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An ideal nondegenerate parametric oscillator is known to give perfect squeezing in the difference
of the intensities of the signal and idler modes. In this paper, we look at a frequency down-
conversion system comprising three-level atoms in a cavity. The squeezing in the intensity
difference is calculated and found, in general, to be degraded by spontaneous emission. In the limit
of large detunings, the system is found to behave as a nondegenerate parametric oscillator.

I. INTRODUCTION

There has recently been considerable research activity
in demonstrating the quantum noise reduction or squeez-
ing in the difference intensity of the signal and idler
modes of a nondegenerate parametric oscillator. The
squeezing in the intensity difference is a consequence of
the simultaneous production of a pair of signal and idler
photons. Although the uncorrelated transmission of the
signal and idler photons through the cavity mirror dimin-
ishes the pair correlation for short times, for long times
the pair correlation is recovered. This results in a dip in
the spectrum of fluctuations for the difference current
below the shot-noise level, approaching zero at zero fre-
quency.

A number of theoretical papers have appeared that de-
scribe this effect,! ~* and experiments have recently been
carried out by Heidman et al.* and Nabors and Shelby’
showing squeezing of 30% and 54%, respectively, below
the shot-noise level in the above-threshold nondegenerate
parametric oscillator.

In this paper, we wish to consider an ensemble of N
three-level atoms in a ladder configuration interacting
with three cavity modes of the electromagnetic field. The
cavity is driven at the high-frequency (pump) and this
produces some excitation of the atoms. Photons may be
emitted into the signal and idler modes by cascade transi-
tions. The cavity modes are detuned from the atomic
transitions. While there are some analogies with the
parametric oscillator, the proximity of the atomic levels
will mean that some population will appear in the excited
states and the correlation between the signal and idler
photons will be degraded by spontaneous emission and
the finite lifetime of the atomic levels. The experiments
on the optical parametric oscillator were performed using
a crystal with an optical nonlinearity where all transitions
were assumed to be virtual. We shall determine in which
limits the three-level atomic medium approaches the be-
havior of the parametric oscillator.

Recently the effects of spontaneous emission on the
photon pairs emitted in four-wave mixing in a two-level
atomic medium have been calculated by Zhang and
Walls.® These calculations are relevant to a recent exper-
iment by Vallett, Pinard, and Grynberg.”

The calculations presented in this paper consider a
three-level medium and are based on theoretical tech-
niques developed by Scully and Zubairy® to describe a
correlated emission laser.

II. THE MODEL AND THE EQUATIONS OF MOTION

We consider a system of three-level atoms which are
being injected in some lower state, |c ), into a cavity at a
rate .. The atomic levels are shown in Fig. 1. The tran-
sitions |a )-|b ) and |b )-|c) are assumed to be dipole al-
lowed, while the dipole-forbidden transition |a )-|c) is
induced by some external means (for example, by apply-
ing a strong magnetic field for a magnetic dipole-allowed
transition). The |a )-|c ) transition is driven by an exter-
nal field which is sufficiently strong that it may be treated
semiclassically. The Rabi frequency is denoted by Qe ~ .
The other two transitions will be treated quantum
mechanically but only to second order in the coupling
constants. The atoms are interacting with three field
modes: a pump, a signal, and an idler.

The Hamiltonian consists of a free part, an interaction
part, and a part due to the dissipation in the system:
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FIG. 1. The three-level system.
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where |a), |b), and |c) represent the upper, intermedi-
ate, and lower atomic states, respectively. The creation
and annihilation operators a,, a;, a,, and a, correspond
to the signal and idler field modes of frequencies v, and
v,, respectively; g, and g, are the coupling constants as-
sociated with the transitions |a )-|b) and |b)-|c), re-
spectively; and v is the frequency of the strong pump
field. '} and I', are the bath operators for the cavity
damping of the signal and idler modes. The baths are as-
sumed to be at zero temperature. Hy,, , represents the
J
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losses due to the spontaneous emission of the atoms. The
spontaneous emission from all three levels is assumed to
be the same, ¥ being the spontaneous emission rate into
all other levels.

A similar system is treated by Ansari, Gea-Banacloche,
and Zubairy.” They look at the degenerate case and the
classical driving field is taken to be resonant with the
atomic transition. They investigate the impact of the in-
duced coherence between the upper and lower levels on
the action of the system as a phase-sensitive amplifier
and, when placed in a cavity, as a two-photon correlated
emission laser. The master equation derived in Ansari,
Gea-Banacloche, and Zubairy9 is based on theoretical
techniques derived by Scully and Zubairy® to treat a
correlated emission laser. The method employed by Scul-
ly and Zubairy® involves solving for the probability am-
plitudes of the field-atom states and integrating the prob-
ability densities over all the atoms in the ensemble to ob-
tain density-matrix elements. The atomic variables are
eliminated by forming the reduced density matrix for the
field py. This is done by tracing over the atomic states in
the off-diagonal atom-field density matrix. The equation
of motion for pp, apart from the cavity loss terms, is

. ’ ’ — i —_—
(nymylpplniny )= _5( Vi2par P12Vo1 ) n on, +1 ny—ny+1

n'1—>n1+1 n

i

The subscripts refer to the following atom-field states:
[1)=la,n;—1,n,—1),
2)=|bn,n,—1),
[3)=lc,n;,ny) .

Pu’nr,

’ ’
nzan2+l

n,+1and n;+1, respectively.

’
—ny+1

i
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(3)

,,» for example, is the matrix element of p between the states [1) and |2'), where n, and n} are replaced by
"2

As a first step to evaluating the reduced density-matrix elements p,, p,y/, P23, and p;,. the wave vector |4) is expand-

ed in terms of the eigenstates of the atom-field system:

[lp): 2 2 Aim1m2|i’m1’m2>’

i:a,b,cml,m2

4)

where A imym, is the probability amplitude of finding the atom in state |i ) and the fields of modes one and two in the

states |m, ) and |m, ). The Schrddinger equation can be solved to give

Aan1n2 =

_i(&)anln2-—i7/2)Aanln2+éﬂe_l'¢‘ivtA

AC"I"z:_i(wcnlnz_iy/z)AmIn2+éﬂeiqﬁ-#ivtA

cnln2 >

anlnz b4

(5)

(6)

where ©;, ,, =#w,;+#(vim;+v,m,). Terms causing a change in population of the |a ) and |c ) levels due to transi-

tions from the intermediate level have been dropped. This assumption holds as long as the pump field is sufficiently
strong and the coupling is not too large. This gives equations of the form (5) and (6), which can be solved exactly. In
the work of Scully and Zubiary® and Ansari, Gea-Banacloche, and Zubairy.’ these equations are solved for the pump
field on resonance with the atomic transition. We introduce the following detuning:

v=o, o, —A . (7)
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Making the transformation

—ilwg, , —iv/Dt+ile,, , —iv/Dt,
— 172 172
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J— 172
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the solutions to (5) and (6) may be written as
y
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~ 1 (i/2)u(t —ty) —(i/2ult—15), A~
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where the atom is injected into the cavity at time 7, in its lower state |c ) and 4 "y is the field probability amplitude
evaluated at the initial time ¢,. We also have

p=(A2+02)12 (12)
For the intermediate level the equation of motion is
Apn n,= i@y, =iV /2) Ay ) —ig;V/n, Aan, —xnz—igz\/—"z_+1 Aenny+1 - (13)
Following Scully and Zubairy?® this can be integrated out, and the solutions for Agn,—1n, and A, , 4 substituted in.
The reduced density-matrix element p,, can be obtained by summing the contributions 4,, —,,—1(¢)4 :"'1 w1 (t) of

all the atoms which are injected at random times at a rate r,:
t
prr=re | _dtoda, —in, (DAL, . (1) (14)

In writing down the density matrix elements, a “‘coarse graining” approximation is being made. This assumes that the
passage of a single atom will cause only small changes in the field. Because the field is not changed appreciably,
A fl ,,z(to) can be replaced by 4 ,fl ", (¢). This approximation will hold as long as the characteristic transit time for the

atoms is small compared with the time scale over which the field changes. When (14) is evaluated, we have

pr= )V n,—Lny,—1lppln; —1,n,—1)T(n5)Vn,—1,n,— llpplniny) Ty, , (15)

where
i Q ? 1 1 1 1 1 1
Tu=y8r Z] Y v—ip |74 TA 2= |7 7 +in |7 HiA, A2 4ps2) | (16)
T“:ig”%e—@ A_yw_ yij: y—i(Az—AII—A/2+,u/2)
—A+ A+ 1
v “+y+:¢ y—i(A,—A—A/2—u/2) |’ an

Here ®=¢+A,t, and the detunings A, and A, are given by (see Fig. 1).

Vi=o,—w,—A—A, (18)

=w,— 0, +A—A, . (19)
In a similar manner, the matrix element p;, can be evaluated:

P =) ninylpplny —1,n5 = 1) Ty +(n3) > (nynylpplning )Ty, (20)
where

T21=fg1’0%ei¢ %—y—li,u y+i(A1i_Zl/LZ~,u/2)— %”«/J:zp y+i(A1+AA_|_/g+,u/2) ’ @b
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The results can be substituted back into (2) and a master equation for the interaction part of the Hamiltonian ob-
tained:

PFr=— [Bﬁﬁalalltpp +B, 1PF‘11‘141r — (B +Bi1)a JerFal +pB5a ;razPF +Bppra ;az *(BZZ+BZ*Z)aZPFa§ ]

—[Bha a0p +Brpra a; —(Bh+By)aspra, Je' —[Bha Ia ;rPF +Bpra Jlra; — (Bt B31)a JerFa; Je 7, (23)
where
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4 7 (u) 1—ip 1—i(AY— A=A /24’ /2)
| AR I : (26)
T+ip" | 1—i(AS— A=A /2—u'/2)
By =—ig,Tye '
— iy Q' 1 (A" +p YA +ip') (—A+u )0 —iy') 27)
473w T+ )? | 1+i(A+A /2—p' /2) 1+i(A+A 24+u' 72) |
[
2 t
and pr=72 Ki([aipF’aiT]Jr[ai’pFai D, (29)
i=1
_ gl
Ay=—, where «; and k, are the cavity linewidths of the two
14 5 modes. The explicit time dependence in the master equa-
A= 783 tion can be transformed out by using the unitary transfor-
27 2 28 hation
v t
_ 8182 U =e' 725! (30)
3_7

All primed variables have been scaled by the spontaneous
emission rate . The real and imaginary parts of 3,, and
B,, are responsible for the nonlinear absorption and non-
linear dispersion of modes one and two, respectively. f3;,
and f3,; provide the nonlinear coupling between the two
modes.

The terms in the master equation due to the cavity
losses are given by

The generalized P representation'® can now be used to
transform the operator master equation into a c-number
Fokker-Planck equation, from which the stochastic
differential equations can be written down as

55‘1:_("1‘311)al"'@"?‘er"'ra1 ’ (B1)

&= —(k,—iAy+BhH)ay+hal+T, , (32)

where
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g =Bpe ', (33)  where
h=—PB%e ', (34) KHRY —g*  —g 0
and the noise terms have the following correlations: —h  RtR 0 —8
A= —p* 0 REARE  —g* |- (40)
(Do (T p(t))=f8(t =), (35) TR T8
0 —h* —h K, t+ES
(T (1), T () =h8(t —1t"), (36) _
The modified damping coefficients are defined as
L +(2),T +(t'))=h*6(t —t') .
€ a;f( ), a;( )) &( ) (37) %=k~ By @1)
f =By, 1B, is the phase-insensitive noise or fluorescence. R,=Kk,—iA,+ 5% . (42)
h is the phase-sensitive noise.
F is a constant vector given by
III. SPECTRUM OF INTENSITY FLUCTUATIONS f
In the nondegenerate parametric oscillator, signal and h
idler photons are produced in pairs and are hence highly F= B* (43)
correlated. We wish to see whether this high correlation
is maintained despite the spontaneous emission intro- 0
duged by the atoms. In qrder t.o in\{estigate this, the fluc- T is the noise term
tation spectrum of the intensity difference between the
signal and idler modes will be calculated. The procedure aJ{F +a,T 4
is to linearize the equations of motion and then calculate “ “
the spectrum. a,T, —}-0521“0[1
Because the system is being driven below threshold, we 2 (44)
. . . 6 Tr + TF »
form intensity variables arl i Tl Gt
Iz(aIal,alaz,aJ{a;,a;az) . (38) a;rI‘az—i-azFa;
The equation of motion for the intensity variables can be d satisfies th lati onditio
obtained by applying the rules of Ito calculus.!! We ob- and satishies the correlation con n
tain (D)) =Dd(t —1") , 45)
I=—AI+F+T, (39)  where D is the diffusion matrix
|
2f(1,) h{I)+fI,) h*I)+f{I3) h*(I,)+h{I;)
2h(I,) {1 h{l)
D 2n*(1,) h*(1,) 4o
0

The equations of motion for the intensity variables are

now linearized about the steady-state solutions. The
steady-state solutions are given by
(I)y=A47'F. @7)

Steady-state solutions exist only if they are stable under
small perturbations. Stability is guaranteed if the real
part of the eigenvalues of the coefficient matrix for the
stochastic differential equations (31) and (32) are negative.
The eigenvalues are given by

A= —1® +&EL(R,—K3 ) —4B By 1",

—*
)\’3,4—)\’1,2 .

(48)
(49)

The squeezing will be maximized when the imaginary
parts of the eigenvalues vanish. A nonzero imaginary
part leads to a mixing of the quadratures, and this can
feed fluctuations from the noisy quadrature into the

squeezed quadrature.
when

The eigenvalues are purely real

A, +Im(By—pB1)=0, (50)
Im[(%, —K ¥)>—48,,5,,1=0, (51)
Re[(k;—& ¥)?—4B,5,,1>0 . (52)
The stationary spectrum for the correlation
(I(7),10)T) = (81(7),81(0)T) is given by
:L *® —iloT T
Stw)=5— [ dre™(1(r),10))
=L (4+iol) ' DAT—i0D)" (53)
2

An expression for the fluctuation spectrum of the intensi-
ty difference S, (w) can be found in the work of Zhang
and Walls.® From this a normalized spectrum is defined:



5054

Sat@)= [T dre (1 (1)~ L,(r),1,(0)~,(0))

=201, {1;) +1,{I,))S(w) . (54)
We write
S(w)=1+S,(0), (55)
where
S =y Ty
X [K3S1; +K3S 4 —Kyky(S1a+S4)] . (56)

IV. RESULTS

The model of the three-level atom that we have used
includes spontaneous emission from all levels, and this
will degrade the correlation between the photon pairs.
The other dissipative effect will be the nonlinear and cavi-
ty absorption of the two modes. Because spontaneous
emission increases towards resonance, the correlation be-
tween the photon pairs should improve as we detune
from the upper and intermediate levels. In fact, in the
limit of large detunings from both the upper and inter-
mediate levels, the system should behave as a nondegen-
erate parametric oscillator, for which perfect squeezing in
the intensity difference can be obtained.! ™3

In the limit of large detuning from the upper level,
A’>>(" and A’ >>1, we have to first order in Q' /A’

B;1=0, (57)
1—i (A} —A))
21+A) =2
 1—i(A]—A))
SA 14+ (A — A2
Q' 1—A} /A —iA)
YA 1A}

Byp=A (58)

Bi,=+4 , (59)

By=+4 (60)
For the parametric oscillator the coefficients governing
the nonlinear coupling have the same phase. This implies
that g and % should have the same phase in the limit of
large A’, as this can be achieved if A]>>A) and A}>>1.
The squeezing can be maximized by imposing the condi-
tions (50)—(52). In the high detuning regime under con-
sideration here, the first condition can be solved to give a
first approximation to A,:

AL=LA"+1A" 1__&2 " (61)
2 2721—7241 ’}/(All)z .

The solution with the minus sign corresponds to two-
photon resonance. The detuning is shifted slightly from
its bare value for two-photon resonance because the
strong driving field shifts the cavity resonances (ac Stark
effect). If we now choose Aj=—A'/2, the deterministic
parts of the Langevin equations in the high detuning limit
can be written in the following forms:
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FIG. 2. The squeezing spectrum for fluctuations in the inten-
sity difference as a function of the detuning from the upper lev-
el.

. . Q
a1=—K1a1—1A3Wa; , (62)

dy=— Kyt —= a2~iA3(f—,)2a}”. (63)

2

(A')?

It should also be noted that both nonlinear coupling

terms ), and B,; depend linearly on the intensity of the
driving field, as expected for a parametric oscillator.

We now look at how the squeezing spectrum varies
with the detunings A’ and A]. We choose Aj|=—A"/2
and A such that the dispersive term vanishes. Rather
than solve for A} exactly, we set it to zero, as it should
only vary from this by a small amount.

The spectrum is obtained by inverting 4 numerically
and evaluating the expressions (53) and (56). We check
that the system is operating below threshold by ensuring
that the real parts of the eigenvalues corresponding to the
coefficient matrix of the equations of motion (31) and (32)
are less than zero.

In Fig. 2 the spectrum for the fluctuations in the inten-

FIG. 3. The squeezing spectrum with unequal cavity-decay
rates.
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sity difference for different values of the scaled detuning
A’ is shown. The parameter values used are: r,= 10",
g,=g,=100, y=10% Q’'=1, and k; =«,=10%. The noise
frequency  is scaled by the average of the cavity
linewidths «=1(«x;+k,;). The system operates below
threshold for A’ > 15.5. It can be seen that the values of
A, A,, and A, are quite large, being 3 orders of magni-
tude larger than the cavity losses given by «; and «,. In
fact, if 4,, A,, and A4; are chosen to be about the same
size as the cavity losses, only a small amount of squeezing
is obtained.

In the work of Lane, Reid, and Walls,? it was seen that
for k,#k,, the central dip in the spectrum is narrowed.
This phenomenon can be seen in Fig. 3, where, for a
given detuning, the dc component is depressed compared
with the symmetric case. The parameters used here are
the same as in Fig. 2 except that k;=k,/5=10% At a de-
tuning of 200 atomic linewidths, 98% squeezing is ob-
tained, compared with 95% in the symmetric case. As
the detuning is increased the squeezing improves much
more rapidly than the case with equal cavity linewidths.
The squeezing has already reached 90% for A’=60,
whereas for equal cavity linewidths the squeezing only
reaches 90% when A’ = 135.

Figure 4 shows the variation of the zero-frequency
component of the squeezing spectrum for A’=200 as a
function of the ratio of the cavity linewidths. We obtain
the best squeezing for k, about five times greater than k.
The nonlinear absorption of mode two is much larger
than that of mode one, as more atoms are in their lower
state. Increasing the cavity linewidth of mode two in-
creases the amount of light leaving the cavity, and hence
lessens the relative nonlinear absorption of that mode. Of
course, if k, is increased too much, too much light es-
capes, and the ratio of nonlinear coupling effects to losses
is worsened.

The parameters 4,, 4,, and A; govern nonlinear ab-
sorption in modes one and two and nonlinear coupling
between the modes, respectively. They give a measure of
the coherent to incoherent processes in the system. It has

P

0.041 \

S(0)
/

Ko/ Ky

FIG. 4. The zero-frequency component of the squeezing
spectrum for A’=200 as a function of the ratio of the cavity-
decay rates.
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FIG. 5. The squeezing spectrum with unequal coupling con-
stants.

already been seen that the parameters must be large com-
pared with the cavity losses if appreciable squeezing is to
be obtained. The relative sizes of the parameters can also
be adjusted to maximize the squeezing. In general, the
nonlinear absorption of mode two is much larger than
that of mode one, because the population of the lower
state is much larger than that of the intermediate state.
If the coupling g, is increased while g, is decreased such
that the product g,g, remains the same, the nonlinear ab-
sorption of the two modes can be modified without
changing the nonlinear coupling. In Fig. 5 the same pa-
rameters as in Fig. 2 are used except that g, =200 and
g,=50. The squeezing is now about 98% at A’=200.
We obtain 90% squeezing when A’ =70.

Figure 6 shows the variation of the zero-frequency
component of the squeezing spectrum for A’=200 as a
function of the ratio of the coupling constants for the two
transitions. If g, is decreased too much, g, becomes
large, and the nonlinear absorption of mode one begins to
play a role.

The dependence of the squeezing on the Rabi frequen-

004\

0.02 -

L.

0.00b— 1L 1 . 1
2

FIG. 6. The zero-frequency component of the squeezing
spectrum for A’=200 as a function of the ratio of the coupling
constants.
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FIG. 7. The squeezing spectrum for a resonant driving field.

cy ) can easily be seen from (59) and (60). In the high
detuning limit, the nonlinear coupling increases linearly
with the scaled Rabi frequency. Therefore, so long as
Q' << A’, the squeezing can be maximized by increasing
the scaled Rabi frequency.

Finally, a few comments should be made regarding the
case where the driving field is resonant with the upper
level. In such a situation, the spontaneous emission from
the upper level will be appreciable, but this should not
affect the squeezing as long as there is a large detuning
from the intermediate level. This is because the spon-
taneous emission will add the same noise to both modes,
and hence the difference in the intensities should be
unaffected. The spectrum can be calculated in the same
way as the previous spectra. A’ and Aj are taken to be
approximately zero in the equations (24)—(27). They will
be shifted slightly from zero due to the ac Stark effect and
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should be determined self-consistently from the condi-
tions (50)—(52). Rather than do this, we set A’=A}=0in
(24)-(27) and evaluate A, using the first eigenvalue con-
dition (50). The spectrum shown in Fig. 7 uses the same
parameters as Fig. 2. It can be seen that being in reso-
nance with the upper level does not affect the squeezing
in the intensity difference that can be obtained.

V. CONCLUSION

In this paper, we have looked at a model for a three-
level system that includes spontaneous emission. The
three-level atoms are injected into a cavity and are driven
by an external field, which is detuned from the transition
between upper and lower atomic states. The cascade
transitions are detuned from two cavity resonances, and
it is the fluctuations in the intensity difference between
these two modes which are of interest. It is found that
the system behaves as an ideal parametric oscillator when
on two-photon resonance and the fields are highly de-
tuned from the upper and intermediate levels; that is,
good squeezing can be obtained in the large detuning lim-
it. It is also found that small improvements in the
squeezing can be obtained by choosing the two cavity de-
cay rates and the two coupling constants not to be equal.
Finally, it is seen that the squeezing is not affected by
driving the system on resonance, as the spontaneous
emission adds correlated noise to both modes.
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