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Two-photon-loss model of intracavity second-harmonic generation
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The input-output theory, originally developed for a linear coupling between cavity mode a and a
bath, is extended to a coupling that is quadratic in the cavity mode operator a. We then apply this
to second-harmonic generation, in a cavity that is resonant at the fundamental frequency and has an
active laser medium working at the fundamental frequency. We find intensity squeezing of 50%
below the shot-noise level in the output light at the second-harmonic frequency, whether or not the
cavity is resonant at the second-harmonic frequency. To compare the singly resonant cavity to the
doubly resonant cavity, we develop in an appendix a general technique for extracting a single mode
from a continuum.

I. INTRODUCTION

The input-output theory of Gardiner and Collett' has
been applied to many problems in quantum optics where
a cavity mode is coupled linearly to a continuum of out-
put modes; for example, the degenerate parametric
amplifier, ' four-wave mixing and two-photon transi-
tions inside a cavity, and squeezed-reservoir lasers. In
this article we extend the standard theory to a coupling
which is quadratic in the cavity mode operator a. An im-
mediate application of this lies in second-harmonic gen-
eration intracavity with an active laser medium, which
has been the subject of much recent research. " The
cavity is generally resonant at or close to the laser fre-
quency, but experimentally it is difficult to make the cavi-
ty resonant at the second-harmonic frequency also. Thus
the singly resonant cavity is the more commonly em-
ployed configuration, but the doubly resonant cavity has
been concentrated on theoretically to enable straightfor-
ward calculation of the second-harmonic output. Intensi-
ty squeezing of 50% below the shot-noise level has been
found for the doubly resonant cavity; we wish to see how
much can be achieved with the singly resonant cavity.

To compare the two systems we will redescribe the
continuum at the second-harmonic frequency in a way
which allows the two-photon loss model to also describe
the doubly resonant case. This is the subject of the Ap-
pendix to this paper.

II. QUADRATIC COUPLING TO A BATH

Consider the Hamiltonian

Thus a single mode a of the system interacts quadratical-
ly with a continuum of bath modes b(co), the coupling
constant being ic(co). We make the approximation that
ic(co) is independent of frequency co (a Markov approxi-
mation), and define p, the two-photon-loss rate, by

p = 27TK (2.4)

We define "input" and "output" fields b;„(t) and
b,„,(t) in the usual way, ' and obtain Langevin equations
for a with two-photon damping

a = ——[a,H, „, ]—pata +2&patb;„system (2.5)

= ——[a,H, „, ]
—pa a —2&lLa b,„, . (2.6)

Following the methods of Ref. 1 we can investigate the
statistics of the output field b,„t and relate these to the
statistics of the system mode a. We find that, for instance
(given vacuum or coherent input field b;„),

( ,b„,(t), .b„, ( 'r) ) =lj, T(,a'(t), a'(r') ), (2.7)

The statistics of the output field are related to the statis-
tics of the system operator to which they are coupled,
which in this case is a instead of the more usual a. In
Sec. III we will be interested in intensity fluctuations.
Defining the output intensity operator

where T is a time-ordering operator, by which annihila-
tion operators are ordered with time increasing from
right to left, and creation operators with time increasing
from left to right, and for any operators 3 and B

(2.8)

system +~bath, 2 +~int, 2 (2.1)
(2.9)

where the 2 is to remind us that the system is quadratical-
ly coupled to the bath, and

Hb, „„~=AI dco bt(co)b(co), (2.2)

H;„, ~=i%'I dco~(co)[bt(co)a b(co)a ] . (2.3—)

a and b( )acroe the boson operators for a single mode of
the system and a continuum of bath modes, respectively.

we can show that for a vacuum input field

where:: denotes normal ordering, and

I(r)=a (r)a(r),

the internal photon number operator for mode a.

(2.10)

(2.11)
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III. INTRACAVITY
SECOND-HARMONIC GENERATION

IN A SINGLY RESONANT CAVITY

We are interested here in second-harmonic generation
intracavity with an active laser medium working at the
"fundamental" frequency co1. The cavity is constructed
to be resonant at frequency co1, but not at the second-
harmonic frequency 2co1. Experimentally this is a far
simpler system to realize than a cavity resonant at both
co1 and 2co1. Upconverted photons are emitted directly
into the bath field at the second-harmonic frequency.
The Hamiltonian for the system is then of the form of Eq.
(2.1) with H,„„, defined by

Hsystem ~~ +H laser +H»th, 1 +Hint, 1 (3.1)

where H1„„represents the active laser medium driving
mode a at the fundamental frequency, and H;„, , de-
scribes the linear coupling of mode a to the bath
represented by H», h 1. H», h z and H;„, 2 are then defined
by Eqs. (2.2) and (2.3), with the identification of 1~(co) as
the coupling between cavity mode a at the fundamental
frequency and the continuum of modes b(co) around the
second-harmonic frequency.

Walls, Collett, and Lane have considered the statistics
of mode a, using Louisell's' model of the laser, and a
more conventional interpretation of the quadratic cou-
pling as a two-photon absorber. Equation (2.10) tells us
that we will be able to use these results to calculate the
statistics of the output field at the higher frequency.

The phase of mode a diffuses freely, but decouples from
the intensity. The steady-state internal intensity in mode
a is

harmonic generating crystal not present). X is a scaled
nonlinearity, defined by

n, p
'V1

(3.4)

where yi is the linear amplitude loss rate at the funda-
mental frequency (and p is the two-photon-loss rate, as
above). The normally ordered spectrum of intensity fiuc-
tuations for the internal mode a, defined by

:St(co):—= f dr T(:I(t+r),I(t):)e (3.5)

To obtain the spectrum of the output intensity around
the fundamental frequency we need only multiply (3.6) by
4y&. Only modest levels of squeezing (at most 12.5%
below the shot-noise level) were found.

We now use the techniques outlined in Sec. II to calcu-
late the spectrum of the output intensity at the second-
harmonic frequency:

:St (co)::—f dr T(:I,„,(t +r),I,„,(t):)e ' ', (3.7)

where

Iout —~ out~out (3.8)

We can use the relation (2.10) between correlation func-
tions to write

was calculated using a standard linearization procedure
to be

(r) 2(1+Xi')/(1+ i') Xi-'
[[i'/(1+i')](1+X+2Xi') I +(co/2y, )

(3.6)

i'= [[(X+1)+4X(C —1)]' —(X+1)], (3.2)
1

2X

where

:St (co):=p:Sl&(co):,

where

(3.9)

n,
(3.3) (3.10)

n, and C are laser parameters; n, is the saturation photon
number, and C is the upper level pump rate (normalized
so that C = 1 corresponds to threshold, with the second-

(3.11)

with the last step being valid provided I ))1. In this lim-
it &I.„,) =p, &r') =@&I)',so

(3.12)

2( 1+Xi') /( 1+i') Xi'—=2Xs'
[[i'/(1+i')](1+X+2Xi')[ +(co/2y, )

(3.13)

which has its minimum value of —
—,
' (i.e., squeezing of

50% below the shot-noise level) at zero frequency (co =0),
when

(3.14)

and

The first of these conditions guarantees that the laser is
operating well above threshold, and hence producing
photons with Poissonian statistics; the second condition
implies that nearly all of these photons are upconverted.

IV. THE DOUBLY RESONANT CAVITY

Xi ))1 . (3.15)
Let us consider again the coupling between our single

cavity mode a at frequency cu1 and the continuum of
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modes b(co) at frequency 2', , in the Markov approxima-
tion:

8;„,=iA'~ de b co a —b cu a (4.1)

b (co)
l&

(4.2)

We can then write [from (A21)]
1/2

Xz
b(co) = +b'(co) .

Pz+ l co
(4.3)

The coupling to the other modes contained in b'(co) is as-
sumed to be very weak, so that we may ignore these
modes; substituting (4.3) into (4.1) we obtain

v'?, i
0;„,=iAB a v J dc@ . +c.c.

l CO

iA

2
gBta +c.c. ,

(4 4)

(4.5)

the usual Hamiltonian for second-harmonic generation,
where the second-harmonic coupling constant g is

y=2~+~y, . (4.6)

V. COMPARISON BETWEEN THE
OUTPUT INTENSITY SPECTRA

In this section we compare the intensity spectra of the
output light at the second-harmonic frequency, for the
singly and doubly resonant cavities. The spectrum for
the singly resonant cavity is given in Eq. (3.13). Intracav-
ity second-harmonic generation with a doubly resonant
cavity has been analyzed by Walls, Collett, and Lane.
Above a critical internal second-harmonic intensity the
phase difference between the two modes becomes bi-
stable; below this point the zero-frequency (co=0) com-
ponent of the spectrum of the output light at the second
harmonic turns out to be identical to that in (3.13), with
the replacement of Xby X' where

tl
X'=—

'Y &~z
(5.1)

where yz is the amplitude cavity loss rate at the second-
harmonic frequency, and y is the normal second-
harmonic coupling constant, as defined in Eq. (4.5) above.
On first inspection it seems as though X' depends on yz,
whereas X does not. However, Sec. IV shows us that in
fact

n, (2vra )X'=X= (5.2)

The "bare" coupling constant v is a property only of the
crystal used and the elements of the cavity at the funda-
mental frequency.

If we now make the cavity resonant at frequency 2'&,
with cavity loss rate yz, we are selecting a single mode B
from the continuum of modes b(co), where, in a rotating
frame,

1/2

that is, the two scaled nonlinearities are in fact equal, and
depend only on n„~, and y&, which are all properties of
the cavity at the fundamental frequency only.

Thus the zero-frequency component of the output
spectrum obtained, for a given crystal and given proper-
ties of the cavity at the fundamental frequency, is the
same whether the cavity is resonant at the second-
harmonic frequency or not. At nonzero frequencies the
spectrum for the doubly resonant cavity does differ from
that for the singly resonant cavity. In the region in
which the doubly resonant system exhibits bistability,
the spectra for the two systems are completely different.
However, the intensity squeezing for that system is not
improved in the bistable region. ' Thus, if intensity
squeezing of 50% below the shot-noise level is desired,
our results show that the singly resonant cavity, which is
easier to realize experimentally, is just as good as the
doubly resonant cavity.

VI. CONCLUSION

In this paper we have applied the input-output theory
of Gardiner and Collett' to a case where we have a qua-
dratic coupling to a bath rather than the usual linear cou-
pling. We have then used this technique to examine in-
tracavity second-harmonic generation in a singly reso-
nant cavity. We obtained intensity squeezing of 50%
below the shot-noise level in the output intensity at the
second-harmonic frequency. By selecting a single mode
from the continuum at the second-harmonic frequency
we were able to derive the usual Hamiltonian for second-
harmonic generation in a doubly resonant cavity. We
finally made use of this derivation to show the surprising
result that, below the bistable region observed in the dou-
bly resonant cavity, the zero-frequency fluctuations in
the light output at the second-harmonic frequency were
in fact independent of the properties of the cavity at the
second harmonic. The singly resonant cavity is the easier
system to realize experimentally, and hence is to be pre-
ferred if the intensity squeezing is to be observed.
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APPENDIX: GENERAI. TECHNIQUE
FOR EXTRACTING AN ISOLATED MODE

FROM A CONTINUUM

The problem we wish to address is this: given a system
described by a continuum of mode operators b(co), but
which possesses an isolated mode B of particular interest,
how can we redescribe the system in terms of a orthonor-
mal set formed by this one mode B and a new continuum
b(co)? This is efFectively the converse of the problem
treated by Fano. '

Let the isolated mode be given by

B =j dcoP(co)b(co), (A1)

where [B,Bt)=J dco~l3(co)~ =1, and the new continu-
um by
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b(co)=b(co)+ f dco'f(co, co')b(co') . (A2)
left with

Our problem is then: given P(co), find f(co, co'). The
orthonormality conditions that must be satisfied are

where

P*(cd)P(cd' )

n(co)[h (co)—h (co') ]
(A 14)

[b(cd), B ]=0,
[b(co), b (co')]=5(co—co') .

(A3)

(A4) „( ) f - d„ IP ~ I'

h (co)—h (co)
(A15)

The first of these requires

P*(co)+f dco'f(co, co')P*(co') =0,
which is automatically satisfied by writing

P*(cd )P(cd' )g (Cd, Cd' )

f dcd g(co, cd)~P(cd) ~'

for some g(co, co'). The second requires

(A5)

(A6)

and h(co) is an arbitrary real function. In practice, the
most sensible choice is likely to be h (co ) = co for a
rotating-wave system (with mode operators for all fre-
quencies, positive and negative) and h(co)=co for a sys-
tem with positive-frequency mode operators only. The
integral may be taken in either direction around the pole,
as long as the choice is adhered to consistently.

The inverse transform to Eqs. (Al) and (A2) may readi-
ly be confirmed to be

f(co, co')+f*(cd', cd)+ f dco f(cd, co)f'(co', co)=0 b(co) =b(cd)+P*(co)B+f dco'f *(co',co)b(co') . (A16)

and hence

g (Cd, Cd')g *(Cd', Cd )+g *(Cd', CO)g (CO, CO)

(A7) Applying these results to the single damped cavity mode
of Sec. IV, we have

1/2

g (co, cd )g (co, co ) =0 . (AS)
P(cd) = (A17)

We wish to find the most general form of g(cd, co') satis-
fying this condition. Applying Eq. (A8) for two arbitrary
values ~& and co2 of co, and combining to eliminate
g*(co', co), gives

g ( Co, Co i )g ( Cop Cd ~ )[g *
( Co',

CO2 ) —g *(Co', Co
/ ) ]

g(cd, Cd') =
g ( Cd, Cd/ )g ( Cd, Co i ) g ( Co, Co i )g ( Co, CO 2 )

(A9)

Choosing h(co)=co, we have

1 1
n(co) = dco

P 2+ 6) 6) CO+1 E'

CO+ i /2

(A18)

(A19)

where

c(co)
h (cd) —h *(co')

(A10) (where the infinitesimal e performs its usual function of
selecting direction of integration around the pole). The
upper sign is the sensible choice, giving

2g (co, co, )g (co, cdz)
c(co)=

g ( co& co i ) g ( co& cop )
(Al 1)

72 1
f(co, co') =i

1T(1'~ icd ) co co +lE (A20)

g(co, co, )+g(co, co2)
h(co) =

g ( co, co i ) g ( co, co2 )
(A12) and hence

1/2

h (co)—h*(co)=0 . (A13)

Substituting back into Eq. (A6), c(co) cancels and we are

Choosing g (co, co') of the form given by (A10) now
satisfies Eq. (A8) in general, for arbitrary c(co) and for
any h (co) satisfying

b(co) =b(co)+ 72 8
P2+ l CO

ir2 - , b(~ )dc'
7T(1'p+ &co) —~ co co ie

which is the required result.

(A21)
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