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In this paper, we shall report the investigation of the non-Markovian effects of the dynamical pro-
cess on optical absorption. It will be shown that in steady-state experiments the non-Markovian
effects cannot be probed. The non-Markovian effects on the transient pump-probe experiment are
treated, and a couple of typical memory functions have been used to obtain the transient band-shape
functions. Finally, probe-pulse duration effects on the absorption are considered.

I. INTRODUCTION

In the past decade, experimental and theoretical stud-
ies of femtosecond (fs) processes have received consider-
able attention. They have been very useful in under-
standing the dynamics of molecules in solution, induced
by optical excitation. ' The ultrafast optical dephasing,
observed experimentally, takes place on a time scale that
corresponds to the correlation time of the interaction
with the surrounding bath. Therefore the Markov ap-
proximation, often used in the theoretical treatments of fs
processes, is no longer valid.

In fact, the validity and limitation of this approxima-
tion has begun to be quantitatively studied. Theoretical
descriptions have introduced the fast- and slow-
modulation limits depending on the relative time scales
involved. While doped crystals and semiconductors are
usually well described within the fast modulation limit, in
solutions it may happen that the dynamics of the bath
occurs on the same time scale as the dynamics of the mol-
ecule. Then, the slow modulation limit is warranted and
the corresponding relaxation is non-Markovian. The case
of non-Markovian relaxation processes has been con-
sidered in great detail by Mukamel. Depending on the
scheme of reduction of the cumulant expansion used to
obtain the evolution operator, different types of master
equations have been established. They correspond to
different statistical properties for the bath. In addition,
both schemes termed partial- (POP) and chronological-
(COP) ordering prescriptions, reduce to the same Marko-
vian equation in the fast modulation limit.

Quite recently, Nibbering, Duppen, and Wiersma
have performed experiments to demonstrate that reso-
nance light scattering can be an interesting alternative to
femtosecond transient spectroscopy. By taking advan-
tage of the theory developed by Mukamel, they have ana-
lyzed their experimental results in S~~So and S2~SO
pure electronic transitions of azulene in isopentane and
cyclohexane. In this manner, they were able to make a
reliable analysis of the line shapes of these transitions.

Also, they have fitted their results with the predictions of
POP and COP line shapes. They conclude that the solu-
tion dynamics of azulene falls in the intermediate modu-
lation regime. However, they were unable to decide
which type of master equation was adequate to interpret
their experimental results.

From the previous discussions, it appears pertinent to
get more information about the bath memory function.
Therefore, an important question to be answered is
whether steady-state and transient experiments are cap-
able of revealing the non-Markovian effects. Further-
more, it will be of interest to understand the dependence
of the absorption band shape on the shape of the various
memory functions. In this paper, we will be mainly con-
cerned with these two questions. We will clearly show
that steady-state experiments cannot be used to study the
non-Markovian effects, and hence consider the case of the
optical absorption in a pump-probe experiment. In addi-
tion, we will show the possibility of differentiating be-
tween various memory functions in the non-Markovian
regime, as well as the dependence of the non-Markovian
effects on the transient optical absorption, ' especially on
optical band shapes. ' For convenience, we choose two-
level or pseudo-two-level systems for studying these ques-
tions.

The paper is organized as follows. In Sec. II, we
present the general evolution of a system undergoing
non-Markovian relaxation processes, initially excited by a
fs light pulse. Sections III and IV are devoted to the
evaluation of the band-shape functions in the steady-state
and transient regimes. Then, two different types of
memory functions are introduced in Sec. V. Finally, in
Sec. VI the probe-pulse duration effects are analyzed.

II. GENERAL THEORY

For a system embedded in a heat bath, the Liouville
equation for the density matrix of the system is given by

43 5030 1991 The American Physical Society



43 NON-MARKOVIAN EFFECTS ON OPTICAL ABSORPTION 5031

dp(t) i—Lop(t) —iL, (t)p(t) —f dr M(r)p(t —r),
dt '

0

(2.1)

where the notations

~mn I mn ~0

and

(2.7)

where 1.0 represents the Liouville operator of the system,
L, (t) denotes the I.iouville operator for the interaction
V (t) between the system and the radiation field, and M(r)
is the memory kernel for the dynamics of the system.
For simplicity, we shall assume that only two levels need
to be considered, as shown in Fig. 1. Notice that

M' "(t)=M "(t) ' '

have been introduced. It follows that

da„„(t) =—Im[ V„a „(t)]
dt

(2.8)

dp„„(t)
dt

and that

= ——[ V„(t)p „(t)—p„(t)V „(t)]

dw M„"„"w p„„ t —w

—M„„(r)p (t —r)], (2.2)

—f d r[M„"„"(r)a„„(t —r)

+M„„(r)o ~(t —r)], (2.9)

where Im and Re stand for the imaginary and real parts
of the quantity inside the brackets. Applying the Laplace
transformation

dp „(t) l
i co —„p „(t) —V—~„(t)[p„„(t) p (—t)]

dt
—f drM „"(r)p „(t r), —

0

where, for example,

(2.3)

a „(p)=f dt e i"a „(t)
0

to Eq. (2.6) yields

[p+i(co „—co)+M™"(p)]a„(0)

=a „(0)——V „[a„„(p)—cr (p)],

(2.10)

(2.11)
V „(t)=—(p „Eo)(e' '+e ' ') . (2.4)

p „(t)=e ' '0. „(t), (2.5)

Here, p „denotes the transition dipole moment.
Introducing the rotating frame, and using the

rotating-wave approximation (RWA), we define

a „(p)=
a „(0)

p+i (co „—co)+M' „"(p)

where M' „"(p), cT„„(p), and a (p) represent the La-
place transforms of M' „"(t), a„„(t),and o. (t), respec-
tively. From Eq. (2.11), we find

while the population is kept the same, p„„(t)=a„„(t).
Then, Eq. (2.4) becomes

da „(t)
i (co „——co)0~„(t)

dt

(i/A)V „[cT (p) a„„(—p)]+-
p+i(co „—co)+M' „"(p)

(2.12)

——V „[o„„(t) a(t)]-
—f drM'„"(r)a „(t—r),

0
(2.6)

Similarly, applying the Laplace transformation to Eq.
(2.9) and substituting Eq. (2.12) into the resulting equa-
tion, we obtain

pa„„(p)—a„„(0)
=P „(p)+W „(p)[a (p) —a„„(p)]

—M "„„"(p)a„„(p)—M „„(p)a (p), (2.13)

where

2 V„a „(0)
P „(p)=—Im

p+i(co „—co)+M' „"(p)
(2.14)

and

= 2
IV „(p)= Re

p + i(co „—co)+M ' „"(p)
(2.15)

FIG. 1. Scheme of levels used in our study. The pump pulse
is described by a 5 pulse and E~(t) is the electric field of the
probe pulse.

Carrying out the inverse Laplace transformation of Eq.
(2.13) yields
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dp„„(t)
dt

+ J dr[W „(r)[p (t —r) —p„„(t—r)]
0

tion for the steady-state absorption is determined by

W' „(0)
a „(co)=

2W „(0)+M"„"„(0)—M „„(0)
(3.7)

—M„"„"(r)p„„(t—r)

M„—„(r)p (t —r)] . (2.16) IV. TRANSIENT CASE

It should be noted that in the above treatment, the
Markov approximation has not been introduced. In the
following sections, we shall discuss the steady-state case
and the transient case separately. As will be shown in
Sec. III, for the steady-state case the non-Markovian
effect does not appear, but it will appear in the transient
case.

In the ultrafast pumping-probe experiments, ' one is
concerned with the calculation of the susceptibility y(co),
which is in turn related to the polarization P(t). The sim-
plest situation corresponds to a 6 pump pulse which
prepares the system in some given state, while the probe
beam is constantly applied. For the particular case of a
purely monochromatic beam

III. STEADY-STATE CASE

, dp„„(t)
=p„„(0)+f dt e

0 dt

Letting p ~0, Eq. (3.1) becomes

dp„„(t)
lim [pP„„(p)] =p„„(0)+ J dt
p —+0 0 dt

(3.1)

We shall consider the case where p„„(t)+p (t)=1.
Notice that, for example, we have

pp„, (p) =p J dt e ~'p„„(t)dt
0

E(t) =E(u)e '"'+E( —co)e'"',

the general relation

P(t)= f dt'y(t t') E(t')—

gives

P(t)=y(co) E(~)e ' '+y( —co) E( —co)e' ',
where we have introduced the Fourier transform

y(co)= f dt y(t)e' '.
Therefore, from the evaluation of the polarization

P(t) =Tr[p(t)p],

(4.1)

(4.2)

(4.3)

(4.4)

=p„„(~) . (3.2)

=1p„,(p)+P (p) =—, (3.3)

Here, p„„(~) denotes the steady-state population. Using
the relation

the susceptibility is easily deduced. The symbol Tr
stands for the trace over the system.

Here, we shall assume that the pumping laser excites
the system from the ground state g to the excited state n,
and the dynamics of the system in the n state is studied
by the probing laser which induces the n —+m transition.
At time t after the pumping laser is removed, we have

we can solve for p„„(p) from Eq. (2.13)

p„„(p)[p+2W „(p)+M;"„(p)—M „„(p)]

=p„„(0)+P „(p)+—
[ W „(p)—M „„(p)].

1

It follows that

lim pP„„(p)=p„„(~ )
p —+0

(3.4)

P(t)=p„(t)p „+p „(t)p„ (4.6)

(t) —e lllltL p „(0)
p +i (co „—co)+M ™"(p)

——[p „E(co)e '"']

Carrying out the inverse Laplace transformation of
cr „(p) given by Eq. (2.12) yields

where

W „(0)—M„„(0)
(3.5)

2W „(0)+M„"„"(0)—M „„(0)
o. (p) —cr „„(p)

xL,
p+i(co „—co)+M' „"(p)

(4.7)

W „(0)= Re
fi i (co „—co)+M ' „"(0)

(3.6)

The matrix element M ™"(0)corresponds to the dephas-
ing constant, while M „","(0) and —M „„(0)represent the
total decay rate of the state n and the rate constant for
the transition m ~n, respectively.

From Eqs. (3.5) and (3.6), we can see that the non-
Markovian effects disappear, and the band-shape func-

g(~) =—(p„p „)L
o „„(p)—c~ (p)

p +i (co „—co)+M ™"(p)

(4.&)

where L ' denotes the operator for the inverse Laplace
transformation. Substituting Eq. (4.7) into Eq. (4.6) and
using the expression of the susceptibility valid for a
monochromatic field (4.3), we obtain the susceptibility
tensor as
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For a randomly oriented system, this last expression
takes the simplified form

Situ) = Ip.

(4.9)

M „"(t)=yu e (5.1)

which corresponds to a non-Markovian process with
correlation time y '. Notice that the factor U has the
dimension of a frequency. Therefore, the Laplace trans-
form of the corresponding modified M' „"(t) operator
takes the form

For optical absorption, one is concerned with the imagi-
nary part of y(co)

x"(~)=
3z ) . I'1

2
M&mn( )

Y

P +P le
and enables a simple evaluation of the quantity

(5.2)

X Re L
0„„(p)—~ (p)

p +i (co „—cu)+M ™"(p)

L —1

p+i(tu „—co)+M' „"(p)

(4.10)

which is easily deduced from the previous expression.
This is a general and exact result within the RWA. It
will be of interest, in the following, to introduce diA'erent

types of memory functions.
where

=L P +P le)

(p —
A, , )(p —A2)

A.i+/ le Z P A,2+/ ldll)

(5.3)

V. APPLICATIONS TO DIFFERENT MEMORY
FUNCTIONS

A, , = —
—,'[@+i (cu „—2')]+[—,'(y —i' „) —yu ]' 2,

(5.4)
A,2= —

—,'[@+i (cu „—2')] —[4(y i' —„) —yu ]'

To show the application, we first consider the following
example:

In this case, by using the convolution product, the imagi-
nary part of g(co) given by Eq. (4.9) becomes

y"(~)= '
Ip „I'Re j'dr

0

A i+/ I CO g ~ X2+P l CO

e ' + e ' [p„„(t r) p(t——r—)]
1 2 2 1

(5.5)

In the femtosecond pump-probe experiment, p (t) is usually negligible and we have the inequality

p (t) «p„„(t) . (5.6)

For this case, it is assumed that the dynamical behavior of the system is not affected by the element M"' (r) associated

to the transition n ~m. It is consequently given by the simple relaxation of the state n. Therefore, we approximate the

time dependence by
nnt

p„„(t)=e
and the imaginary part of the susceptibility takes the form

A2+P le A. i +P l CO

(e ' —e "")+ (e ' —e "")
(x, —x, )(x, + r"„"„)Ip„ I

Re1

(x,—x, )(x,+ r"„„")

Taking into account the definition of the band-shape function F (co)

(5.7)

(5.8)

nnt
y" (co ) = F(to )e (5.9)

we get

— 1 2 k2+P le A, i+/ I co (A, i+1 "
)]t

F(co)= p„Re (e ' "" —1)+ (e ' "" —1)
(x,—x, )(x,+r"„"„) (x, —x, )(x, +r"„"„)

(5.10)

In contrary with the previous case, now the band-shape function changes with time. However, when the conditions

Re(A, , +I "„"„)(0, i =1,2 (5.11)
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M' „"(p)=yu 1 a 1 1

p+y i—ct3 2 p+y —i (co+co „) p+y i—(co —co „) (5.15)

and enables us to express the required inverse Laplace transform as

p+i(co „—co)+M' „"(p)
1 Pl)( 1 P2)( 1+P3) Xtt (~2+Pl )(~2+P2)(~2+P3) X2te'+ e

(t(, , —A2)(A, ,
—t(,3)(A, , —t(4) (t(2 —

A, , )(k2 —t(,3)(t(.2
—t(4)

(~3+Pl)(~3+P2)(~3+P3) &3t (~4+Pl )(~4+P2)(~4+P3) 24t+ e + e4.
()13—t(, , )(A3 —A2)(A3 —A4) (t(4 —A, , )(t(.4

—t(2)(A4 —t(,3)
(5.16)

In the previous expression, the quantities (A, „A,2, t(,3, A,4) are the roots of the equation

(p +tM1)(p +P2)(p +P3)(p +P4)+yv (p +P2)(p+P3)+
2

((p +Pl )(p +P3)+(p +Pl )(p +P2)] —0 (5.17)

and the following notations have been introduced:

p) —f lQ)

p2='7 l M l &mn

p3 —p l&+l&mn

p4= —l co+ l 6)~„

(5.18)

The imaginary part of the susceptibility is now given by

y"(co)= „~p „~2Re f 'd~l.
0

1
p„„(&—2. ) —p (t —r)

p+i(co „—co)+M' „"(p)
(5.19)

03 0,2

0.2—

0.1—

0.1—

0.0 '

-15,0 -10.0

I

-5.0 0.0 5.0

frequency detuning

10.0 15.0

0.0
-10.0 0.0 10.0 20.0 30.0

frequency detuning

40.0 50.0

FIG. 4. Frequency-detuning dependence of the band-shape
function F(co) for di6'erent I "„„". Again, the curves (a —d) corre-
spond to the values I"„""„=0.1, 1, 3, and 4, respectively. The oth-
er values are co „=10, y =2 X 10, and v =3.

FIG. 5. Frequency-detuning dependence of the band-shape
function F(co) for di6'erent amplitudes of the modulation of the
memory function. Here, the various curves (a —d) correspond
to the increasing values of a =0.05, 0.08, 0.1, and 0.2. The oth-
er parameters are cu „=10',I "„"„=1,v =2, and y=140.
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the probe field. Therefore, to account for the probe-
duration effects, ' the dynamics of the system must be
evaluated again by including the new interaction given by
relation (6.1). Now, the Laplace transform of Eq. (2.6)
takes the form

where V „=—p „E(co) and the required nondiagonal
density matrix elements are easily deduced

cr „(0)
cr „(p)=

p+i (co „—co)+M' „"(p)

[p+i(co „—co)+M' „"(p)]o „(p)

=cr „(0) ——V „f dt e ~'3 (t)
0

(i/A')V „
p+i(co „—co)+M' „"(p)

X f dt e ~'A (t)[cr (t) —o.„„(t)].
0

(6.3)

X [cr„„(t) cr —(t)], (6.2)
Therefore, the time dependence of the density matrix re-
sults in the form

p „(t)=e ' 'L p „(0)
p+i (co „—co)+M ™"(p)

——[p „E(co)e ' ']

xL f dte "A(t)[o (t) —o„„(t)]p+i (co „—co)+M' „"(p)
(6.4)

By following the same procedure previously developed for stationary beams, we deduce the corresponding susceptibili-
ty. Nevertheless, because of the pulsed nature of the probe beam, we require the generalized susceptibility formalism.
It has been of considerable interest in the recent developments of the theory of real-time femtosecond experi-
ments. ' ' In the time-frequency representation of the generalized susceptibility, we have

P(t) =y(co, t)E(co)e ' '+y( —co, t)E( —co)e' ' . (6.5)

f dt e i"A(t)[o (t) —o„„(t)]
p+i(co „—a))+M' „"(p)

If we introduce the expression (6.4) of p „(t) into the definition (4.6) of the polarization and identify with relation (6.5),
we obtain the expression of the generalized susceptibility into the form

y(co, t)= — p„p „L— (6.6)

In order to get an explicit expression of the generalized susceptibility, we introduce the simple form
—2I& —

& I/&
A (t)=e (6.7)

for the probe field envelope. Here, t and T are the probing time and coherence time of the pulse. Therefore, for a
randomly oriented system, we finally get for the imaginary part of the generalized susceptibility

Ip .I'Re L -'
3A

ptg (t) nn-
p+i(co „—co)+M' „"(p)

(6.8)

where the assumptions (5.6) and (5.7) have been introduced. The Laplace transform can be calculated by taking advan-
tage of the convolution product. It gives

dt e ~'3 (t)e
p+i(co „—co)+M' „"(p)

ki+p lCO g g A2+p lQ) g & pnn(t —7)
e '+ e ' A(t r)e "",—(6.9)

1 2 2 1

where we have introduced the Laplace transform previously evaluated and given by relations (5.3) and (5.4). At this
stage, g"(co, t) must be related to the band-shape function. In Sec. V we have described the absorption of energy per
unit time Q in terms of the imaginary part of the susceptibility. This result, well known in classical physics, is still
valid for steady-state regimes in quantum cases. ' Recently, it has been extended to non-steady-state regimes into the
form'

Q =i coy "(co, t ) I
E ( co ) I

3 ( t ), (6.10)

for isotropic systems. Therefore, it is still possible to define a band-shape function, as done previously in relation (5.9).
From the analytical expression of 2 (t) and looking, for the sake of simplicity, at time t =t, we get
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1
.nnt t

x"(~,t)= Ip .I'e "" r«j 'd.
3' 0

k)+P ECO Z P A2+f lCO

1 2 2 1
nn

JJ

(6.1 1)

Performing the time integration, we obtain for the absorption band shape the expression

A )+f leo
exp 1,&+ I „"„"— t —1 (6.12)

which is quite similar to the one obtained in the transient
case, but with a stationary probe beam. This situation is
recovered here, in the limit T = —+ ~. Again, for times
t long enough, the decaying exponential terms are negli-
gible. Therefore, the inAuence of the probe-pulse dura-
tion is quite easy to understand in terms of its corre-
sponding spectral distribution. It gives rise to a broaden-
ing of the absorption band shape which increases as the
duration of the pulse decreases. This is what is observed
in Fig. 6, where the cases of various pulse durations have
been considered.

about the non-Markovian character of the system in the
steady-state regime. However, in the transient case the
non-Markovian behavior can be observed and a couple of
memory functions have been introduced to analyze the
inhuence of their characteristic parameters on the band-
shape function. Finally, the e8'ects of the probe-pulse
duration have been studied and result on a simple
broadening of the band-shape function. While this study
has been only done for the simpler memory function,
similar results can be expected in other situations.
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