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Dynamics of a CO2 laser with delayed feedback: The short-delay regime
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We present an experimental and theoretical study of the dynamics of a CO& laser with delayed
feedback. Working with a delay time such that its product with the bandwidth of the feedback loop
yields a number close to unity (so-called short-delay regime), we show evidence of a low-dimensional

chaos, reached by the destabilization of a two-dimensional torus (Curry-Yorke route to chaos). A
suitable model provides numerical solutions in agreement with the experiment. We discuss under
which conditions our system reduces to an Ikeda-type delayed dynamics.

I. INTRODUCTION

In the past years, the onset of low-dimensional chaotic
dynamics has been extensively explored in a large variety
of physical systems. The minimal condition for the onset
of a chaotic dynamics ("minimal chaos" ) is the presence
of at least three degrees of freedom (DOF) as shown, e.g.,
by the Lorenz equations. '

In the physics of single-mode lasers three relevant vari-
ables are actually present whenever the time scales of
field, polarization, and population inversion are of the
same order, and indeed the corresponding Maxwell-Bloch
equations are isomorphic to the Lorenz equations.
However, in most cases of physical interest there are
large diQ'erences among the damping times of the three
lasers variables. This suggests a classification into class-
A, -8, and -C lasers, ruled, respectively, by one, two, and
three dynamical equations. In the case of a class-8 laser,
minimal chaos has been observed in a variety of
configurations implying the addition of a third degree of
freedom. This third DOF can be added for instance by a
feedback loop acting on a time scale comparable with
that of the other two internal DOF's. Such a situation
was explored in a series of recent papers. On the other
hand, introduction of a delay in a nonlinear dynamical
system is generally reputed to be a source of a high-
dimensional chaos. From a theoretical point of view dis-
sipative systems ruled by delayed feedback are generally
modeled by delayed differential equations of the kind

X(t)=F(X(t),X(t —r) )

where X is a vector field and F is a nonlinear term includ-
ing dissipative eAects. The presence of delay relates the
dynamical variable to a continuous set of initial condi-
tions, thus the solutions of problem (1) should be found in
an infinite-dimensional phase space. Mallet-Paret in-
stead demonstrated that the e6'ective topological dimen-
sion of the attractor of such systems is finite. Apart from
the general theorem of Ref. 6 no general consensus is
available on a sound evaluation of the relevant number of
DOF's in a delayed system. In this paper we study both
experimentally and theoretically the behavior of a single-
mode class-8 laser with a delayed intensity feedback, ex-

ploring situations where the delay is short enough to
confine the dynamics near minimal chaos. In a planned
companion paper, we explore the opposite limit of a very
long delay which provides a large number of DOF's and
hence a high-dimensional chaos. In Sec. II we describe
the physical system, display the model equations, and dis-
cuss the conditions under which our system reduces to
the Ikeda case. Section III describes the experimental
setup. Section IV analyzes the experimental data. Final-
ly in Sec. V data are compared with a numerical solution
of the model. A preliminary report of this work has been
presented at a recent conference.

II. THE CLASS-B DELAYED FEEDBACK LASER

Let us consider a single-mode class-8 laser and call x
the intensity, y the population inversion, and z the volt-
age signal provided by a photodetector looking at the
laser output and applied via a filter of bandwidth P and a
delay of duration ~ to an intracavity electro-optic modu-
lator. The corresponding equations with a suitable scal-
ing of the variables discussed elsewhere ' are

—+x =xy —ax sin zd,2

k

—+y = —xy+ 3,
z—+z =8 —rx,

where k and y are the cavity and population decay rate,
P is the bandwidth of the feedback loop, A is the normal-
ized pump (A =1 at threshold), and a represents the
strength of coupling via the loss modulator, which in first
approximation is a sine squared function of the delayed
feedback voltage zd =z (t —r).

The crucial question now is the following: how many
DOF's are effective in Eq. (1)'? As shown in Ref. 4, for
&=0 (no delay) the feedback system already provides a
minimal chaos.

For a generic ~, the Shannon theorem provides a sim-
ple powerful argument to evaluate the number of DOF's
added by delay in the feedback loop. Indeed, to solve this
problem we have to specify the set of initial conditions on
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the interval [ —r, 0]. Such a set can be described using a
Fourier series with harmonics of the fundamental fre-
quency v= 1/r, each one counting for two DOF's. Be-
cause of the filtering through the finite bandwidth P of
the feedback loop, only a limited number of those fre-
quencies is effective on the dynamics. Precisely, the num-
ber of additional initial conditions to be accounted for in
the open interval ( —&,0) is given by the product
X =2Pr.

A recent conjecture' '" was developed from this basic
idea in order to evaluate the dimensions of the attractors
for delay systems belonging to the class explored over the
past years by Ikeda and co-workers as well as by other
groups. ' These systems are based on the following mod-
el equation:

—+x =f(xd)X
(3)

where xd =x (t —r) is the delayed variable. The fact that
our system is not reducible to Eq. (3) in a straightforward
way is shown, for instance, by our route to chaos, which
is Curry-Yorke' (CY), as shown in the forthcoming sec-
tions, whereas Eq. (3) becomes chaotic according to the
Ruelle-Takens-Newhouse' (RTN) model, as shown in
Ref. 14.

The main difference between these two scenarios is re-
lated to the fact that in the RTN mode1 a three-
dimensional torus is transformed into a strange attractor
whereas in the CY model chaos appears directly after the
onset of two frequencies, as a destabilization of a two-
dimensional torus.

To appreciate the difference between the two groups of
equations we consider the following limit circumstance.
Keeping a fixed P~, let P—+0, r~ oo, that is, introduce a
large delay and a strong filter. The contributions 2pr to
the number of DOF's remain constant. However, on
long-time scales the laser dynamics can be adiabatically
eliminated and thus the laser is reduced to a simple light
source serving as input to the modulator. Indeed, if the
delay time ~ is much longer than the longest characteris-
tic time of a class-B laser which is of the order of 1/y,
we can solve at equilibrium the first two Eqs. (2) for x and

y and substitute the solution x =f (z) into the third one
which reduces to

chaotic attractor of system (3) is given by rlr„where r,
is the correlation time of the driving force f (x)".' '"
This conjecture, verified experimentally in an optical bist-
able hybrid system, " would be difficult to apply in our
case. Indeed assignment of a correlation time for a non-
linear driving force in our complex dynamics would be an
a posteriori characterization, as in fact done in Ref. 11.

We discuss in a planned paper' the possibility to cal-
culate at least the dimension of the phase space within
which the motion is embedded.

III. EXPERIMENTAL SETUP

Li E Oh)

BS PZT SCOPE

The system without delay has been described in detail
in Ref. 4. The experimental setup is shown in Fig. 1. We
employ a single-mode homogeneously broadened CO2
laser with an intracavity electro-optic modulator control-
ling the cavity losses.

The feedback loop consists of a wide band high voltage
amplifier coupling the intensity signal from the fast Hg-
Cd-Te detector to the modulator. The delay of 4.7 ps is
inserted in the feedback loop by using an analog delay
line after the first amplification stage. As contro1 param-
eters we use the bias voltage applied to the amplifier
preceding the electro-optic modulator and the feedback
loop gain, keeping the pump parameter constant.

From an experimental point of view the only accessible
variables are the laser intensity and the feedback voltage.
We acquire the intensity signal by a fast 12-bit analog-to-
digital-(AD) converter (LeCroy 6810) with a minimum
sampling time of 200 nsec. Such a system permits
recording of long-time series (up to 512 K samples) with a
high time and amplitude resolution. We also perform an
analog filtering of the signal before acquisition using an

—+z=8 rf (z„) . —z
(4)

Hvps
EOOD DL

Thus our problem becomes equivalent to Eq. (3) for delay
~))1/y. The above asymptotic argument has been
offered for the sake of comparing our and Ikeda's sys-
tems. A more rigorous treatment would require a de-
tailed comparison of decay times and a center manifold
analysis as developed already for nondelayed lasers. '

However, the extension of that technique to delayed sys-
tems has unresolved difficulties, and it is anyway beyond
the scope of this paper.

The formal solution of Ikeda Eq. (3)

x(t)=p J e ~" "'f(x(t —u —~))du (5)
0

suggested the following conjecture: "the dimension of a

FIG. 1. Outline of the experimental setup. 6 is a 100 1/mm
grating. LT is the CO2 laser tube water cooled and excited by
means of a high-voltage power supply (HVPS) with current re-
gulation (CR). R is a precision resistor to measure the
discharge current. EOM is a CdTe electro-optic modulator
with a half wavelength voltage Vz/2 =4240 V. The total
reAection mirror M is mounted on a piezo-translator (PZT). D
is a fast Hg-Cd-Te (liquid N2 cooled detector). A is the first
amplification stage of the feedback loop, and 8 is the bias volt-
age. DL is the 4.7-ps delay line. EOMD is the electro-optic
modulator driver.
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FIG. 2. Block diagram of the acquisition system used for a
hardware reconstruction of the Poincare section. The signal I
from the photodetector D is digitized by an eight-bit analog-to-
digital converter (ADC). The acquisition is syncronized by the
zero cross detection (ZCD) on the time derivative of the signal
I. The link between ADC and the personal computer (PC) is
realized via the CiPIB IEEE-488 interface.

quences, power spectra, phase-space portraits, autocorre-
lation functions, correlation dimensions, and Poincare
sections. The corresponding evaluations are done off line
via software after the digital acquisition of the intensity
signal. However, we have also implemented a hardware
reconstruction of Poincare sections in order to allow the
scanning of one of the two control parameters. In Fig. 2
a block diagram of this setup is reported. Both in the
software and in the hardware reconstructions we have
built the Poincare maps plotting the amplitude of the in-
tensity signal at the local maximum versus the previous
one. In the hardware case the maximum condition is
realized by a zero crossing detection of the derivative of
the intensity signal and the AD conversion is triggered by
this event.

eight-pole Rockland high-pass filter, with the aim of iso-
lating different features of chaotic attractors. In order to
characterize accurately the different behaviors we have
based our observations on various indicators: time se-

IV. ANALYSIS OF EXPERIMENTAL DATA

Our data show clear evidence of a Curry- Yorke transi-
tion to chaos. Keeping the gain constant we have collect-
ed different sets of data at increasing B, observing two
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FIG. 3. Phase-space portraits, x (t) vs x(t +~) where ~ is the delay time, and corresponding power spectra obtained by increasing
the bias voltage B for a fixed value of r and for a pump A =2.05; the winding number u is also reported for toroidal and locked
motions. (a) B =542 V; (b) B =620 V, m =4.6; (c) B =645 V, u =5; (d) B =660 V, u =5.1; (e) B =670 V; (f) B =690 V, m =6; (g)
B =785 V.
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Hopf bifurcations as reported in Fig. 3. In that figure we
present power spectra and phase portraits. The phase
portraits have been realized by an embedding technique,
that is, we have plotted x„versus x„+&, where Nht is
roughly equal to the delay time ~, At being the sampling
time. The associated power spectra are obtained by a fast
Fourier transform (FFT) algorithm using 16384 points.
Figure 3(a) shows a limit cycle born from the destabiliza-
tion of a stationary solution (fixed point, not reported
here). Another bifurcation gives rise to a second incom-
nensurate frequency generating a motion on a torus
["torus 1",Fig. 3(b)]. Actually between these two behav-
iors there is a small window of parameters in which the
two frequencies are locked (we label this behavior that
will be evident in Figs. 4 and 5 as "lock 0"). Increasing B
yields successively a small locking region ["lock 1" in
Fig. 3(c)] and a second torus ["torus 2,"Fig. 3(d)]. A fur-
ther increase of 8 leads to the destabilization of the torus
into a chaotic motion ["chaos 1," Fig. 3(e)]. This is fol-
lowed by a wide window corresponding to a stable locked
motion ["lock 2," Fig. 3(f)] ending in a fully developed
chaotic behavior ["chaos 2," Fig. 3(g)]. This eventually
collapses back into a new torus and limit cycle.
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FIG. 5. Parameter space representation B(bias)-r(gain) at a
fixed pump A =2.05 (downwards scanning). Letters 3 —L have
the same meaning as in Fig. 4. M represents the limit cycle 3
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Figure 4 reports a bifurcation diagram obtained imple-
menting Poincare sections as described in Sec. II and
scanning with a triangular wave the bias at a fixed gain.
First of all we can observe a hysteresis pointed out by the
different size and location of the dynamical windows in
the up and down scanning of B [see triangular wave in
the lower part of Fig. 4(a)]. The arrows show the posi-
tions of the behaviors reported in Fig. 3. Figure 5 is a pa-
rameter space 8-r representation of the different dynami-
cal domains corresponding to a downwards scan.

In Fig. 6 we compare the motion at the onset of chaos
and when the chaotic motion is fully developed. For this
purpose we report the temporal behavior, the autocorre-
lation, and the fractal dimension of the signal. The auto-
correlation function is defined as
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FICx. 4. (a) Bifurcation diagram obtained by using the mea-
surement scheme reported in Fig. 2 and scanning the bias volt-
age with a triangular wave with a period of 3s (dashed line). (b)
Downwards scanning with identification of the various dynami-
cal regimes: 2, limit cycle 1; B, limit cycle 2; C, lock 0; D, torus
1; E, lock 1; I', torus 2; 6, chaos 1; H, lock 2; I, chaos 2; L, torus
3.

(6)

where & & denotes time average.
The fractal dimension D2 is evaluated calculating the

slope of the log-log plot of the correlation integral by
means of the Grassberger-Procaccia method. ' The first
row [Fig. 6(a)] shows the above-mentioned indicators rel-
ative to a motion on a torus; the second row [Fig. 6(b)] is
relative to the motion at the onset of chaos, correspond-
ing to the behavior reported in Fig. 3(d).

Figure 6(c) refers to the same signal when it has been
analogically high-pass filtered before acquisition. Finally
Fig. 6(d) shows the indicators for the fully chaotic behav-
ior previously shown in Fig. 3(g).

It is interesting to stress that the correlation dimension
plots in Fig. 6(b) clearly show the existence of a satura-
tion plateau at a value Dz-—1 for larger correlation dis-
tances, but also suggest the presence of a higher dimen-
sion for shorter correlation distances, which cannot be
well recognized because of the small number of bits on
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which the chaotic high-frequency motion is recorded.
For this reason we have filtered out the 1ow-frequency
part of the signal so that it has been possible to obtain a
much better resolution on the high-frequency motion. In
this case [Fig. 6(c)] we can clearly recognize a saturation
plateau in the correlation dimension measurements at a
value D2-—3.3 which might be affected by the filtering
process. '

One should notice that even in the fully developed
chaos with D2 ——3.3 the laser intensity has still a correla-
tion time T, of about 140 ps which is much longer than
the delay time ~=4.7 ps. We might be tempted to apply
the conjecture by Le Berre et al. " and correlate the di-
mension of the chaotic attractor with the ratio ~/T .

C

This ratio, however, is here ~/T, =0.033. In fact, that
conjecture refers to an equation such as Eq. (4) and re-
quires the correlation time of the driving force on the
right-hand side of Eq. (4). As shown in Sec. II, only
asymptotically can we reduce our dynamics to such a

form, and the correlation function of the intensity here
measured is by no means the correlation function of the
overall driving force implied by Eq. (4).

Figure 7 is a detailed sequence which illustrates the
torus breaking, showing evidence of the Curry-Yorke
transition. Here we have reported the Poincare sections
and the associated fractal dimensions (i.e., measured on
the Poincare section data files). The four difFerent plots
correspond to increasing values of the control parameter
within the transition interval between the torus and the
first chaotic behavior.

The first of these plots shows that the torus motion
corresponds to a cycle in the Poincare section and the di-
mension calculation and yields a saturation plateau at a
value 1 in the slope of the correlation integral. When the
torus breaks, the cycle shows "wrinkles" and the
Grassberger-Procaccia algorithm does not provide a pla-
teau of constant slope in the correlation integral for
different correlation distances. Finally when the torus is
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FICz. 6. Left column: temporal evolution of the laser intensity x (t). Central column: autocorrelation function C(w) of the laser
intensity. Right column: Correlation integral slopes vs 1n(c. ), calculated by means of the Cxrassberger-Procaccia algorithm using
em e ding dimensions 8-10-12-14, embedding delay 4, around 15 points per quasicycle and a total number of oints N difI' f
one time se uence to the oth

u ero poin s ~ i erent rom
quence to the other. The figures correspond to the following regimes: (a) torus 2 (N =20000 D =1.95+0.05) (b) h) p=, c aos

2
= .02 0.02 growing towards 2.9 for low c); (c) high-pass filtered signal of chaos 1 (N~ =30000, D2 =3.27+0.02);

(d) fully developed chaos (chaos 2) (N~ =50000, D2 =3.29+0.06). The errors assigned to D, are obtained from the spread of the
slope values in the plateau region, thus they refer to the statistical errors in the data.
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transformed into a chaotic attractor a noisy plateau at a
value around 2 is visible.

V. NUMERICAL ANALYSIS

As discussed in the Introduction, our experiment is
modeled by Eqs. (2). The first two equations describe the
dynamics of a two-level homogeneously broadened class-
8 laser, with a loss constant depending on the delayed
feedback variable z. The third equation describes the
feedback loop as a low-pass filter. We focus on a region
of the parameter space which is close to that investigated
experimentally. The selected parameters for Eq. (2) are
given in the caption of Fig. 8. We have performed a nu-
merical integration of Eqs. (2), using a fourth-order
Runge-Kutta method.

The results of this numerical analysis are based on the
same indicators used for the experimental characteriza-
tion, i.e., phase-space portraits, power spectra, and auto-
correlation functions.

As shown in Fig. 8, increasing the bias parameter 8 we
observe the transition from a steady-state behavior (not
reported) to a periodic solution [Fig. 8(a)]. A further in-
crease leads to the appearance of a second incommensu-
rate frequency [Fig. 8(b)], whose amplitude becomes

~r q~ gTQP

(a)

(b)

larger and larger [Fig. 8(c)]. We find also locking win-
dows [Fig. 8(d)] and their subharmonic destabilization
[Fig. 8(e)], up to a weakly chaotic behavior [Fig. 8(f)]
with a slow decay rate of the autocorrelation function,
such as reported in Fig. 3(e).
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FIG. 7. Poincare sections and associated correlation integral
slopes at the torus breaking calculated on 10000 points. (a)
8 =660 V; (b) 8 =665 V; (c) 8 =667 V; (d) 8 =671 V.

FIG. 8. Numerical results. Left column: phase-space por-
traits; central column: power spectra; right column: autocorre-
lation functions. Parameter values: A =4.0, a=0.2, r =0.6,
P=4.0X 106 s ', k =2.0X10' s ', y=6.0X10 s ', ~=5 ps.
(a) 8 =0.4; (b) B =0.46; (c) 8 =0.5; (d) 8 =0.63; (e) 8 =0.66;
(f) 8 =0.68; (g) 8 =0.75; (h) 8 =0.8. Here, 8 is normalized to
1/m times the half wavelength voltage of the modulator.
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Increasing 8 again we find higher-order locking re-
gions [Fig. 8(g)] and a fully developed chaotic behavior
[Fig. 8(h)] with a fast decay rate of the autocorrelation
function comparable to that of Fig. 3(g). The data re-
ported in Fig. 8 show the qualitative agreement with the
experiment. A complete numerical investigation would
require a scanning of the two-dimensional parameter
space (B,r) for fixed A, ct, P, k, y, and r In. spite of this,
we show how a linear stability analysis can lead to evalu-
ation of the small amplitude oscillation frequencies start-
ing from a steady-state solution of Eqs. (2). The steady-
state nontrivial (xXO) solutions are given by the follow-
ing equations:

A =(1+x)[1+ax(B rx )]—,

l.600-

&000-

600-

0'-200 —2%0 —200 —DO

Re {s)g~ (k Hz)

2000 ~

'-8

Oi

0,
8

'8

8.

I

60 100

y=A/(1+x), (7)

z=B —rx .

We specialize our calculations for +=0.2, B =0.4, and
r =0.6, parameters equal to those of the numerical simu-
lations of Fig. 8, but 3 =1.836, which represents a close
fit with the experimental situation. One of the three in-
tensity solutions for the above numbers is x =0.87771.
We study the oscillatory solutions around this steady
point. The linear stability analysis of the delayed system
leads to an eigenvalue equation of transcendent type. ' A
similar analysis has been recently applied with reference
to a semiconductor laser with delayed feedback. In this
case, it is straightforward to derive the following eigen-
value equation:

—+1S —' —'+1+= + "
k y 1+x

=rex —+1+x e
y

(8)

where s =A, +iso is the complex eigenfrequency. The
lowest-frequency solutions of this trascendent equation
are plotted in Fig. 9. The corresponding real parts A, give
the damping (if negative) or amplification factor (if posi-
tive). The solution denoted by an arrow has a positive
real part hence it has to be related to the limit cycle of
Fig. 8(a) (model) and Fig. 3(a) (experiment). The presence
of adjacent frequencies with a relatively small damping
rate show that a two-frequency behavior of toroidal type
may appear.

FIG. 9. Linear stability analysis at the fixed point
x=0.87771. The circled dots represent the poles of the La-
place transform of the linearized variables. The pole marked by
the arrow corresponds to a frequency f= 176 kHz.

VI. CONCLUSIONS

We have presented an experimental and theoretical
study of the dynamics of a single-mode class-B laser with
delayed feedback.

We have discussed also the analogy between our sys-
tem and that of Ikeda, and shown under what conditions
our problem can be reduced to the Ikeda one. We have
presented a critical comparison between our results and
the conjecture of Le Berre et al. on the fractal dimen-
sions of Ikeda's chaotic attractor.

The wealth of experimental data here offered shows the
peculiarities of the delayed system already in the short
delay regime where the number of DOF's is reasonably
small. Very different phenomena occur when that num-
ber is consistently higher (larger than ten), and we refer
to a planned paper for the corresponding phenomenolo-
gy. As for the model, we have solved numerically the
equations and given the steady-state solution and a linear
stability analysis in a parameter range close to the experi-
mental one. A qualitative agreement is achieved. A
closer fitting of experiment and theory would require a
lengthy detailed scanning of the parameter space.
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