sinQt,

where

Q [Q2 (N + 1)+Q2 (N + 1)++2/4]1/2

The corresponding transition probabilities are

Q„(N i + 1)Q;~(N~+ 1)
~c( N& +1, N2+l, t)~ = [cos Qt+(b, /2Q) sin Qt+1

[Q„.(N, + 1)+Q I(N2+ 1)]

(2.1 1)

(2.12)

(2.13)

Q„(N, +1)
~tb (N, +1,N2, t )

~

= sin Qt .

—2[cosQt cos(bt/2)+(b. /2Q)sinQt sin(bt/2)]], (2.14)

(2.15)

Q„(N, +1)+Q;g(N2+1)
(2.16)

In this case,

~b(N, +1,N2+i, t)~ =O(Q„(N, +1)/b, )~0,

while

The quantity
~
b

~
( ~

c
~ ) is the probability for finding the

atom in the state ~i ) ( ~f ) ), assuming it was in the excited
state ~e ) in t =0, while the field was in the Fock state
~N& ) ~N2). These probabilities behave very differently
in two opposite limits.

(a) Zero detuning: 6=0. In this case, ~b~ is propor-
tional to sin Qt, while

~
c~ becomes proportional to

sin (Qt/2), meaning that for t «Q ', ~b~ ))~c~, which
is not surprising; before it reaches

~f ), the atom has to
evolve through the intermediate state ~i ) in a time of the
order of the Rabi period 2m 0

(b) Large detuning:

ic(N, +1,N, + l, t)i'

2Q„(N, + 1)Q,~(N2+ 1)

[Q„(N, +1)+Q;~(N2+1)]

where
(2.17)

(2.18)

is the two-photon Rabi frequency, with the well-known
typical properties of a two-photon process: ' propor-
tional to the intensities, inversely proportional to the de-
tuning A. It is quite similar to the two-photon degenerate
Rabi frequency and may be more easily derived by using
the techniques of Ref. 4. In fact, in this limit, the inter-
mediate state participates only virtually, and it can be
taken into account by perturbation theory (see Fig. 2),
since then the coupling within the degenerate doublet
[ ~e, N„N2), ~f, N, +1,Nz+ I ) ] is much more impor-
tant. In the dressed-atom approach, the dressed states
and energies are the eigenvectors and eigenvalues of the
2X2 matrix

—Q„.(N, +1) —Q„QN, +1Q;IQNi+ 1

Q„"(IN,+ 1Q;IQ—N~+. I —Q,~(N~+ 1)

The diagonal elements of the matrix are the Stark shifts
of the states ~e ) and

~f ); we see that this effect may be
much more important here than in the degenerate case.
Even if 0„.=Q,&, it may produce a large effective detun-

I

ing if N&AN&, thus lowering the transition probability
when the intensities are different. Indeed, for Q„=Q,.&,
we may write the transition probability in the fo11owing
form:
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Ie,H, ,N )

I i, N)+ l, g~)

FIG. 2. Energy diagram of the noninteracting atom-field sys-
tem.

c~ =[1—(N, Nz) —/(N, +Nz+2) ]

Xsin [Q„(N&+N z+2)t/25], (2.19)

which displays the out-of-resonance reduction of the
Rabi nutation amplitude.

The transition probabilities calculated in this section
will now be used to develop both the semiclassical and
the quantum theory of the nondegenerate two-photon mi-
cromaser.

with an upper-mode photon, but the converse is not gen-
erally true. Therefore, as we see above, the gain for the
upper mode is larger than the gain for the lower one, ex-
cept in the situations where the atoms never leave the
cavity in the intermediate state. The most important ex-
ception is associated with the large-detuning limit, where
the intermediate state is out of resonance [Eq. (2.16)].
However, even in the resonant case there are some few
regimes of oscillation where the gains are equal. We il-
lustrate this effect when we discuss the zero-detuning case
(b =0), which follows the large-detuning limit discussion.
We analyze therefore two opposite limits.

(a) Large detuning:

b, &) [Qz (N, +1)+0;f(Nz+1)]/b .

The two-photon probability is given by (2.17). Then

G(mode 1)=G(mode 2)

2&„(Ni+1)fl;f{Nz+1)
~at [&„(Ni+ 1)+0 f (Nz + 1)]z

X(1—cosQz t,.„,) (3.1)

III. SEMICLASSICAL THEORY

We develop in this section the semiclassical theory of
the nondegenerate two-photon micromaser. In Fig. 3, we
display the basic parameters of this device: t„ is the
average time interval between consecutive excited atoms
entering the cavity, t;„, is, as mentioned before, the time
of Aight of the atoms through the cavity, and t„, , t„,
are the cavity damping times for modes 1 and 2. We as-
sume that t„~t;„„sothat in the average only one atom
at most interacts with the field at any time (micromaser
condition). The average gain G in each mode is given by
the product of the average atomic rate (t,, '

) by the aver-
age transition probability:

G(mode 1)=t,, '(~b~ +~c~ ),
G(mode 2)=t,t'((c) ),

where the average ( ) is taken over the field density-
matrix operator.

Each photon in the lower mode is emitted together

In the semiclassical approximation, we neglect the spon-
taneous emission terms and the width of the photon num-
ber probability distribution (given by the diagonal ele-
ments of the field density matrix in the Fock-state repre-
sentation). We expect these to be good approximations in
the limit of large average photon numbers (N, ) and
(Nz ), which as we shall see corresponds to the limit

1 N, N2G= sin [g (N, +Nz)t;„, /2h],
r, t (N, +Nz)

(3.2)

where X& and Xz are the mean photon numbers.
Assuming now that the cavity dissipation and the

atomic gain are completely independent processes, which
should be true if t;„,&&t„, , we get the following rate

equations for the photon numbers in the two modes:

dX& i 42%&%2

dt r~t (Ni +Nz )

In order to simplify the calculations, we assume that

Q„=Qf =g .

The results for Q„WA;f are qualitatively the same, and
are discussed in Appendix B. From Eq. (3.1), we get, in
this limit,

X sin [g (N, +Nz )t;„,/26]—
~cav

1

(3.3a)

" 'Int

FIG. 3. Sketch of the micrornaser setup.
Xsin [g (N, +Nz)t;„, /24]—

~cav
2

(3.3b)
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Following Ref. 5, we define the renormalized mean pho-
ton numbers:

difficult to reach the threshold, since the amplitude of the
gain term may be written as rsee Eq. (3.7)j

n
~
=X~ tag /tcav ~ 2 X2tag tcav 4tcav tcav

1 2

2
(tcav~ tcav& )

so that

dn)

dt

n2

dt

where

4n&n2 n&
sin n(n, +nz)—

cav (n]+tlZ) tcav1

4n]n2 n2
sin a(n, + nz )—

(n, +nz) tcav2

2
tint tcav

1

2ht

(3.4a)

(3.4b)

(3.5)

This result can be easily interpreted in terms of the effect
discussed at the end of Sec. II: in the limit given by Eq.
(3.8), the steady-state mean photon numbers become very
different, as shown by Eq. (3.6), so that the Stark shift in-
duces a large effective detuning, thus lowering the atomic
gain.

1

(o)

n& n2
(3.6)

The steady-state solutions are obtained by setting
dn, Idt =dnzldt =0. Since the gains for the two modes
are equal, the steady-state values must obey the relation C3

z
&C

tcav
1

tcav
2

implying that the steady-state values of n& are given by
the roots of

n&=
4tcav tcav

1 2 . 2sin an,
tca

1

(3.7)

This equation may be solved graphically, as sketched in
Fig. 4. The graphical analysis may also provide informa-
tion about the stability of the steady-state solutions when
n& ndanz are related by Eq. (3.6). It does not assure,
however, the global stability in the two-dimensional
n& Xn2 plane. In order to check this point, we linearize
the coupled equations (3.4) around the steady-state
values. The detailed procedure is discussed in Appendix
B, in the general situation where Q„WQ;f. The main
conclusion is that points which are stable under condition
(3.6) remain so when that relation is violated. In particu-
lar, the zero-field point is always stable, as in the degen-
erate case. The system becomes therefore bistable, im-
mediately above threshold. For sufficiently low dissipa-
tion, other stable points may appear. As shown in Ap-
pendix B, the approach to steady state may be oscillatory
when t„, Wt„, . This will happen when the slope of the

gain curve at the steady-state point is in an interval with
a width (t„„—t„„)l2t„„ t„, , which increases as

tcav + tcav
2

(3.8)

that is, when the two damping times become quite
different from each other. The oscillations are typically
strongly damped, except in the limit given by Eq. (3.8).

The semiclassical analysis yields the threshold condi-
tion: it is given by the first nonzero solution of Eq. (3.7),
as shown in Fig. 4(a). We notice that when the damping
times are very different [as in Eq. (3.8)j, it becomes more

FIG. 4. Semiclassical model of the non degenerate two-
photon micromaser in the large-detuning limit: gain and loss
contributions to nl vs n, , where n, is the normalized photon
number in the upper mode. The loss term is proportional to n1
(dashed line). The three curves correspond to t„„=2t„,, and

to (a) o.' = 1,03; (b) o.=~/3; (c) o.=2~/3. Stable operation
points are shown by circles. The system is at the threshold of
oscillation in curve (a). (c) displays three stable operation points
for a larger value of the normalized pump a.
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Even if t„, =t„v, the threshold is higher than in the

degenerate case. In this case, the threshold may be es-
timated by noticing, from Eq. (3.6), that we must have
equal intensities in the two modes (n, =n2=n ), and by
setting n = 1 and the Rabi angle g t;„,t„, n /At„equal to

1

m/2, where the gain is maximum, so that

d%2 ) 4%l N2

dt t~) (N) +N~ )

g (/ N, +N2 t;„,Xsin4
2 tcav

2

(3.13)

1

threshold g int cav
&

2gt t
(3.9)

which is two times larger than the value for the degen-
erate case."' A similar discrepancy has been found for
the two-photon laser there is no paradox here, since,
due to condition (1.1), one cannot go continuously from
our model to the one corresponding to the degenerate mi-
cromaser.

When A„WA,f, the results are very similar (Appendix
B). The only di6'erence is that the condition for the oscil-
lation regime is now

4

A„=O,f =g,
the transition probabilities e~i and e +f are given, re-—
spectively, by

lb(N&, N2, t;„,)l = sin g 1/N&+N2t;„, ,
Xl +%2

(3.10)

4N, N2 ~ g t/N, +N2t;„,
lc(N„N~, t;„,)I = sin

(N, +N2)

(3.11)

and then the semiclassical equations are

where t & (t & ) is the largest (smallest) damping time and
0, (6, ) the corresponding coupling (0, =0„,

CBV

0, =Of ).
CaV2

(b) Zero detuning: b =0. As in the large-detuning
case, the semiclassical rate equations contain the cavity
loss terms —which are the same as before —and the
atomic gain for each mode, given by Eqs. (2.14) and
(2.15). When

As in the laser case, ' we have in general a different
threshold condition for each mode. Unless t„, » t„, ,

the threshold for the lower mode wiH be obviously
higher. Therefore, the lower mode steady-state intensity
Xz will be zero near the threshold of the upper mode,
where Eq. (3.12) gets

dX,
sin g+N, t;„,—dt t„ tcav

1

(3.14)

which is exactly the semiclassical one-photon-micromaser
equation. Since the li )~lf ) transition is semiclassical-
ly frozen below the threshold of oscillation of the lower
mode, our system behaves as the usual one-photon micro-
maser for low pump parameters.

In particular, the threshold for the upper mode is given
by

=gtlnt

1/2
tcav&

&1.
tat

(3.15)

The threshold for the lower mode is obtained in Appen-
dix 0 when the cavity damping times are equal,

0&~/2 .

Besides, we show in Appendix C that the one-mode
solution

cav . 2 j'
sin g y N, t;„, ,

tat

N =0

(3.16a)

(3.16b)

becomes unstable above this threshold. As in the one-
photon micromaser, we have a continuous "phase transi-
tion" here: N2 grows up continuously from the zero
value at threshold. However, the behavior for larger
values of the pump 0 is quite unusual, because the one-
mode solution given by Eqs. (3.16) gets stable again if

tcav tcav tcav
1 2

which is assumed from now on. We prove that a steady-
state oscillations in the lower mode (Nz&0) is reached
only for

dNl
sin g li N, +N~t;„,

~]+ jap
—m/2~gt;„, (N& )' +2nvr~~/2, n ~Z (3.17)

4N, N2 g+N, +N2t;„,+ sin
(N, +N2) 2

for some integral value of n (see Appendix C), where the
superscript S stands for steady state. In Fig. 5 we show a
one-mode solution at the point where it is getting stable
again for the first time. It corresponds, from Eq. (3.17),
to a Rabi angle given by

tcav
1

(3.12) 377
V (3.18)
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(/)
O

&C
C3

the lower mode threshold.
As we increase the pump 0, a new stable one-mode

solution shows up at the critical points

0= 3m/2, 7~/2, . . .

given by the maximum allowed intensity

Ni =t-.«at .

0
0

dN,
10

FIG. 5. Semiclassical model of the micromaser with zero de-
tuning (6=0): gain (solid line) and loss (dashed line) contribu-
tions to N, vs QN, when there is no oscillation in the lower
mode. N, is the mean number of photons in the upper mode.
The parameters are t„,/t„= 100, gt;„,=3~/20, so that
0=3~/2. One can see two stable solutions of the one-photon
micromaser rate equation [Eq. (3.14)]. The point shown by a
circle corresponds to a stable operation point of the two-photon
micromaser, whereas the one shown by a square corresponds to
an unstable one-mode steady-state solution of the two-photon
micromaser rate equations [Eqs. (3.12) and (3.13)]. Note that
the vacuum is always unstable above the threshold of the upper
mode.

N WN2

and that the equality holds if and only if

g(N, +N~)'~ r,„,=n~, n EZ,
with

(3.21)

However, the oscillation in the lower mode will not cease
at these points. In order to operate the micromaser with
N2 =0 when 0 satisfies Eq. (3.20) one must start from an
operating point inside the basin of attraction of the stable
solution given by Eq. (3.16). We summarize these results
in Table I, showing the many diferent operation regimes
as 0 varies.

From Eqs. (3.12) and (3.13)—with t„„
1

that

Nz =N, = sin (nor/2)=t„„/t„,
tat

(3.22)

Ni= tcav

tat

and, from Eq. (3.16a), to an intensity given by

(3.19)
0= —, n odd,2' (3.23)

if n is odd. If n is even, we get just the trivial (and unsta-
ble) solution N, =N2 =0.

We have therefore

'TT 7T——~0+2n+~ —,n EZ .
2

(3.20)

When L9 (m /2, this solution is the only one: we are below

which is the maximum possible value. From Eqs. (3.15),
(3.18), and (3.19), the pump is, in this case,

g
37T

2

Meanwhile, the other solution of Eq. (3.16a) for this
pump value (shown in Fig. 5) does not get stable, for it
corresponds to a smaller value of the Rabi angle (in the
second quadrant).

More generally, we have a stable one-mode solution
when the pump parameter 0 is found in the intervals

as the condition for having an equal number of photons
in the two modes at steady state. In this case, the atom is
never found in the intermediate state when leaving the
cavity, so that a genuine two-photon process takes place,
even though the intermediate state is exactly tuned to res-
onance.

In order to get a better physical insight into this situa-
tion, we plot in Fig. 6 the transition probabilities for the
e~i and e~f Rabi precessions [Eqs. (3.10) and (3.11), re-
spectively] as functions of the Rabi precession angle

8~(Nt, N2)=g(N, +N2)'~ t;„, .

We normalize the two amplitudes of oscillation to one.
The odd n values in Eq. (3.21) correspond to the situation

TABLE I. Semiclassical model of the micromaser with zero detuning: summary of the results for
the threshold of oscillation and the stability of the vacuum field. 0 is the generalized pump defined by
Eq. (3.15).

1 m/2 3m/2 5m/2 7m/2

Upper
mode
Lower
mode

below
threshold
below
threshold n2 =0 unstable

above threshold
n l

=0 unstable
above threshold

~

n2=0 stable
~

n2=0 unstable
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II~ ~ = —
I [lb(N, +1,N2, t;„,)I + Ic(N, +1,N2+ 1,t;„,)I ]II~ ~

1

tat

, ~,
—Ic(N, N, t;, ) 'll,

tcav
1

+
tcav

2

N2 N1+1
IIN, N, +

tcav
1

iV, +1rr, + ' II„„
cav2

(4.2)

Although it is not possible to find a simple analytical
form for the steady-state solution of Eq. (4.2), one may
still get some useful results from this equation. Thus, we
will analyze the phenomenon of spontaneous self-starting
in Sec. IVB, while in Sec. IVC we obtain analytical re-
sults concerning the fluctuations in the difference of in-
tensities of the two modes. In Sec. IVD we discuss the
numerical solution of Eq. (4.2).

B. Spontaneous self-starting

10 + 01II II

tcav tcav
1 2

(4.3)

For simplicity, we analyze this equation in the case of
equal damping times, t„, =t„, = t„v, equal couplings,

Q„=Q;f=g, and in the limit of large detuning. In this
limit, the master equation becomes symmetric upon inter-
change of X, and Nz, and the steady-state probability
distribution satisfies

S SII = II (4.4)

As seen in Sec. III, in the two-photon micromaser the
vacuum is classically stable in the limit of large detuning,
meaning that it would be necessary for a triggering field
in order to start maser action, even if one is above the os-
cillation threshold. Of course, in the low-intensity re-
gion, the classical approximation should be a poor one,
and one expects quantum effects to play an important
role. Indeed, as we will show in Sec. IVD, Auctuations
associated with spontaneous emission render the vacuum
state metastable, so that the maser actually starts oscillat-
ing after some time, even without a triggering field.
Furthermore, as we show here, the vacuum may even be-
come unstable, above a critical value of the pumping, im-
plying a very fast start of the oscillation in a time of the
order of t„„. In analogy with the degenerate case, we

say that the vacuum becomes unstable when the steady-
state photon-number probability distribution ceases to
have a local maximum at the origin (Ni =Nz=0). One
must have therefore II00 & H10 or H01 at steady state.

The precise conditions for this to happen may be found
from the master equation (4.2), with N, =N2 =0:

II..= — ' [lb(1 O, t;„)I +lc(1 1 t;., )I' ]ll..

state. " From Eqs. (4.3) and (4.5), we get

[lb(l, o, t;., )I'+ lc(l, l, t;.t)l'] &
tat

(4.6)

which has a simple physical interpretation: the vacuum
becomes unstable when the total rate of spontaneous
emission into the two modes, represented by the left-hand
side of Eq. (4.6), gets larger than the total dissipation
rate.

Typical experimental values imply a small two-photon
spontaneous emission Rabi angle g t;„,/b «1, so that
Eq. (4.6) may be approximated by

[4(g/b, ) sin (b, t;„,/2)
tat

+ (g t;„,/b, ) +0 [(g t;„,/b, ) ] ] &
tcav

(4.7)

Furthermore, since typically gt;„,=10, the first term on
the left-hand side of Eq. (4.7)—which comes from the
one-photon correction to the two-photon transition —is
approximately 10 smaller than the second term. Thus,
from (3.5), we finally get the condition

1 tcava )—
2 ta,

(4.8)

for the vacuum to become unstable (spontaneous self-
starting). Equation (4.8) has a form similar to the one for
the degenerate micromaser, except for the fact that the
pumping should be approximately two times larger here,
as in the comparison between the thresholds in the degen-
erate and nondegenerate cases of Sec. III. When the con-
dition of large gt;„, is not met, the first term on the left-
hand side of Eq. (4.7), associated with the one-photon
cascade process, can, in principle, change the stability of
the origin. Then, larger values of n would be necessary in
order to reach the threshold condition.

Finally, we note that the real (quantum) threshold of
the system is somewhere in between the classical condi-
tion (3.9) and the instability threshold [Eq. (4.8)]. As the
pumping decreases from the limit value given by Eq. (4.8)
in the direction of the quantum threshold, the self-
starting time grows exponentially with t„„/t„(cf.Ref.
5). The vacuum becomes stable as t„„/t„—+ ~, which
corresponds to the semiclassical limit.

so that the instability condition becomes

11' (11' =II' (4.5)
C. Quantum tluctuations

where the superscript S stands as before for "steady- As we noted in the introduction, the nondegenerate mi-
cromaser is a very interesting system in the limit of large
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detuning because the gain process feeds the field intensi-
ties of both modes without introducing noise in their
difference. More precisely, we start from the master
equation (4.2) in the limit

6 ))0 Ni, Q fN2,

where the "one-photon" contribution bb* goes to zero
(see Sec. II). Then we get

II~ = —G(N, +1,N +1)II~ ~ +G(N„N )II~

N2 H~~+
tcav

1

Ni
&x,x, —

cav2 tcav
1

tcav
2

(N, + I)11„,„(N,+ I)il
(4.9)

where

G (N&, Nz ) =c (N»N2, t;„,)c*(N&,N2, t;„,)/t„
is the two-photon gain rate. From Eq. (4.9), we get

&N, —N &= —g (N, —N )G(N, +1,N +1)II + g (N, N)G—(N„N )II
N1N2 Nl N2

and

+ g (N, N2)—
Nl N2 ~cav

1
tcav

2

N2 (N, +1) (N~+1)
II + ' n, „+

tcav
1

cav 2

tcav
1

tcav
2Nl N2

&(N, N) &=——g (N, N) G(N—, +1,N +1)II + g (N, N) G(N—„N )II
Nl N2 Nl N2

N2 (N, +1) (N~+1)+ g (N, N) — —+ II + II, + II
~cav

1
cav 2

In both equations the gain terms cancel out, and then

&N, &d
dt

&N N&= —— (4.10)
tcav

2
tcav

1

which is hardly a surprising result. On the other hand,

&N, & &N, &+&(N, —N, )'&=
tcav

2
tcav

1

2&N)(N) —N2) &

tcav
1

2& N2(N, N~ )&-
+

tcav
2

(4.11)

which shows that all the noise in the difference of intensi-
ties comes from cavity dissipation, which removes pho-
tons from the beams randomly, acting independently for
each mode.

From now on, we explore the particular case

&(Ni N2) &=—&N, +N~ &

(4.13)

On the other hand, for a classical field distribution, we
must have'

&(N, —N, )'& —&N, N, »'&N, —+N, & .

Therefore, we have a squeezing factor of 50%%uo for the in-
tracavity field. The important point here is that this re-
sult is explicitly independent of the gain process, so that
we have a general result that applies equally well to all
kinds of two-photon nondegenerate oscillators, as for in-
stance the two-photon laser. Violations of classical ine-
qualities were also sought by Zubairy for a two-photon
laser far above threshold. ' For the correlation functions
considered by him, only small effects could be found. We
see now that the squeezing in the difference of intensities
may reach 50%, at steady state, either above or below the
threshold.

tcav tcav tcav
1 2

(4.12) D. Numerical results

which exhibits in a simple way the nonclassical features
of the nondegenerate micromaser. At steady state, we get
from Eqs. (4.10)—(4.12)

&N, &=&N, &

and

Since we cannot obtain a simple analytical expression
for the steady-state density operator (because of the
higher dimensionality of the problem), the numerical ap-
proach becomes indispensable. We present here the time
evolution of the diagonal elements of the density operator
in three dift'erent regimes: (i) below the threshold of oscil-
lation, (ii) above the threshold of oscillation, but below
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the self-starting threshold, and (iii) above the self-starting
threshold. We use numerical values typical of the degen-
erate micromaser.

t„, =t„, =0 4 ms,

Q„=7.3X 10 s

Q,. =7.5 X 10 sif (4.14)

Ni, N2 100,

Q„Q,-"N, 'f N &10-'
g2

Therefore, we are in the large-detuning limit, and the
master equation is (4.9) with t„„=t„„.The diff'erent re-

gimes are defined by the different values of the pumping—1
tat

(i) t,t' =10 s '. From Eq. (3.9) we see that we are
above the classical threshold, since

—-7X 10 s
tint ~cav

2. 2

=39X 106 s
277

t;„t=2.5X 10 s .

Then
2 2Q„Q;f —10

Q2 Q2

and since the larger values of N&, N2 are at least of the
order of t„„lt„,we have, for typical values of t„,

but Fig. 7 shows that we have no oscillation: the steady
state is concentrated around the origin. We conclude
that the real threshold condition is higher than the classi-
cal one.

(ii) t,, ' =10 s '. Then r,„,))t„,which seems to con-
tradict our basic hypothesis of one-atom interaction.
However, since the dynamics depends on t„only through
t„„lt„[seeEq. (4.2)], we can associated with this case a
larger t„, and a smaller t,, ', with

t„,/r„=400

fixed, and t„~t;„t. Of course, the time scale of the evolu-
tion would be completely changed.

Figure 8 shows the time evolution of the field probabil-
ity distribution. We see that the starting time is finite,
and of the order of 5t„„which means that the vacuum
state is metastable. Figure 9 shows the steady state from
different angles. The symmetry N, ~N2 is particularly
evident in Fig. 9(b).

From Fig. 8, one sees that the variance ((N, —N2) )
starts to increase at t =t„„.Before that time, dissipation
does not affect the field very much and the distribution is
very concentrated around N& =N2. At t ~ t„„dissipa-
tion becomes important, and the fluctuation grows up,
confirming our previous discussion about the role of dissi-
pation, which randomly removes photons from both
modes. In order to clarify this point, we plot in Fig. 10
the variance ((N& —N~) ) against time. The sudden in-
crease of the fluctuations at t =t„, becomes quite ap-
parent.

Finally, we note that the steady-state averages
( N

& ), ( N2 ) are in good agreement with the classical
ones, which are the roots of [cf. Eqs. (3.6) and (3.7), with

r„, =t„„,and the values given by Eq. (4.14)]

(N, ) =(N2) =400sin (5.6X10 (N& )),
given by

(N, ) =(N, ) =So .

(iii) t,,
' =3 X 10 s '. Figure 11 displays the distribu-

tion at t = 1 ms (not yet the steady state), showing the
quantum counterpart of the classical multistability. As
the pumping rate goes up, the distribution is gradually re-
moved from the first classical stable state, reminiscent of
the one shown in Fig. 9, and peaks around the next classi-
cal solution: this is a diffusion process well known from
the quantum theory of the degenerate micromaser. Now,
the starting time is less than t„: the vacuum state be-
comes unstable. Indeed, the inequality (4.8) predicts that
this would happen when

FIG. 7. Steady-state photon distribution in the limit of large
detuning below the threshold of oscillation. The graph corre-
sponds to a = 1, 1 and t„=10 ' s [see Eqs. (3.5) and (4.14)].

1 ) 1.4X10 s
tat

Therefore, we see that the numerical results in both re-
gimes II and III agree well with our analytical work.



5084 P. A. MAIA NETO, L. DAVIDOVICH, AND J. M. RAIMOND 43

V. CONCLUSION

The main novelty of the nondegenerate two-photon mi-
cromaser, with respect to the degenerate one, is the
strong correlation between the two modes, which may
produce a 50% squeezing in the difference of intensities
at steady state. Furthermore, the numerical integration
of the master equation shows that, for small times
(t « t„„), the variance of the difference of intensities
may be even smaller.

The semiclassical analysis led, on the other hand, to
some other new features of the nondegenerate device,
which are related to the threshold conditions for the two
modes. Our treatment is based on a three-level model,
and allows one to go continuously from the situation
where the intermediate state is highly detuned to the res-
onant case. We have shown that, even in this case, it is

still possible to have a genuine two-photon transition: for
some values of the photon numbers, the intermediate
state remains unpopulated.

In order to analyze the building up of the maser oscil-
lation, one needs to take into account the quantum Auc-
tuations. Starting from a three-level model, we get a
master equation valid for any detuning. Therefore, it is
possible to understand exactly how the two-photon tran-
sition regime is attained when the detuning is much
larger than the two-photon Rabi frequency. We get the
same result we would obtain through the effective two-
level Hamiltonian approach of Refs. 4 and 5, which takes
into account the Stark shifts of the upper and lower lev-
els. This is in contrast with some recent results in the
literature, showing that for two-photon lasers the
effective Hamiltonian approach fails even in the region
of large detunings. ' '" Due to spontaneous decay, the in-

FIG. 8. Time evolution of the photon number distribution in the limit of large detuning above the threshold of oscillation. The
parameters are a= 11 and t„=10 s. At t =0, the distribution is centered at the origin. We show the distribution at (a) t =0.25t„„
(b) t =0.75t„„,(c) t = 1.5t„„and (d) t =5t„„.Note that the distribution broadens for t + t„„aswe expected.
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where

IY;„,=A'n„e ' 'a, ~e)

X &i ~+An, fe'a'a, ~i & &f &+H. c. (A 1)

~p) =a(N„N2, t)~e, N„N2)

+b(N, +1,N2, t)~i, N, +1,N2)

+c(N, +1,Nz+ i, t)if, N, +1,N2+1),
for the three-level atom interacting with two modes of
the electromagnetic field. The state

~ g) can be written as so that Eq. (Al) yields

i a(N„N2, t)=n„b(N, +1,Nz, t)QN, + le
at

i b(N, +1,N2, t)=nfc(N, +1,N2+ i, t)+N2+ le' '+n„a(N„N2, t)+N, +le'
at

i c(N, +1,N2+1, t)=nfb(N, +1,N2, t)QN2+ le
Bt

(A2)

The Laplace transforms of these equations, with the ini-
tial conditions a (0)= 1, b (0)=c (0)=0 are

i [za(z) —1]=Q„QN, + lb(z +i b, ),
izb(z)=nf+N2+ ic(z —iA)+Q„QN, + la(z —ih),
izc (z) =n fQN2+ 1b (z +i b, ) .

X)Q„t„
tcav

1

and we define

1 int

t„

%20,-ft„
1

Solving for the Laplace transformed amplitudes a, b, and
c, we get

so that the equations corresponding to (3.3) are written in
the following way:

1a(z) =——
z

b(z)=

Q„(N, +1)
iA ihz z+ —iQ z+ +iQ
2 2

—in„+Ni+1

tcav
1

+ ' [1—cosP(g, +g )],Q„2$,$2

'-., (k+kz)'

c(z) =

iA . iA
z — —iQ z — +iQ

2 2

Q„QN—, + in,fQN, + i

ih ib,z z+ —iQ z+ +iO
2 2

dk
dt tcav

2

nf Zg'
+ '

[1—cosP(g, +&2)] .
(k +4)

where

n=(n„(N, +1)+nf(N~+1)+6 /4)'

The inverse Laplace transforms of Eqs. (A3) yield, finally,
Eqs. (2.11) and (2.12), as well as the corresponding equa-
tion for a (N„N2, t), which should of course satisfy

~a(N„N„t)~'=1 —Ib(N, +1,N„t)l'
—(c(Ni+1,N~+ i, t)(

2QeEt„,
1

2A;f t„„
We linearize now Eqs. (Bl) around gi, g2. We set

g, =g, + e 'b, g„g =g + e 'b, g

The steady-state values gi and gz must obey the relation
[cf. Eq. (3.6)]

(S

APPENDIX B: STABILITY ANALYSIS
IN THE SEMICLASSICAI. THEORY

and we expand Eq. (Bi) in a Taylor series, neglecting
quadratic terms in Agi, and b, gz. We thus get a homo-
geneous system of linear equations in b,g, and b, g2 which
has nontrivial solutions only if A, satisfies

We consider here the semiclassical theory in the more
general situation in which Q„An,f. We write the semi-
classical equations for the new variables

A, +bk+c =0,
where

(B3)



43 THEORY OF THE NONDEGENERATE TWO-PHOTON MICROMASER 5087

(2—f'), n;=
tcav /tat

l =1,2

c =
tcav tcav

1 2

(I f '—),

and f ' is the slope of the gain function [restricted by con-
dition (82)] at the steady-state value.

If both roots of Eq. (83) are negative, or have negative
real parts, the steady-state values are stable. From Eqs.
(84), one trivially concludes that the stability can be dis-
cussed by the simple analysis of the gain-dissipation
graphic restricted to condition (82), as shown in Fig. 4.
When the roots of (83) are complex, we have an oscillato-
ry approach to steady state. From Eqs. (83) and (84),
this happens when

Then Eqs. (3.12) and (3.13) may be written as follows:

dn] lZ]
sin 8+n, +n2

n] +n2

4n]n2 0+ , sin' —Qn, +n, —n, ,
(n, +n2)

(C2)

dna 4n, n2 4 8+n i+ n2
sin n2

(n, +n2)
(C3)

where 9 is the "pump parameter, " defined in Eq. (3.15).
From Eg. (Cl) we get for the one-mode steady-state in-
tensity n,

b —4c=2

2

2 2
+eI. tcav + Qrf tca

1 2

X tf'2+(K 4)f' (K ——4)] (—0, (85)

noi=sin'e(noi)'" . (C4)

From now on, we follow the procedure of Appendix B,
linearizing Eqs. (C2) and (C3) around the point (n i, 0),
given by Eq. (C4). We define the parameter A, through

where n] =n]+e 'An], n2=e 'An. 2 . (C5)

(86)
Expanding Eqs. (C2) and (C3) up to first order in b, n i and
An2, we get a system of linear equations that has non-
trivial solutions for the following values of A, :

The inequality (85) can be satisfied for some value of f'
only if sin29(n, )'i —1,0

2(
—0 )ii2

(C6)

K&4,
which, from Eq. (86), is equivalent to the pair of condi-
tions

tcav cav
1 2

A, =tg (n, )' ——1 .0 0
2 2 1 (C7)

Since we are only considering solutions of Eq. (C4) which
correspond to stable one-photon micromaser stationary
states, the A. ] eigenvalue is always negative:

and
4

A,](0 . (C8)

where t) (t( ) is the largest (smallest) damping time and
(Q, ) the corresponding coupling time (0, =0„,

cav1

=Q,f ).
cav2

APPENDIX C: STABILITY
OF THE SEMICLASSICAL SOLUTIONS

WITH N2 =0 AND ZERO DETUNING

Here we discuss the stability of the "one-mode"
steady-state solutions

If A, 2 is also negative, the one-mode solution is stable, oth-
erwise it is unstable. Thus, from (C7), we arrive at the
desired result: the one-mode solution is stable if and only
if the Rabi angle is in the first or fourth quadrants:

—~/2(9(n, )' +2k~(~/2; k EZ . (C9)

APPENDIX D: SEMICLASSICAL THRESHOLD
OF OSCILLATION FOR THE LOWER MODE,

WITH ZERO DETUNING

Here we obtain the threshold of oscillation for the
lower mode, when 6=0. In Appendix C we saw that the
one-mode solution (Xz =0) becomes unstable when

0& ~/2, (D 1)

X2 =0

tcav
sin (gag, t;„,),

tat
(C 1)

of Eqs. (3.12) and (3.13). As in the large-detuning case,
we change to the variables

although it gets stable again for larger values of 0.
Therefore, the critical value of 0 fixing the threshold 0, is
at best equal to m/2. Now we prove that there is no
steady-state solution of Eqs. (3.12) and (3.13) with Kz&0
when

0 ~ vr/2,
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so that the critical value is

0, =m. /2 .

First, we demonstrate two useful inequalities. Since
each atom can emit at best one photon in the average, we
get

tcav

and then

N;

tat
i =1,2

n, = (1,
lcav /rat

i =1,2. (D2)
V'n, +n,

n&
n, n2= — sin e')/ n, +nz,

n&+n2

4n&n2 0
n = sin —Qn +n

(n, +n~)

If n2&0, we get from Eq. (D4)

(D3)

(D4)

From Eqs. (3.12) and (3.13) we get the equations for the
steady-state intensities n, and n2.

FIG. 12. Semiclassical model of the micromaser with zero
detuning: threshold of oscillation of the lower mode. We plot
the functions f (Qn, +n, )=(n, +nl )' (solid line) and
g(Qnt+nl ) =4n, sin (e/2+nt+nl) (dashed line), where nt
and n2 are the normalized mean intensities of the upper and
lower modes, respectively, and 0 is the pump parameter, defined
by Eq. (3.15). 0=1.52 and n& =1. Note that there is no inter-
section for Qnt+nl & 1, fixing the threshold at e=lr/2 (see
text).

40
ni n2+ 4 sin — n &+n2

(D5)
n& ni+n2

g ( Q n, + n 2 ) =4n
&
sin Qn, +—n 2
. 4 0

and from Eqs. (D3) and (D5)

, eon, +n, n, +n, )1.
2 n —n1 2

Therefore, we find that the Rabi angle

e, =eon, +n, =g QN, +N, t,„,
must lie in the second or third quadrants:

—&e +2k'&, keZ7T 3'
R 2 ' (D6)

when Nz&0 (compare with the result in Appendix C
about the stability of N2=0). Rewriting again Eq. (D4),
we get, if nz&0,

(n&+n2) =4n&sin —Qn&+n2 . (D7)

We look for a solution of Eq. (D7) with e & rr/2 compati-
ble with the above inequalities. In particular, we want

n, ~l,

with e & rr/2. The roots of Eq. (D7) correspond to the in-
tersections of the curves shown in Fig. 12. We see that if
n, & 1 [Eq. (DS)], the unique interaction occurs at a value
of Qn, +n2 less than unity, violating Eq. (D10), because

g(1)=4n sin — & 1=f(1). 4 0
1

and due to the much stronger increasing of the function
f. Therefore, there is no solution of Eq. (D7) which
simultaneously satisfies the inequalities (DS) and (D9)
when 0 ~ m/2, thus demonstrating our result.

APPENDIX E: PROOF OF THE STABILITY
OF THE SEMICLASSICAL STATE
WITH Xi =N2, ZERO DETUNING

Here we show that the steady state with intensities
given by

(El)

eon t +n2 ) rr/2

Equation (D9) implies that

'tt/ n 1 +n 2 ) 1

In Fig. 12 we plot the functions

f(Qnt +n~) =(Qn, +nl )

(DS)

(D9)

(D10)

at e=nrr/v'2, n odd, is stable. Following the same pro-
cedure of Appendixes B and C, we use the usual renor-
malized variables

n, =
tcav /tat

l =1)2 (E2)

and linearize the zero-detuning equations (C2) and (C3)
around the point

(E3)



43 THEORY OF THE NONDEGENERATE TWO-PHOTON MICROMASER 5089

We define the small deviations hn, and hn2 through the
equations

tion comes from the cavity dissipation —when we expand
Eqs. (C2) and (C3) around the point given by Eq. (E3):

n] =1+e 'hn], n2=1+e 'hnp . (E4)
A,an] = An], A, Any = An2

Since the gain is stationary under small deviations from
the steady state given by Eq. (E3), we get very simple
equations for hn ] and An 2

—where the unique contribu-
and thus A, = —1, implying the stability of the steady
state.
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