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In this paper, we shall report the investigation of the non-Markovian effects of the dynamical pro-
cess on optical absorption. It will be shown that in steady-state experiments the non-Markovian
effects cannot be probed. The non-Markovian effects on the transient pump-probe experiment are
treated, and a couple of typical memory functions have been used to obtain the transient band-shape
functions. Finally, probe-pulse duration effects on the absorption are considered.

I. INTRODUCTION

In the past decade, experimental and theoretical stud-
ies of femtosecond (fs) processes have received consider-
able attention. They have been very useful in under-
standing the dynamics of molecules in solution, induced
by optical excitation.!* The ultrafast optical dephasing,
observed experimentally, takes place on a time scale that
corresponds to the correlation time of the interaction
with the surrounding bath. Therefore the Markov ap-
proximation, often used in the theoretical treatments of fs
processes, is no longer valid.

In fact, the validity and limitation of this approxima-
tion has begun to be quantitatively studied. Theoretical
descriptions have introduced the fast- and slow-
modulation limits depending on the relative time scales
involved. While doped crystals and semiconductors are
usually well described within the fast modulation limit, in
solutions it may happen that the dynamics of the bath
occurs on the same time scale as the dynamics of the mol-
ecule. Then, the slow modulation limit is warranted and
the corresponding relaxation is non-Markovian. The case
of non-Markovian relaxation processes has been con-
sidered in great detail by Mukamel.’> Depending on the
scheme of reduction of the cumulant expansion used to
obtain the evolution operator, different types of master
equations have been established. They correspond to
different statistical properties for the bath. In addition,
both schemes termed partial- (POP) and chronological-
(COP) ordering prescriptions, reduce to the same Marko-
vian equation in the fast modulation limit.

Quite recently, Nibbering, Duppen, and Wiersma
have performed experiments to demonstrate that reso-
nance light scattering can be an interesting alternative to
femtosecond transient spectroscopy. By taking advan-
tage of the theory developed by Mukamel, they have ana-
lyzed their experimental results in S;—S, and S, —S|
pure electronic transitions of azulene in isopentane and
cyclohexane. In this manner, they were able to make a
reliable analysis of the line shapes of these transitions.
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Also, they have fitted their results with the predictions of
POP and COP line shapes. They conclude that the solu-
tion dynamics of azulene falls in the intermediate modu-
lation regime. However, they were unable to decide
which type of master equation was adequate to interpret
their experimental results.

From the previous discussions, it appears pertinent to
get more information about the bath memory function.
Therefore, an important question to be answered is
whether steady-state and transient experiments are cap-
able of revealing the non-Markovian effects. Further-
more, it will be of interest to understand the dependence
of the absorption band shape on the shape of the various
memory functions. In this paper, we will be mainly con-
cerned with these two questions. We will clearly show
that steady-state experiments cannot be used to study the
non-Markovian effects, and hence consider the case of the
optical absorption in a pump-probe experiment.’ In addi-
tion, we will show the possibility of differentiating be-
tween various memory functions in the non-Markovian
regime, as well as the dependence of the non-Markovian
effects on the transient optical absorption,®° especially on
optical band shapes.®° For convenience, we choose two-
level or pseudo-two-level systems for studying these ques-
tions.

The paper is organized as follows. In Sec. II, we
present the general evolution of a system undergoing
non-Markovian relaxation processes, initially excited by a
fs light pulse. Sections III and IV are devoted to the
evaluation of the band-shape functions in the steady-state
and transient regimes. Then, two different types of
memory functions are introduced in Sec. V. Finally, in
Sec. VI the probe-pulse duration effects are analyzed.

II. GENERAL THEORY

For a system embedded in a heat bath, the Liouville
equation for the density matrix of the system is given by

5030 ©1991 The American Physical Society



43 NON-MARKOVIAN EFFECTS ON OPTICAL ABSORPTION 5031

dp(t . .
—P——d‘t ) ——zLop(t)—le(t)p(t)—fo'drM(T)p(t —7),
2.1

where L represents the Liouville operator of the system,
L () denotes the Liouville operator for the interaction
V (t) between the system and the radiation field, and M (1)
is the memory kernel for the dynamics of the system.
For simplicity, we shall assume that only two levels need
to be considered, as shown in Fig. 1. Notice that

dp,,(t)
o [ (8)Pn () =P (Vs (8) ]
—f dr[M"(T)p,,(t —7)
—M™( Y (t—T)],  (2.2)
and that
dpmn (1) . i
ot @ (D= Vi (D[P () =P (1)]
—deM’”” Pt —7) (2.3)
where, for example,
Voon(£)=— (g, “Eo)(e @ +e ") . (2.4)

Here, p,,, denotes the transition dipole moment.

Introducing the rotating frame, and using the
rotating-wave approximation (RWA), we define
Pmn(t)=e g, (1), (2.5)
while the population is kept the same, p,,(t)=0,,(¢).
Then, Eq. (2.4) becomes
do,,,(t)
%—=—i(wmn—w)amn(t)
= V[0 (=0 ()]
—f drM!" ()0 ., (t —7) , (2.6)
m
E,(t)
n
o (t)
g
FIG. 1. Scheme of levels used in our study. The pump pulse

is described by a & pulse and E,(¢) is the electric field of the
probe pulse.

where the notations

an = "Hmn 'EO 2.7)
and

M,m(t)=M"(t)e " (2.8)
have been introduced. It follows that

do,(t) _ 2

Tz;{lm[ Vnmamn(t)]

= [ drIM (07 (1 =)
+MMT)0 e (t—T)] (2.9)

where Im and Re stand for the imaginary and real parts
of the quantity inside the brackets. Applying the Laplace
transformation

ol = ® —p?
T un (D) fo dte Po, (1) (2.10)
to Eq. (2.6) yields
[p +i(@y —@)+M ,7(p)]T ., (0)
=0mn<0)—iV (Tpn(P)—Tpm(p)], (2.11)

ﬁ mn

where M |""(p), & an(p), and T, (p) represent the La-
place transforms of M wi(t), 0,,(t), and o,,,, (1), respec-
tively. From Eq. (2.11), we find

O un(0)
P i@y, —w)+M " (p)

O mn(p)=

(2.12)
)+M ;,',’},"(p)

pti (wmn —o
Similarly, applying the Laplace transformation to Eq.

(2.9) and substituting Eq. (2.12) into the resulting equa-
tion, we obtain

po,,(p)—0,,(0)
=Emn(p)+ Wmn(p)[amm(p)—a:nn(p)]

M (p)7,,(p)—M ™™ (p)& ,,m (D) , (2.13)
where
5 Vnmamn( )
Bm,,<p)=~2—1m : (2.14)
% p tilw,,, —o)+M ™ (p)
and
7 [V on |
)—‘_ZRC - — (2.15)
# p tilw,, —o)+M"p)

Carrying out the inverse Laplace transformation of Eq.
(2.13) yields
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dpo (D)

It an(
+ftd7'{wm () pmm(t —T)—p (t—7)]
0 n mm nn

t)

—MHT)p,, (t —T)

=M (E—T)) . (2.16)

It should be noted that in the above treatment, the
Markov approximation has not been introduced. In the
following sections, we shall discuss the steady-state case
and the transient case separately. As will be shown in
Sec. III, for the steady-state case the non-Markovian
effect does not appear, but it will appear in the transient
case.

III. STEADY-STATE CASE

We shall consider the case where p,,(t)+p,,,, (£)=1.
Notice that, for example, we have

pPw(p)=p [ “di e p,, (1t

0 dpnn(t)
= 0)+ TP .1
Prn(0) fo dte - 3.1)
Letting p —0, Eq. (3.1) becomes
N o dpy, (D)
[}{E})[Ppnn(p)]_’pnn(o)_’_ fO dtT
=ppnl0) . (3.2)

Here, p,,( ) denotes the steady-state population. Using
the relation

1

ﬁ,m(p)+ﬁmm(p)=; ) (3.3)
we can solve for p,, (p) from Eq. (2.13)
Pun (PP +2W,,,, (p)+M 77 (p)—M [ (p)]
— 1. — —
:pnn(0)+an(p)+;[Wmn(p)—M m )] (3.4)
It follows that
lim pp,, (p)=p,, ()
p—0
W (0)—M 177(0)
=—= — — , (3.5)
2W,,,(0)+M ;7 (0)—M ;77(0)
where
— 2 |V |?
W.,.(0)=—Re (3.6)

72 i@y —@)+M "(0)

The matrix element M ;(0) corresponds to the dephas-
ing constant, while M "?(0) and — M ™(0) represent the
total decay rate of the state » and the rate constant for
the transition m — n, respectively.

From Egs. (3.5) and (3.6), we can see that the non-
Markovian effects disappear, and the band-shape func-
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tion for the steady-state absorption is determined by

v (0)
A (0)=——= — . (3.7)
2w, (0)+M 77 (0)—M "7(0)

mn

N

IV. TRANSIENT CASE

In the ultrafast pumping-probe experiments,'® one is
concerned with the calculation of the susceptibility ¥(w),
which is in turn related to the polarization P(#). The sim-
plest situation corresponds to a 8 pump pulse which
prepares the system in some given state, while the probe
beam is constantly applied. For the particular case of a
purely monochromatic beam

E(t)=E(w)e '“'+E(—w)e'", 4.1)
the general relation

P()= [ ar'¥(e—1)E() 4.2)
gives

P(t)=X(0)-E(w)e "'+X(—w)E(—w)e'™, (4.3
where we have introduced the Fourier transform

Mo)= [~ dixne™ . (4.4)
Therefore, from the evaluation of the polarization

P(t)=Tr[p(t)u], 4.5)

the susceptibility is easily deduced. The symbol Tr
stands for the trace over the system.

Here, we shall assume that the pumping laser excites
the system from the ground state g to the excited state n,
and the dynamics of the system in the n state is studied
by the probing laser which induces the n —m transition.
At time ¢ after the pumping laser is removed, we have

P()=py (O, T Prun (Ol - (4.6)

Carrying out the inverse Laplace transformation of
T .., (p) given by Eq. (2.12) yields

Pmn(0)
p+ilw,, —o)+M ™(p)

pmn(t):e*iwtl‘il

_ i

#i

—i(ut]

[tmn - Elw)e

T um (P) =T 1 (p)
p+ilw,, —w)+M ™ (p)

xXL~1 , @

where L ~! denotes the operator for the inverse Laplace
transformation. Substituting Eq. (4.7) into Eq. (4.6) and
using the expression of the susceptibility valid for a
monochromatic field (4.3), we obtain the susceptibility
tensor as

Gun(P)—0 (D)
p+ilw,,—w)+M' ™ p)

—1

@)=y )L

(4.8)
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For a randomly oriented system, this last expression
takes the simplified form

T nn (p)_amm (p)
pt+ilw,, —o)+M ™ p)

x<w>=;’ﬁ-lunmlzr‘ l

(4.9)

For optical absorption, one is concerned with the imagi-
nary part of y(w)

" :L 2
X" (o) P |2, |

Gun(P)—T (D)
p+ilw,,, —o)+M"p)

XRe |L !

(4.10)

which is easily deduced from the previous expression.
This is a general and exact result within the RWA. It
will be of interest, in the following, to introduce different
types of memory functions.

V. APPLICATIONS TO DIFFERENT MEMORY
FUNCTIONS

To show the application, we first consider the following
example:*

|

Mty —io M

)\2“‘7/‘—1'(1) A,
e

MM(n=yv’e V", (5.1)

which corresponds to a non-Markovian process with
correlation time 7 ~'. Notice that the factor v? has the
dimension of a frequency. Therefore, the Laplace trans-
form of the corresponding modified M,"(¢) operator
takes the form

2
M) =—1— 5.
mn (D) by —iw (5.2)

and enables a simple evaluation of the quantity

L! !
p +ilw,,—o)+M"p)
! pty—io
AMt+y—io Mty—iw
_M Y eklt 2TY ekzl, (5.3)
A—A, Ay—A,
where
M= zly Ty, =20 ]+ [{(y —iw,, ) —yv?]'%
(5.4)

A== Ly +i(@,, —20)] = [{y —iw,, ) —yv?]'/?.
In this case, by using the convolution product, the imagi-
nary part of y(w) given by Eq. (4.9) becomes

1 2 t
" — R
X"(@)=— |y, |*Re fodf

A=A,

)\2—7\1

[P (£ =T) =Pt —T)] | (5.5)

In the femtosecond pump-probe experiment, p,,, (#) is usually negligible and we have the inequality

pmm(t)<<pnn(t) *

(5.6)

For this case, it is assumed that the dynamical behavior of the system is not affected by the element M7, (7) associated
to the transition n —m. It is consequently given by the simple relaxation of the state n. Therefore, we approximate the
time dependence by

_rTrhn
ot

pan(t)=e , (5.7)
and the imaginary part of the susceptibility takes the form
Mty—ie —pnn Mty —io —pnn
Y(@)=—\u,, | ’Re 2T e —e ! iy Mg Tmly | (5.8)
3% (A=A A, +T00) (A=A (A+T50)
Taking into account the definition of the band-shape function F (o)
X'(@)=Flo)e ™", (5.9)
we get
)\ +yv—iw nn }\ +v—iw nn
Flo)=—=n,, Re 2T Bt _ )4 1y M1y | (5.10)
3# (A=A, + T8 (A=A )(A+T50)

In contrary with the previous case, now the band-shape function changes with time. However, when the conditions

Re(A,+T")<0, i=1,2 (5.11)
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are satisfied, and for times long compared to the characteristic times of the system so that

Re[(A, + 7)1
e

<1, i=1,2

the band-shape function takes the explicit form

y? =L — Do (yo?+ T’ —2y T +2)

(5.12)

(5.13)

_ 1 2
F(w) 3 |8m |

The expression obtained for F(w) exhibits a line shape
quite different from the usual Lorentzian curve. It shows
a resonant variation in the vicinity of w=w,,,. In addi-
tion, because of the w? dependence of the numerator, the
absorption line shape must be asymmetric. In fact, for
the values of physical interest here, the variations of the
band-shape function near w,,, showed in Figs. 2-5 do
not emphasize a strong asymmetry. In Fig. 2, we consid-
er the influence of the correlation time ¥ ~! on the fre-
quency dependence of F(w). For small values of y, we
get a narrow absorption spectrum with a linewidth of the
order of I'};;. With the increase of y, the depletion of the
upper excited state m broadens the resonance from I'»
to (v, —T"")| in the Markovian case. The reduction by
'™ of the broadening v? expected in this limit is typical
of two-level systems driven by stationary beams when the
lower excited state is unstable. This narrowing
phenomenon due to the linewidth of the lower excited
state is well known and has been discussed previously.!!
In addition to the broadening, we observe a shift of the
resonance. This frequency shift Aw depends approxi-

0.4

0.3 4

0.2

F(w) (arb. units)

0.1+ (@)

0.0 T T T T T
-15.0 -10.0 -5.0 0.0 5.0 0.0 1.0
frequency detuning

FIG. 2. We represent the variation of the band-shape func-
tion F(w) with the frequency detuning (0 —w,,,) for different
correlation times ¥ ~!. The curves (a—d) are obtained for in-
creasing values of ¥ =10%, 1.5X 10%, 3X 10° and 10°, respective-

ly. The other values are ,,, = 10°, I'?? =2, and v =3.

[0+ (@, =)+ T2 =y Tt PH[7 (@ —0) =T (@, —20) ]

mately on y as

ywmn(vz—rZ:)

Ro=—%"71
Opn ~Y

Therefore, the shift decreases for increasing values of y.
Figure 3 shows the same variations but for different
values of v2 Here, the linewidth is less affected because
we are far from the Markovian regime. However, we ob-
serve a resonance shift which clearly results from the
coupling of the system with the bath. Finally, in Fig. 4,
the influence of the total decay rate of state n is analyzed.
We note an obvious broadening of the resonance with the
increase of I'};} since the values of ¥ considered in the nu-
merical simulation correspond to a strong non-
Markovian case.

In the second example, we will consider a memory
function containing a modulation term given by the ex-
pression?

M) =yv2e "Y1+ g cosw,,,t) . (5.14)
Its Laplace transform takes the simple form
0.4
(a)
0.3 4
(b)

) @]
_z 0.2 H (d
=2
=014

0.0 T T T T T T T T

0.0 10.0 200 30.0 40.0 50.0

frequency detuning

FIG. 3. Frequency-detuning dependence of the band-shape
function F(w) for various amplitudes v =10, 11, 12, and 13, re-
spectively. The other values are w,,=10°, I'"=1, and
y=2X10%
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i 1 a 1 1
M 'rmn — 2 = -+ (5 1 5)
mn (D)=yv pty—io 2 |pty—ilote,, pty—ilo—e,,) ]
and enables us to express the required inverse Laplace transform as
L1 1 _ (}‘1'*'#1)(7‘1“"#2)(7\1““#3)ek,r “‘2"'#1)(7\2"‘#2)(}‘2'*'#3)exzz
p+l(a)mn—w)+A_l;r’l’:,”(p) (AI_AZ)(}\’I_AG)(A’I_AIt) ()\.2_7\,1)()\42—}\,3)(K2_)\,4)
(A +p Az +py)(As+psy) ek3t+ Ayt ) (Ag+py)(Ag+p3) ek“' . (5.16)
(A3— A (A3 — A (A3 —A,) (Ag—= A Ag— Ay (Ay—A3)
In the previous expression, the quantities (A;,A,,A3,A,) are the roots of the equation
2 : sza
(p )P +p2)(p +p3)p ) +yv(p +py)(p +py)+ 5 Lo Fp)p +ps)+(p +p)p +p,)]=0, (5.17
and the following notations have been introduced:
b=y —io,
=Y —io—io,, ,
. ) (5.18)
M=y —iotio,, ,
w=—iotio,, .
The imaginary part of the susceptibility is now given by
x"(w)=ilpmn|2Re ftd’rL_l L [Pt —T)=ppm (t —T)] | . (5.19)
3% 0 ptilw,, —w)+M ™ (p)
0.3 02
(@ @
© |
0.2 ()
: 0 R ®
T 01 X 3
= @
0.0 T T T T T 0.0 T T T T T
-15.0 -10.0 ~50 0.0 5.0 10.0 5.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0
frequency detuning frequency detuning

FIG. 5. Frequency-detuning dependence of the band-shape
function F(w) for different amplitudes of the modulation of the
memory function. Here, the various curves (a—d) correspond
to the increasing values of @ =0.05, 0.08, 0.1, and 0.2. The oth-

nn —

er parameters are @,,, = 10°, """ =1, p =2, and y = 140.

FIG. 4. Frequency-detuning dependence of the band-shape
function F(w) for different I'}}}. Again, the curves (a—d) corre-
spond to the values I'jis =0.1, 1, 3, and 4, respectively. The oth-
er values are w,,, = 10%, y =2X 103 and v =3.
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Using the same assumption (5.6) and (5.7) introduced in the first example, we get

(}\11_‘_,”'1)(7\'1_*',“/2)()\'14_,“3) ( At Tont

1
(@)= ==, | *Re e l—e ")
X 3 H (A FT2) A = AR —A3)(A —Ay)

Ayt p (At Ay +ps) ekzt__ Fﬁ;,'t)
(A + T A=A (A= A3)(Ay—Ay)
4 A+ A3+ pp)(Ay+ps) oM Fﬁﬁ')
(A3 T (A=A (A3 = Ay)(A3—Ay)
(At )Myt (A, +pus) Ag Ty

+ e —elmh) (5.20)
()\,4+F:Z )(A,4_}\.1)(}L4"‘}\-2)(}\«4""}\,3)

Again, from this expression, the band-shape function will be time dependent. For

Re(A; +T)<0, i=1,4 (5.21)

and times long enough, the exponential decaying terms can be neglected. Consequently, the band-shape function takes
the final form

(A +p) (A +pp) (A +p3) 4 (Ap+ ) Ay +py)(Ay+pu3)
(A TN A=A A —A) A —Ay) (A + T A, — A (A — A3 (A, —Ay)

n

1
F(w)=—§lumn|2Re

(Aytp)As+p) (A +ps) (Mgt )Ryt ) (Mg +ps) (5.22)
(A3 + T (A=A (A=A (A3 —Ay) (A, + T, N A=A (Ag— A (Ag—A3)
On Fig. 5, the frequency dependence of F(w) is represent- 08 )
ed for different values of the modulation parameter a.
When the modulation is very weak, we obtain the same
curves previously described. For increasing values of a, 0.6
the modulation gives rise to a broadening of the band- | ©
shape function. Of course, in this case it is not easy to re- =
late this variation to the analytical dependence of the pa- S 044 ()
rameters. £
3 @
VI. PROBE DURATION EFFECT = 024
In the previous sections of this paper, it has been as-
sumed that the probe field is constantly applied and gives
rise to an interaction described by relation (2.4). Howev- 00 T ! ' X
. . . 0.0 50 10.0 1.0 200
er, in a real experiment, the probe beam is usually pulsed frequency deturing
and its interaction with the material system takes the
form FIG. 6. Influence of the probe-pulse duration on the frequen-
) ) cy dependence of the band-shape function. The various curves
Von ()=~ [E(w)e """+ E(—w)e' 1 A(2) , (6.1) (a—d) have been obtained for the values T,=0.5, 0.8, 1, and

1.5, respectively. The other values are ,,,=10°, T'""=1,
where A (t) represents the time-dependent amplitude of y=10% v =10, and t =¢,.
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the probe field. Therefore, to account for the probe-
duration effects,!> the dynamics of the system must be
evaluated again by including the new interaction given by
relation (6.1). Now, the Laplace transform of Eq. (2.6)
takes the form

[p +il@p,, —o)+M "(p)]T m(p)
= —-i *© —pt
T (0= 2V fo dte P A(t)

X[o (=0 pm(D)],  (6.2)

Pmn(0)
p +ilw,, —o)+M ™ (p)

1
p+ilw,,—o)+M p) o

pmn(t):e—ith—l

XL™!

=y El)e

[ Zdte ™ 4]0 () —0,,(1)]

where V,,,=—pu,..-E(w) and the required nondiagonal
density matrix elements are easily deduced

(p)= O 0 (0)
T mn'P p+ilw,,, —o)+M ™ p)
(i/A)V,,,
pF+ilw,, —w)+M "p)
®© —pt —
X [ Cdte P AD[0 (D=0, (D] -

(6.3)

Therefore, the time dependence of the density matrix re-
sults in the form

—ia)t]

(6.4)

By following the same procedure previously developed for stationary beams, we deduce the corresponding susceptibili-
ty. Nevertheless, because of the pulsed nature of the probe beam, we require the generalized susceptibility formalism.
It has been of considerable interest in the recent developments of the theory of real-time femtosecond experi-

ments.®71%1* In the time-frequency representation of the generalized susceptibility, we have
P(1)=¥(w,t)E(w)e "'+ ¥(—w,t)E(—w)e'" . (6.5)

If we introduce the expression (6.4) of p,,,(¢) into the definition (4.6) of the polarization and identify with relation (6.5),
we obtain the expression of the generalized susceptibility into the form

< i - 1 ® -
(w,0)=—— L™! — dte P A(1)[0 (1) =0, (1) (6.6)
X ﬁ#nm”mn P+i(a)mn _w)+M;’,l,;ln(p) fO [ mm nn ]
In order to get an explicit expression of the generalized susceptibility, we introduce the simple form
A(t):e—zh—tp\/Tp 6.7)

for the probe field envelope. Here, ¢, and T, are the probing time and coherence time of the pulse. Therefore, for a
randomly oriented system, we finally get for the imaginary part of the generalized susceptibility

1
p tilo,, —0)+M mn (D)

_—nrhn
Ty

L'—l

X"(w,t)=§%|ymn|2Re fo""dt e P 4 (t)e , (6.8)

where the assumptions (5.6) and (5.7) have been introduced. The Laplace transform can be calculated by taking advan-
tage of the convolution product. It gives
L™! L

p tilw,,, —0)+M ;""p)

[ dte 4 (t)e“r"”l]

Mty—io T —7)
———e"" Alt—=r)e ™7,

7»2+1/—ico ekzt
7\1_7%

= (6.9)

=f0td7'

where we have introduced the Laplace transform previously evaluated and given by relations (5.3) and (5.4). At this
stage, X''(w,t) must be related to the band-shape function. In Sec. V we have described the absorption of energy per
unit time Q in terms of the imaginary part of the susceptibility. This result, well known in classical physics,'’ is still
validl(t;or steady-state regimes in quantum cases.!® Recently, it has been extended to non-steady-state regimes into the
form

0 =iwx"(w,t)|E()|*4 (1),

(6.10)

for isotropic systems. Therefore, it is still possible to define a band-shape function, as done previously in relation (5.9).
From the analytical expression of 4 (¢) and looking, for the sake of simplicity, at time ¢ =¢,, we get



5038

7\1_7¥z

’" — 1 2 _rzzt tp
X (a),t)—-—j—glum,,[ e PRe [fo dr

A. A. VILLAEYS, J. C. VALLET, AND S. H. LIN 43

Mty —io i,
—e

Performing the time integration, we obtain for the absorption band shape the expression

AMt+y—ie
F(w,tp)Z?lglu,,mPRe 27Y
(A, —A;) Aﬁf:;—%
»
AMty—ie
+ 1Y

T,

(A —2y) lxl+rzg——2—
p

which is quite similar to the one obtained in the transient
case, but with a stationary probe beam. This situation is
recovered here, in the limit Tp =—>o0. Again, for times
t, long enough, the decaying exponential terms are negli-
gible. Therefore, the influence of the probe-pulse dura-
tion is quite easy to understand in terms of its corre-
sponding spectral distribution. It gives rise to a broaden-
ing of the absorption band shape which increases as the
duration of the pulse decreases. This is what is observed
in Fig. 6, where the cases of various pulse durations have
been considered.

VII. CONCLUSION

In this work we have been concerned mainly with the
dynamics of non-Markovian systems which are usually
studied by pump-probe spectroscopy. In these experi-
ments the excitation by an ultrashort laser pulse prepares
the molecule in a given state, and the subsequent dynam-
ics is tested by the absorption of the probe pulse. It has
been established that no information can be obtained

exp

exp

Mty —io i, w2
—_— - .11

- e ? |exp | T, T (6.11)
A +I"'"’—i t,—1

2 nn T P

P
AT —-2 | —1 6.12)
1 nn Tp P ’ .

about the non-Markovian character of the system in the
steady-state regime. However, in the transient case the
non-Markovian behavior can be observed and a couple of
memory functions have been introduced to analyze the
influence of their characteristic parameters on the band-
shape function. Finally, the effects of the probe-pulse
duration have been studied and result on a simple
broadening of the band-shape function. While this study
has been only done for the simpler memory function,
similar results can be expected in other situations.
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