
PHYSICAL REVIEW A VOLUME 43, NUMBER 9 1 MAY 1991

Intensity Auctuations in a frequency down-conversion process with three-level atoms
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An ideal nondegenerate parametric oscillator is known to give perfect squeezing in the difference
of the intensities of the signal and idler modes. In this paper, we look at a frequency down-

conversion system comprising three-level atoms in a cavity. The squeezing in the intensity
difference is calculated and found, in general, to be degraded by spontaneous emission. In the li.mit
of large detunings, the system is found to behave as a nondegenerate parametric oscillator.

I. INTRODUCTION

There has recently been considerable research activity
in demonstrating the quantum noise reduction or squeez-
ing in the difference intensity of the signal and idler
modes of a nondegenerate parametric oscillator. The
squeezing in the intensity difference is a consequence of
the simultaneous production of a pair of signal and idler
photons. Although the uncorrelated transmission of the
signal and idler photons through the cavity mirror dimin-
ishes the pair correlation for short times, for long times
the pair correlation is recovered. This results in a dip in
the spectrum of fluctuations for the difference current
below the shot-noise level, approaching zero at zero fre-
quency.

A number of theoretical papers have appeared that de-
scribe this effect, ' and experiments have recently been
carried out by Heidman et al. and Nabors and Shelby
showing squeezing of 30% and 54%, respectively, below
the shot-noise level in the above-threshold nondegenerate
parametric oscillator.

In this paper, we wish to consider an ensemble of X
three-level atoms in a ladder configuration interacting
with three cavity modes of the electromagnetic field. The
cavity is driven at the high-frequency (pump) and this
produces some excitation of the atoms. Photons may be
emitted into the signal and idler modes by cascade transi-
tions. The cavity modes are detuned from the atomic
transitions. While there are some analogies with the
parametric oscillator, the proximity of the atomic levels
will mean that some population will appear in the excited
states and the correlation between the signal and idler
photons will be degraded by spontaneous emission and
the finite lifetime of the atomic levels. The experiments
on the optical parametric oscillator were performed using
a crystal with an optical nonlinearity where all transitions
were assumed to be virtual. We shall determine in which
limits the three-level atomic medium approaches the be-
havior of the parametric oscillator.

Recently the effects of spontaneous emission on the
photon pairs emitted in four-wave mixing in a two-level
atomic medium have been calculated by Zhang and
Walls. These calculations are relevant to a recent exper-
iment by Vallett, Pinard, and Grynberg.

The calculations presented in this paper consider a
three-level medium and are based on theoretical tech-
niques developed by Scully and Zubairy to describe a
correlated emission laser.

II. THE MODEL AND THE EQUATIONS OF MOTION

We consider a system of three-level atoms which are
being injected in some lower state, ~c ), into a cavity at a
rate r, . The atomic levels are shown in Fig. 1. The tran-
sitions ~a )-~ b ) and

~
b )- c ) are assumed to be dipole al-

lowed, while the dipole-forbidden transition ~a )-~c ) is
induced by some external means (for example, by apply-
ing a strong magnetic field for a magnetic dipole-allowed
transition). The ~a )-~c ) transition is driven by an exter-
nal field which is suKciently strong that it may be treated
semiclassically. The Rabi frequency is denoted by Qe
The other two transitions will be treated quantum
mechanically but only to second order in the coupling
constants. The atoms are interacting with three field
modes: a pump, a signal, and an idler.

The Hamiltonian consists of a free part, an interaction
part, and a part due to the dissipation in the system:

Co

FIG. 1. The three-level system.
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V=1rig1(a1la ) & bl+a1lb ) &al)

+&g ( Ib&& I+ 'I &&bl)

—-'An(e '1' '"la ) &cl+e' +'"lc) &al),
2

Hb„„,= g (a;I;+I;a; ),

where Ia ), Ib ), and c ) represent the upper, intermedi-
ate, and lower atomic states, respectively. The creation
and annihilation operators a„a„a2, and a& correspond
to the signal and idler field modes of frequencies v, and
v2, respectively; g1 and g2 are the coupling constants as-
sociated with the transitions

I
a ) -

I
b ) and

I
b ) -

I
c ), re-

spectively; and v is the frequency of the strong pump
field. I 1 and I z are the bath operators for the cavity
damping of the signal and idler modes. The baths are as-
sumed to be at zero temperature. Hb„h2 represents the

I

losses due to the spontaneous emission of the atoms. The
spontaneous emission from all three levels is assumed to
be the same, y being the spontaneous emission rate into
all other levels.

A similar system is treated by Ansari, Gea-Banacloche,
and Zubairy. They look at the degenerate case and the
classical driving field is taken to be resonant with the
atomic transition. They investigate tke impact of the in-
duced coherence between the upper and lower levels on
the action of the system as a phase-sensitive amplifier
and, when placed in a cavity, as a two-photon correlated
emission laser. The master equation derived in Ansari,
Gea-Banacloche, and Zubairy is based on theoretical
techniques derived by Scully and Zubairy to treat a
correlated emission laser. The method employed by Scul-
ly and Zubairy involves solving for the probability am-
plitudes of the field-atom states and integrating the prob-
ability densities over all the atoms in the ensemble to ob-
tain density-matrix elements. The atomic variables are
eliminated by forming the reduced density matrix for the
field pF. This is done by tracing over the atomic states in
the oft'-diagonal atom-field density matrix. The equation
of motion for p~, apart from the cavity loss terms, is

& "1nzlA In1nz &
= —(I'12P21 —

P1z I'21 ).. ., +1 .. .,+1
I I I I

n
1
~n1+1 n2~n2+1

l l

2
( ~zlp12'+ +23P32' Pzl'~1'2' P23' ~2'3' ) n ~n +1 ( ~32P23' P32' ~2'3' )n2 "2 2

I I
n2 n2+1

The subscripts refer to the following atom-field states:

I 1 ) = la, n, —l, n —1),
I2& = lb, n, , n, —1&,

(2)

P12' , for example, is the matrix element of p between the states
I

1 ) and
I

2' ), where nz and n z are replaced by
n2 n2+1

I I
n2 n 2+1

n 2+ 1 and n 2 + 1, respectively.
As a first step to evaluating the reduced density-matrix elements p, z, , pz, pz3, and p3z the wave vector Ip) is expand-

ed in terms of the eigenstates of the atom-field system:

ly) = g g A, Ii, m„m, ),
i =a, b, cm1, m2

(4)

where A; is the probability amplitude of finding the atom in state i ) and the fields of modes one and two in the
1 2

states Im1 ) and
I mz ). The Schrodinger equation can be solved to give

A,„„= i (co,„„—iyl2)A, „—„+—Qe '~ ' 'A,„„2 1 2 1 2 2 1 2

1 2 1 2 2 2 1 2
(6)

where co; =A'co;+A'(v, m, +vzmz). Terms causing a change in population of the Ia ) and Ic ) levels due to transi-
1 2

tions from the intermediate level have been dropped. This assumption holds as long as the pump field is sufficiently
strong and the coupling is not too large. This gives equations of the form (5) and (6), which can be solved exactly. In
the work of Scully and Zubiary and Ansari, Gea-Banacloche, and Zubairy. these equations are solved for the pump
field on resonance with the atomic transition. We introduce the following detuning:

(7)
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Making the transformation
—i (co —i@/2)t +i (co —iy/2)to

1 2 1 2
Aan n

1 2
Aan n

1 2

—i (co „„—i y/2)(t —to)
Acn n

1 2
Acn n

1 2

the solutions to (5) and (6) may be written as

(9)

(10)II;p+(;)z)g) (i/2)p(t —to) —(E'Iz)p(t —&0)
e ' ' e —eal1 ( Itz H)flz

cn1 n2

where the atom is injected into the cavity at time to in its lower state lc & and A „„ is the field probability amplitude
1 2

evaluated at the initial time to. We also have

p=(b, +0 )'

For the intermediate level the equation of motion is

Ab„„=—i(cob„„—iy/2)Ab„„—ig(V ni A,„ i„igzQ—nz+ I A,„„+(.

(12)

(13)

Following Scully and Zubairy this can be integrated out, and the solutions for A,n, n and A, n n +, substituted in.
1 2 1 2

The reduced density-matrix element p, z can be obtained by summing the contributions A,„,„,(t)A, (t) of

all the atoms which are injected at random times at a rate r, :
t

p, z
= r, dt() A,„,„,(t) A', (t) . (14)

In writing down the density matrix elements, a "coarse graining" approximation is being made. This assumes that the
passage of a single atom will cause only small changes in the field. Because the field is not changed appreciably,
A„„(to) can be replaced by A„„(t). This approximation will hold as long as the characteristic transit time for the

1 2 1 2

atoms is small compared with the time scale over which the field changes. When (14) is evaluated, we have

Plz' (n i
)' "&n i

—1,nz —1 IPF In i
—I, n z

—1 & Ti i (n z
)' "&n i

—I, n z
—1 IPF In in z

where

(15)

i 0
T» = gi~c

2
1 1 1+

y ip y+i(h—, +b/2 —p/2) y

1 1

y+ip y+i(b, , +b, /2+p/2)
(16)

T)2= 4g2r, 2
e

p

6+p —6+p
'P

1

y —i(b, z
—b, ,

—b, /2+ p/2)

—6+@ 6+@ 1+
y y+ipy i (b, z

—
,b, ,

——b, /2 —p, /2)
(17)

Here &0 =/+ 9 zt, and the detunings b, i and b, z are given by (see Fig. 1).

V) —CO COb

V2 —
COb Cc) +6

~

In a similar manner, the matrix element p32 can be evaluated:

P3z =(n i
)'"&ninz IPF ln i

—l, nz —1&Tzi+(nz)'"& ninz IPF In inz

where

(19)

(20)

i 0T21= 4g jr, 2
e'

p

1 5+p
y ip y+i —(b, , +6/2 —p/2)

1 —6+@
y+ ip y+ i(b, i+ 6, /2+ p/2)

(21)
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r

i 1
' 6+p —5+p

22 2 ~c4 ''p' r r —ip
6+p

y —i (Az —b, ,
—6/2+p/2)

—6+p 6+p —4+p+
y y+ip y i—(bz —b,

&

—b, /2 —p/2)
(22)

The results can be substituted back into (2) and a master equation for the interaction part of the Hamiltonian ob-
tained:

PF I ~1 la I + 1PF +~11PF+1a 1 (~11+~11)a1PF+I +I 22+ z~zPF+~22PF~ 2+2 (Izz+~zz)+2PFa 2 j

I ~12+ I+zPF+I 21PF+ I 2 (I 12+~21 ) zPF I je '
I l 21

—la 2PF+~12PF~ I+ 2 (~12+I 21)a I PF~ 2 ~

where

(23)

i 0 1

4 p' 1+(p')
1+ip' 1 —i p'

1+i (b, ', + b, '/2 —p'/2) 1+i(b, ', +6'/2+ p'/2)
(24)

Pzz — lgz Tzz

=1 1=—A2
4 (p')'

—6'+p'
I lp

6'+p'
1 i ( b, z

—6', —b, '/2+—p'/2)

6'+p' —~'+p'
1+&p' 1 i (b z

——b, I
—b, '/2 —p'/2)

(25)

j3Iz =

4 (p')' p
1 ~ 0 ~l+, + 6 +p

1 lp
1

1 i ( Az —b—, I
—b, '/2+ p'/2)

—6'+p'+ 6'+p' 1

1+ip' 1 i (Az —b I
——6'/2 —p'/2)

(26)

'gz Tzie

i 0' 1 (b, '+p')(1+i p') ( —b, '+p')(1 ip')—
p' 1+(p')z 1+i(b, I+ b, '/2 —p'/2) 1+i (b I +3,'/2+p. '/2)

2

PF= g ~ (l~ PF ~ j+l& PF«'j» (29)

cNIp
2

'V

c2
2

'V
(28)

where K& and K2 are the cavity linewidths of the two
modes. The explicit time dependence in the master equa-
tion can be transformed out by using the unitary transfor-
mation

~cN I23— r'
A11 primed variables have been scaled by the spontaneous
emission rate y. The real and imaginary parts of PII and
Pzz are responsible for the nonlinear absorption and non-
linear dispersion of modes one and two, respectively. P&z
and Pz, provide the nonlinear coupling between the two
modes.

The terms in the master equation due to the cavity
losses are given by

(30)

a, = —(Ic, —PI, )al+gaz+ I

az = (pcz i b z+Pzz)az+ h at +1- —
where

(31)

(32)

The generalized I' representation' can now be used to
transform the operator master equation into a c-number
Fokker-Planck equation, from which the stochastic
diA'erential equations can be written down as
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(33) where

5053

h = —p2, e (34) +~
K) K(

and the noise terms have the following correlations:

(1,(r), I (r') ) =f5(& —r'),

( I (r), I (r') ) =h 5(r r'—),
(I t(r), I t(r')) =h*5(r r') —.

al ' a2

(35)

(36)

(37)

III. SPECTRUM OF INTENSITY FLUCTUATIONS

f =p»+ p» is the phase-insensitive noise or fluorescence.
h is the phase-sensitive noise.

K) +K2

+~
K( K2

K2+K 2

The modified damping coefticients are defined as

K] —K] p] ]

IC2
—K2 l A2+ pp2

F is a constant vector given by

(40)

(41)

(42)

In the nondegenerate parametric oscillator, signal and
idler photons are produced in pairs and are hence highly
correlated. We wish to see whether this high correlation
is maintained despite the spontaneous emission intro-
duced by the atoms. In order to investigate this, the fluc-
tation spectrum of the intensity difference between the
signal and idler modes will be calculated. The procedure
is to linearize the equations of motion and then calculate
the spectrum.

Because the system is being driven below threshold, we
form intensity variables

I=(a]a],a]a2, a]a2, a~a2) .

The equation of motion for the intensity variables can be
obtained by applying the rules of Ito calculus. " We ob-
tain

i= —W I+F+r,

F=

I is the noise term

cz&l +cz&I
1 a&

+~2I

~',r &+~',r &

2

+~2I
2 a2

and satisfies the correlation condition

(I (r)r(r )') =D5(r t'), —

where D is the diffusion matrix

(43)

(44)

(45)

2f (I1) h (I1)+f (I2 ) h*(I1)+f'(I3) h "(I2 )+h (I3 )

2h(r, ) f&r, ) h(r, )

2h*&r, ) h*(r„) (46)

(I)„=A 'F . (47)

Steady-state solutions exist only if they are stable under
small perturbations. Stability is guaranteed if the real
part of the eigenvalues of the coeKcient matrix for the
stochastic differential equations (31) and (32) are negative.
The eigenvalues are given by

The equations of motion for the intensity variables are
now linearized about the steady-state solutions. The
steady-state solutions are given by

b, 2+ 1m(p2~ —/3„) =0,
1m[(K] —K ~ ) —4p]2p~] ]=0,
Re[(K]—K 2 ) —4p]2pz] ] ~ 0 .

(50)

(51)

(52)

The stationary spectrum for the correlation
(I(r), I(0) ) = (5I(r),5I(0) ) is given by

squeezed quadrature. The eigenvalues are purely real
when

A, ] ~= —
—,'(K]+]r2 ) —,

' [(I]—]~ ~ )
—4p]g~]]' (48) S(co)= 1 dre ' '( I(r) I(0) )= 1

~3,4 ~1,2 (49)

The squeezing will be maximized when the imaginary
parts of the eigenvalues vanish. A nonzero imaginary
part leads to a mixing of the quadratures, and this can
feed fluctuations from the noisy quadrature into the

( A + i coI ) 'D ( A i coI)—
7T

An expression for the fluctuation spectrum of the intensi-
ty difference Sz(co) can be found in the work of Zhang
and Walls. From this a normalized spectrum is defined:
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= I™d ' '(r ( ) —r, ( ),r, (0)—r, (0))

=2(~,(I, )+~2(I4 ) )S(co) . (54)

We write (0 (rl

S(co)= I+Sd (co),

where

(55)
oo

4a
~, (r, )+~,(r, )

X [xiS„+1~2S44—a.,a2(S,4+S~, )] . (56) )oo

IV. RESULTS

e model of the three-level atom that we have used
1 des spontaneous emission .rom a eve s,incu e p

will de rade the correlation between the p p
'

h hoton airs.
The other dissipative effect will be the nonlinear and cavi-

f h two modes. Because spontaneousty absorption o t e wo
emission increases ow

~ ~ ~

towards resonance, the corre ation e-
h hoton airs should improve as we detunetween t e p o on p

from the upper and intermediate leve s. n ac, '

limit of large detunings from both the uppu er and inter-
mediate leve s, t e sys e1, h s stem should behave as a nondegen-
erate parametric osci a o,'ll tor for which perfect squeezing in

d 1 —3th intensity difference can be obtained.ein e
In the limit of large detuning from e ppthe u er level,6'))0' and b, ')) 1, we have to first order in 0'/

P„=O,
1 i (b, ', —b—, ~)

I+(5', —b, ')

1 —i (b, 'i —b, 2)
'~' I+(a;—a;)' '

(57)

(58)

(59)

~' 1 —~)/6' —i6',
p2, =

—, A3 (60)

rametric oscillator the coefficients governing

that g an s oud h h ld have the same phase in the limit o
lar e 5', as this can be achieved if A&))h2 anlarge, as is

d b im osing the condi-The squeezing can be maximized y
'

p
tions (50)—(52). In the high detuning regime under con-
sideration ere, eh th first condition can be solved g
first approximation to h2.

FIG. 2. The squeezing spectrum for Aucr fluctuations in the inten-
sity difference as a function of the

'
getunin from the upper lev-

el.

0'
(X K (X] l33 2 a2(&')

(62)

n'
(63)a = — ~@+ a2 —iA3 a, .

(&')

It s ou aso eh ld 1 be noted that both nonlinear couphng
d p depend linearly on the mtensity oterms ]p an 2]

scillator.driving e, afi 1d s expected for a parametric osci a or.
variesk h the squeezing spectrum varie

with the detunings 6' and 6&. We choose 6&=-
and hz such that the dispersive term vanishes. Rather

set it to zero, as it shouldthan solve for 62 exactly, we

Th s ectrum is obtained by inverting A numerica y
d evaluating the expressions (53) and 56). We checkan eva ua in

that the system is operating below thres o yhold b ensuring
th t the real parts of the eigenvalues c ps corres onding to the
coefficient matrix of the equations of mot'oion 31) and (32)
are less than zero.

ations in the inten-In ig.F . 2 the spectrum for the fluctuations in e in

422
(61)

The solution wi eth th minus sign corresponds to two-
hoton resonance. e eTh d tuning is shifted slightly fromP

its bare value for two-pf - hoton resonance because the
stron driving field shifts the cavity resonances (ac Stark
efFect). If we now choose ~, =—,e e
parts of the Langevin equations in the high detuning limit
can be written in the following forms:

gOO

FIG. 3. The squeezing spectrum with u q
'

h une ual cavity-decay
rates.
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sity difference for different values of the scaled detuning
6' is shown. The parameter values used are: r, =10',
g &

=g2 = 100, y = 10, O' = I, and Ki =K2 10 . The noise
frequency co is scaled by the average of the cavity
linewidths ~=

—,
' (a, +~2). The system operates below

threshold for 6') 15.5. It can be seen that the values of
A &, A 2, and A 3 are quite large, being 3 orders of magni-
tude larger than the cavity losses given by ~, and ~z. In
fact, if A, , Az, and A3 are chosen to be about the same
size as the cavity losses, only a small amount of squeezing
is obtained.

In the work of Lane, Reid, and Walls, it was seen that
for ~,Waz, the central dip in the spectrum is narrowed.
This phenomenon can be seen in Fig. 3, where, for a
given detuning, the dc component is depressed compared
with the symmetric case. The parameters used here are
the same as in Fig. 2 except that ~, =~2/5 = 10 . At a de-
tuning of 200 atomic linewidths, 98% squeezing is ob-
tained, compared with 95% in the symmetric case. As
the detuning is increased the squeezing improves much
more rapidly than the case with equal cavity linewidths.
The squeezing has already reached 90% for 6'=60,
whereas for equal cavity linewidths the squeezing only
reaches 90% when 6'= 135.

Figure 4 shows the variation of the zero-frequency
component of the squeezing spectrum for 6'=200 as a
function of the ratio of the cavity linewidths. We obtain
the best squeezing for ~z about five times greater than ~, .
The nonlinear absorption of mode two is much larger
than that of mode one, as more atoms are in their lower
state. Increasing the cavity linewidth of mode two in-
creases the amount of light leaving the cavity, and hence
lessens the relative nonlinear absorption of that mode. Of
course, if a2 is increased too much, too much light es-
capes, and the ratio of nonlinear coupling effects to losses
is worsened.

The parameters A &, A z, and A 3 govern nonlinear ab-
sorption in modes one and two and nonlinear coupling
between the modes, respectively. They give a measure of
the coherent to incoherent processes in the system. It has

&0

D 0

00

800

FIG. 5. The squeezing spectrum with unequal coupling con-
stants.

already been seen that the parameters must be large com-
pared with the cavity losses if appreciable squeezing is to
be obtained. The relative sizes of the parameters can also
be adjusted to maximize the squeezing. In general, the
nonlinear absorption of mode two is much larger than
that of mode one, because the population of the lower
state is much larger than that of the intermediate state.
If the coupling g, is increased while g2 is decreased such
that the product g, gz remains the same, the nonlinear ab-
sorption of the two modes can be modified without
changing the nonlinear coupling. In Fig. 5 the same pa-
rameters as in Fig. 2 are used except that g, =200 and
g2=50. The squeezing is now about 98% at b, '=200.
We obtain 90% squeezing when 6'=70.

Figure 6 shows the variation of the zero-frequency
component of the squeezing spectrum for 6'=200 as a
function of the ratio of the coupling constants for the two
transitions. If gz is decreased too much, g& becomes
large, and the nonlinear absorption of mode one begins to
play a role.

The dependence of the squeezing on the Rabi frequen-

0.06 0.06

0.04— 0.04

0.08— 0.02—

0.00
6

/Gp/K; )

LO

0.00
2 4 6

pQ I /gd

FIG. 4. The zero-frequency component of the squeezing
spectrum for 5'=200 as a function of the ratio of the cavity-
decay rates.

FIG. 6. The zero-frequency component of the squeezing
spectrum for 6'=200 as a function of the ratio of the coupling
constants.
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-0

(0 (n

oo

should be determined self-consistently from the condi-
tions (50)—(52). Rather than do this, we set b ' = b,2 =0 in
(24) —(27) and evaluate b2 using the first eigenvalue con-
dition (50). The spectrum shown in Fig. 7 uses the same
parameters as Fig. 2. It can be seen that being in reso-
nance with the upper level does not affect the squeezing
in the intensity difference that can be obtained.

V. CONCLUSION

00

FIG. 7. The squeezing spectrum for a resonant driving field.

cy 0' can easily be seen from (59) and (60). In the high
detuning limit, the nonlinear coupling increases linearly
with the scaled Rabi frequency. Therefore, so long as
0'«6', the squeezing can be maximized by increasing
the scaled Rabi frequency.

Finally, a few comments should be made regarding the
case where the driving field is resonant with the upper
level. In such a situation, the spontaneous emission from
the upper level will be appreciable, but this should not
affect the squeezing as long as there is a large detuning
from the intermediate level. This is because the spon-
taneous emission will add the same noise to both modes,
and hence the difference in the intensities should be
unaffected. The spectrum can be calculated in the same
way as the previous spectra. 5' and Az are taken to be
approximately zero in the equations (24) —(27). They will
be shifted slightly from zero due to the ac Stark effect and

In this paper, we have looked at a model for a three-
level system that includes spontaneous emission. The
three-level atoms are injected into a cavity and are driven
by an external field, which is detuned from the transition
between upper and lower atomic states. The cascade
transitions are detuned from two cavity resonances, and
it is the fluctuations in the intensity difference between
these two modes which are of interest. It is found that
the system behaves as an ideal parametric oscillator when
on two-photon resonance and the fields are highly de-
tuned from the upper and intermediate levels; that is,
good squeezing can be obtained in the large detuning lim-
it. It is also found that small improvements in the
squeezing can be obtained by choosing the two cavity de-
cay rates and the two coupling constants not to be equal.
Finally, it is seen that the squeezing is not affected by
driving the system on resonance, as the spontaneous
emission adds correlated noise to both modes.
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