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Nonlinear dynamics of multiple four-wave mixing processes in a single-mode fiber
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Multiple four-wave mixing processes in an optical fiber are investigated both theoretically and ex-

perimentally. The propagation equations for the complex amplitudes of two pump waves (angular
frequencies co& and co2) and four sidebands (co3 =2'�&—co2, co4 =2'& —

co&, ~5 =2co3 —co &, and

co6=2co4 —co2) are derived. These six waves interact through seven partially degenerate and nonde-

generate four-wave mixing processes. Conservation relations for the wave amplitudes are obtained.
Numerical integration of these equations reveals both periodic and chaotic energy exchange be-

tween the pump waves and sidebands. Predictions from the model are tested directly by experimen-
tal measurements on a single-mode optical fiber.

I. INTRODUCTION

The study of nonlinear optical interactions of multiple
waves propagating through an optical fiber is of immedi-
ate concern for considerations of wavelength multiplex-
ing in optical communications. Four-wave mixing
(FWM) processes are highly relevant in this context, par-
ticularly for short fiber lengths, in which Raman genera-
tion is not a dominant process. ' In the past, four-wave
mixing in optical fibers has been investigated by several
authors these investigations have been motivated
mostly by the production of new frequency sources or by
the parametric amplification of signals. Optical fibers are
an ideal medium for the study of nonlinear dynamical
effects in wave propagation because of the low losses and
high power densities that are easily achieved in single-
mode fibers. These studies generally concerned them-
selves with a single degenerate or nondegenerate FWM
process. Analytic solutions have been obtained for such
cases, even when the depletion of the pump waves is ac-
counted for. Hamiltonian chaos in the polarization dy-
namics of birefringent fibers has also been studied by
several authors. '

Situations where multiple nonlinear interactions be-
tween several waves may occur are more complex, and
such systems are often nonintegrable and display chaotic
dynamics. As an example of such a system, Alekseev
et al. ' '" have theoretically studied instabilities in a non-
linear optical medium with six propagating light waves
all at the same frequency but with different wave vectors.
They have predicted the occurrence of chaotic energy ex-
change between the waves under certain conditions and
for certain regimes of parameters.

In this paper, we consider an experimentally realizable
system that is closely related to the ones described by
Alekseev et al. ; six waves of the same linear polarization,
but with different frequencies, propagate in an optical
fiber and interact through the third-order Kerr nonlinear-
ity of the medium. For short propagation lengths, opti-
cal fibers provide an essentially lossless system that can
display periodic and chaotic energy transfer between

multiple propagating waves. Several competing FWM
processes may occur in the fiber that are, in general, not
phase matched. In our experiments, two pump waves de-
tuned from each other (with angular frequencies co, and
co@) generate two "first-order" sidebands at co3 2co] co2

and cu4= 2co2 —cu, . If the first-order sidebands grow
sufficiently strong through energy depletion of the pump
waves, they may then interact with the pump waves to
generate "second-order" sidebands at co5=2cu3 coi and
co6=2co4 —co2. The system of equations that describes
these six propagating waves displays a rich variety of
nonlinear dynamical behavior, and it is possible to test
the predictions of this model experimentally. We limit
ourselves to wave intensities such that the second-order
sidebands never contain more than a few percent of the
pump energy.

In Sec. II, we derive the propagation equations for the
complex amplitudes of the six waves in the nonlinear
medium. The conditions for which our model is valid
and the approximations necessary for the derivation are
discussed. Energy conservation is shown to follow from
these equations for the lossless fiber, and a second con-
served quantity for the system of equations is obtained.
We describe the results obtained from numerical integra-
tion of the propagation equations in Sec. III. Periodic
and chaotic energy exchange between the pump waves
and sidebands is observed and investigated as a function
of pump energy and detuning between the pump waves.
Section IV presents experimental evidence of the validity
of the theoretical model. Direct tests of predictions ob-
tained from the propagation equations are described. It
is shown that it is necessary to include the second-order
sidebands to obtain good agreement between experiment
and theory.

II. COMPLEX AMPLITUDE
PROPAGATION EQUATIONS

The nonlinear propagation equations for the complex
amplitudes of the six frequency components interacting
via self-phase-modulation (SPM), cross-phase modulation
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Now the linear polarization can be related to the electric
field by the constitutive relationship I' =F~"'E. Since
we are neglecting the absorption losses we can ignore the
imaginary part of the susceptibility y"' and the material
refractive index will be given by no=(1+g'")'~ . Using
these facts the wave equation becomes

n 2E
c2 c)t2

(2)

For simplicity we will consider a plane-wave solution ex-
pressed as the product of functions of the transverse
coordinates r and P and the axial coordinate z,

(XPM), and FWM can be derived from Maxwell's equa-
tions by including the appropriate terms of the nonlinear
polarization of the fiber medium. Before proceeding in
detail, the conditions and simplifying assumptions for our
derivation will be outlined. We assume that the fields are
linearly polarized so that a scalar approach can be taken.
Also, the fiber is assumed to support only a single trans-
verse mode. The transverse modes are assumed to
remain essentially undisturbed by the perturbing non-
linearity. Absorption loss and Raman scattering are
neglected in this model. We take the quasi-cw approxi-
mation neglecting dispersion and walkoff of the different
frequency components since the fiber lengths used in ex-
periments and numerical calculations are much shorter
than the characteristic dispersion and walkoff lengths for
our pulse widths ( —5 ns). Finally, the frequencies of the
six waves are assumed to be relatively close so that
differences in material refractive index and frequency are
very small.

We first consider the linear propagation of pulses
through an optical fiber. We will derive the equation for
the transverse modes and utilize this later to simplify the
nonlinear wave equations. Assuming no free charges or
currents and no induced magnetization, the wave equa-
tion, in terms of the electric field and induced polariza-
tion, will take the form

g2E $2p
V E POCO 2 PO

Blt2 at2

products of Bessel functions in the radial coordinate and
trigonometric functions for the azimuthal angle. ' The
exact form of these solutions is not of concern here. Now
let us consider the nonlinear propagation of several fre-
quency components.

In general the solutions to our wave equations will not
be monochromatic plane waves, and the material polar-
ization will not be simply a linear function of the electric
field. In this derivation of the equations governing the
propagation of the different frequency components we
will assume each wave to be monochromatic, but the
slowly varying envelopes will depend on z. This alone
will not greatly complicate the solution; we can still
separate variables and get an equation identical to Eq. (4)
for the transverse modes of the fiber. The difficulty is
caused by the nonlinear polarization which will prevent a
separation of variables. This is overcome by treating the
nonlinearity as a small perturbation and assuming that
the transverse modes are essentially unperturbed by the
nonlinearity. This will allow us to get propagation equa-
tions for the z-dependent part of the wave amplitudes and
integrate out the transverse coordinates leaving a con-
stant related to the mode size. ' The starting point is the
wave equation for the electric field and polarization.
Now we will include a cubic term in the polarization so
that

P =eo(y"'E+y' 'E ) .

From the relationship for the material refractive index,
no =(1+y'")'~, one gets the nonlinear wave equation to
be

no ()E2

c2 gt2 c2 gt2

To proceed further we must write the electric field in
terms of its frequency components. For the FWM pro-
cesses of interest there will be six frequencies: two pump
frequencies at co& and co2, two first-order sidebands at
co3 2' i 602 and co4 =2c02 c0

&
and two second-order

sidebands at co5=2~3 —
~& and co6=2co4 —co2. Thus the

electric field can be written as

E =P(r, P) exp[i (Pz cot) j+c—. c. , (3) E =
—,
' g [E (r) exp[i(p z —co t) j+c.c. I,

where c.c. denotes the complex conjugate. The quantity
p is the axial propagation constant that is dependent on
the transverse mode in which the wave propagates. The
only time and z dependence we are considering is con-
tained in the oscillatory plane-wave part of the field. Sub-
stituting Eq. (3) in Eq. (2), the time derivatives and the
axial part of the Laplacian can be immediately simplified
to yield the following equation for the transverse part of
the electric field

Vrg+(ko —p )/=0 .

Here, ko =nocolc, with only the material index taken into
account while p takes into account both material and
waveguiding effects. The quantity VT denotes the trans-
verse part of the Laplacian. The solution to this equation
gives the transverse modes in the fiber. These will be

where p =n co Ic is the axial propagation constant
and includes material and waveguiding effects in the re-
fractive index. Following the treatment of Stolen and
Bjorkholm, ' it will be convenient to express the field am-
plitudes in a form easily related to the power in the wave.
First, separate the field amplitude into transverse and
longitudinal parts expressing it as E = A (z)P (r, P).
The time averaged intensity will be related to this ampli-
tude by I = ,'eonoc~E

~
. The p—ower is obtained by in-

tegrating over the fiber cross section

= f fI ««P= —,'~on, c~ & ~'f f ~q ~'r dr dP

where
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+m 2 ~ono m

Define the new longitudinal amplitude as
F (z) =N A (z) so that the power becomes P = IF
The electric field can now be expressed as

(z)
E =

—,
' g g (r, P) exp[i(13 z —co t)]+c.c.

m=1 m

(10)

BE)
az2

(r, y)
exp[i (Piz toit)]—

1

a F, (z) aF, (z)+2iP, —13,F, (z)
az2 az

In the slowly varying envelope approximation, the second
derivative term will be much smaller than the other
terms, and can be neglected. Note that the time deriva-
tives of the field can be replaced by the quantity —imt
since we are neglecting any time dependence of the am-
plitudes by making the quasi-cw approximation. Finally,
the left-hand side of Eq. (6) (for the co, frequency com-
ponent of the field) becomes

c'at' 2
' 'N, az

+ [VTQ, +(k, —
13, )g, ]

N1

X exp[i (P,z co, t) ] .— (12)

Now we can separate the wave equation into equations
for the six independent frequency components.

As an example of how this is done, consider the co1 fre-
quency component of the field. The left-hand side of the
nonlinear wave equation contains the linear terms. The
simplification of this part proceeds in two stages. First,
the axial part of the Laplacian results in the following ex-
pression:

Under the assumption that the transverse modes remain
essentially unperturbed by the nonlinearity, the quantity
in square brackets in large parentheses is approximately
zero, greatly simplifying the left-hand side. '

Now we must consider the nonlinear part of the wave
equation (6). We are interested in determining the com-
ponents of E that oscillate at the frequency co, . There
will be three types of terms: terms due to SPM, terms
due to XPM, and terms due to FWM. E can be ex-
pressed in terms of the triple sum

E =
—,
' g EkE E„exp[i (Ok+ 9 +0„)],

k, m, n

(13)

where Hk =Pkz cok—t and k, m, n =1,2, 3,4, 5, 6 and
1*,2*,3*,4*,5', 6*. The raised asterisk indicates that the
complex conjugate is to be taken. The SPM terms occur
for combinations like IEJ I E, which corresponds to index
combinations jj*j of which there are three unique per-
mutations. The XPM terms occur for combinations like
IE, I E;, with j Wi, which correspond to the index com-
binations jj*i, of which there are six unique permuta-
tions. Finally, there are the FWM terms. These are most
easily obtained by considering the generation of the four
FWM sidebands from the two pump frequencies as seven
FWM processes: the four partially degenerate processes
that generate co3, co4, co5, and co6 and three nondegenerate
processes given by co1+ct)2 —co3+ M4 c01+c02 c05+&6
and co3+co4=cu5+co6. These latter are obtained from
sums of the partially degenerate processes for co3 c04 co5,
and co6. So the terms containing combinations of fre-
quencies resulting in the frequency ~1 and their corre-
sponding amplitude products are E3E4E2 (for
&3+&4 &2 ), EsE6E2 (fo ~5 +&6 M2 ), E2E3E i (for
c02+ cD3

—

cubi

), E2E 4 (for 2co2 —
co4 ), and E3E 5 (for

2co3 —co5). The combinations with three different ampli-
tudes have six permutations, and the combinations with
only two di6'erent amplitudes have three permutations.
The necessary terms are generated and the term counting
is completed so that we can write down the right-hand
side of Eq. (6) remembering to replace the time deriva-
tives by the quantity —i co, .

(3) g2E 3 3y
c2 cjt2 8c2 IE, I'+2 & IE, I' E, +2E,E3Ei exp(t$23 —i —i)

j (%1)

+2E3E4E2 exp( i/3 4 2 i ) +2E5E6E 2 exp(i/5 6 2, )

+E2E4 exp(i/2 2 4 i)+E3E5 exp(i/3 3 5 i) exp[i(13iz —ci)it)], (14)

where P; .
k =(I3;+P —

Pk
—13 )z. Now the field amplitudes can be expressed in terms of the separated ampli-

tudes, E =g (r)F (z)/N, and the right-hand side and left-hand side equated. Since we have assumed single-mode
propagation, all the P; and N, are the same. Cancelling the common factors, one obtains the propagation equation for
the co1 component to be
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aF,
ip,

()Z 8g 2+2 IF]I'+2 & IF, I' F]+2F2F3F*, exp(i/23 —] —])
j (%1)

+2F3F4F2 exp(i/34 2 ])+2FSF6F2 exp(]05, 6, —2, —])

+FzF& exp(i/2 2 4 ])+F3F~ exp(i/3 3 5 ])

Let us eliminate the transverse coordinates by multiplying both sides by I]/t] I and integrating over r and P. This results,
with some simplifications, in the propagation equation

dF1

dz

Il C01n 2

CA, ff
IF, I

+2 g IF, I' F, +2F,F,F*, exp(iP. ,.,
—],—])+2F,F4F2 exp(i((t3, ~

+2F&F6F2 exp(i]/]& 6 2 ])+FzF4 exp(i/2 2 4 ])+F3F& exp(i/3 3 —5 —]) (16)

where n 2 is the intensity-dependent refractive index and

ff is the effective core area. These quantities are given
b 1'4

n2 —=3y' ]/(4eocno)

6/3] ] 2 3
= 5K

5/3p 2 ] g= EIC

5/33 3 ] 5= AK

(18d)

(18e)

(18f)

1/A, ]r= f f I@]l r dr dP f f I]t]l'r drdy
and

Ap4 4 2 6= SIC (18g)

The procedure for obtaining the propagation equations
for the other frequency components is completely analo-
gous. Before writing these down there are some
definitions and simplifications to be made. First, let us
define the nonlinearity coefficient y by y =con&/(cA, ]r), —
where co is the average value of the frequency assuming
small frequency differences between the FWM com-
ponents. Also, define normalized amplitudes by letting
F =(P] )' U where P, is the input pump power of the
pulse at co1. Finally, for numerical computations, the
linear wave-vector mismatches must be estimated. These
are the differences i]]p, J k =/3, +pJ —

pk —p . These
can be estimated by assuming that the material contribu-
tion to the mismatch is the dominant part and the
waveguiding part can be ignored. The wave vector p(co)
can then be expanded about a chosen frequency, co1 say,
and orders only up to quadratic in the frequency
difference kept:

p( co ) =p' ]+( a) —co] )p] "+—,
]

( co —co] ) p' '+ 0{( co —co ] ) ),

dU1 =i yP1
dz

IU, I'+2 y IU, I'U,
j (%1)

U*e'~ +2U U U*e
3 2 1 3 4 2

6ih~z+ U2U e —ib, vz
5 6 2 2 4e

+ U2U+ —ib, az
3 5e (19)

dU2 = I.yP1dz
U I'+2 y IU, I' U

j (W2)

U U*e'~ +2U U U+4 1 2 3 4 1e

iAxz+ U2U e —ib, z
5 6 1 1 3e

Now the complete set of equations for the normalized
field amplitudes for the six frequencies can be written
down:

Ap] 2 3 g= 20]p: 26K (18a)

where p'"'=(d "/3/den") evaluated at co=co]. There are
seven such wave-vector mismatches to be evaluated, one
corresponding to each FWM process. The values for
these mismatches in terms of the pump detuning

uzi and the second-order dispersion
coefficient P' ' are given by

+ U2U+ —id'
4

dU3
IU, I'+2 y IU, I'

'
U,

j (&3)

+2U U U~ —z~s«+2U U U
1 2 4 5 1 3

(20)

Ap] 2 g 6= 66K

kp3 4 5 6= 46K

(18b)

(18c)
U U + 4i~«+ U2U+

5 6 4 2e (21)
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dU4
=iyP

dz
IU. I'+2 y IU, I'U,

j (W4)

&bKZ+ 2 U6 2 4 1 2 3

+2 U' U' Ui1C 4l EKZ+ U 2 U e l AKZ
5 (22)

cal calculations as a check of the integration. The system
of Eqs. (19)—(24) were integrated numerically by Gear's
method, since they are stiff in character.

III. NUMERICAL INTEGRATION
OF PROPAGATION EQUATIONS

dU5

dz
=iyP) 'IU I'+2 g

j (w5)

+2U U U4 6IEKZ+2U U' U4 4lAKZ

+ U2U e —ihKZ
3 1e (23)

dU6

dz
=iyP) IU61'+2 y

j (&6)

+2 O' U U4 6lAKZ+ 2 U' U U'4 4lAKZ

+ U2U+ —ihKZ
4 (24)

Before proceeding to the numerical solution of these
equations, let us briefly consider the determination of
conserved quantities from the equations for the power,
IU I, in each of the six waves. Such quantities would
provide a useful check of the numerical solutions. One
can obtain the equations for the wave powers from the
above amplitude equations by the simple prescription

(25)

This results in six power equations involving only the
FWM terms, since the SPM and XPM terms cancel out.
There are seven types of terms (and their complex conju-
gates) representing the seven FWM processes. If we let

the scaled powers of the waves be p =
I
U

I
then for the

conserved quantities we require that

dpm

dz
(26)

C =(p»i p2)+3(p3 p. )+5(—p5 p6) . — —(27)

These two conserved quantities were used in our numeri-

An obvious choice of conserved quantity for this lossless
system of equations is the total power P„,= g p . The
condition for a conserved quantity results in seven equa-
tions in six unknowns, the a s, due to the linear in-

dependence of the seven different FWM terms. However,
a row reduction type strategy shows that only four of
these equations are independent so that four of the 0. 's

are determined in terms of two arbitrarily chosen u 's.
Thus one finds that there are two independent constants
of the motion from which all others can be generated.
Choosing the total power as one and a, and n2 as the ar-
bitrary coefficients one finds the other conserved quantity
to be

The numerical solutions of these coupled, nonlinear,
ordinary differential equations display some very interest-
ing dynamical behavior, depending on the choice of pa-
rameter values and initia1 powers for the six frequency
components. Before discussing this, however, it is impor-
tant to know what parameters must be determined to per-
form the numerical integration. The key parameters are
the nonlinearity coefficient y, the second-order dispersion
coefficient /3' ', and the pump detuning Qiz. The non-
linearity coefficient contains, among other known param-
eters, the Kerr coefficient for the intensity-dependent re-
fractive index and the effective mode area. The Kerr
coefficient was chosen to be a value commensurate with
silica fibers. The effective mode area is the more difficult
parameter to estimate. The estimate of this parameter
was based on calculating the 1/e width of the fundamen-
tal mode of a step index fiber for the appropriate U num-
ber ( =2 for a single-mode fiber operating at around 630
nm). The value of A,s. could then be calculated based
upon this number. The dispersion coefficient was chosen
in such a way as to fall within a range reasonable for the
optical fiber in the appropriate part of the spectrum
( =630 nm) and that would best fit the experimental data.
The pump detuning was varied for the numerical studies;
it has a known value in the experiments. Finally, the ini-
tial conditions, input pump power, and the normalized
initial amplitudes for the six frequency components, were
chosen based upon experimentally determined values and
varied for the purpose of numerical studies. As will be
seen presently, the character of the solutions to the cou-
pled wave equations depends strongly on the choice of
parameters and initial conditions. All of the numerical
studies of this paper will involve a choice of initial condi-
tions for the scaled intensities; for instance, we have
mostly used the initial conditions p, =p2 = 1 and

p3 p4 =p5 =p6 =O. The actual input pump power P
&

and the pump detuning 0, ,2 will be varied in the numeri-
cal calculations.

In general, for large detunings and small input powers
the numerical solutions show a periodic exchange of
small amounts of energy between the pump and first-
order sidebands (the second-order sidebands have virtual-
ly no energy for these conditions) as a function of propa-
gation distance along the fiber. As the pump power is in-
creased systematically, the behavior remains periodic for
the lower P, values, but there is a greater exchange of en-
ergy between the pump and FWM components. The os-
cillations also develop more spatial structure. Eventually
the behavior becomes chaotic and the Fourier spectrum
of power Auctuations becomes very broad, lacking the
distinct peaks of the periodic cases. Figures 1(a)—1(c) are
a set of trajectories (power versus distance) for one of the
pump waves while Figs. 1(d)—1(f) are the associated power
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spectra. A quantitative measure of the periodic or chaot-
ic character of the solutions can be obtained by looking
at the differences in the trajectories of two numerical
solutions with very slightly different initial conditions.
Following the treatment of Alekseev et al. ' we define
such a measure of trajectory separation to be

6 1/2

5(z)=in[5(z) ]=in g f
U (z) —U' (z)f, (28)

m =1

where the prime denotes a trajectory with slightly
different initial conditions from those of the unprimed
trajectory. ' The trajectory separation was computed for
two cases. In the first case the initial conditions were tak-
en to be those for Fig. 1(a) (p, =p2=1 and p3=p4
=p~=p6=0) for the unprimed periodic trajectory while
for the primed trajectory, p3 was given an initial value of
10, all other initial conditions being kept the same. In

the second case, the initial conditions were taken to be
those of Fig. 1(c) for the unprimed chaotic trajectory,
while p3 was given an initial value of 10 for the primed
trajectory. Figures 2(a) and 2(b) show the trajectory sepa-
ration A(z) plotted for these two cases. Figure 2(a)
displays a slow growth of the trajectory separation corn-
pared to Fig. 2(b), where the trajectory separation shows
a sharp linear increase indicating exponential separation,
since this is a logarithmic plot. In Fig. 3(a) we show that
the growth of the trajectory separation in the periodic
case is approximated quite well by a quadratic. It is clear
from Fig. 3(b) that the trajectory separation grows ex-
ponentially in the chaotic case. Since this is a bounded,
conservative system, the exponential separation of the
chaotic case obviously cannot continue indefinitely.

It is also of interest to look at the connection of the
dominant frequency in the power spectrum as a function
of the pump detuning Q&2. One expects a definite func-
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FIG. 1. Transition from simple periodic to chaotic propagation of the intensity of the co& component of the field with increasing in-
put pump power P, . Frames (a)—(c) show the normalized power in the co& component as a function of propagation distance, and
frames (d)—(fj show the corresponding power spectra. The pump-power levels going from simple periodic, to period doubled, to
chaotic are P, =10, 30, and 70 W. The parameter values are Q, 2=20 cm ', y=1.76X10 m 'W ', P' '=70 ps /km, and the fiber
length I. = 100 m. The initial conditions for the normalized powers are p& =pz= 1 for the pump waves and p3=p&=p5= p6=0 for the
FWM sidebands.
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tional relationship since the detuning determines the
mismatch which appears in the oscillating exponentials of
the FWM terms. The fact that for each frequency several
such exponentials at different spatial frequencies contrib-
ute makes it difficult to anticipate the outcome. The re-
sults of such a study are, however, quite simple: There is
a quadratic relationship between the dominant spectral
component and the pump detuning. Figure 4 shows this
relationship for a relatively broad range of detunings.

It is instructive to compare the initial growth of the
first-order sidebands for this set of multiple FWM pro-
cesses with that of the single nondegenerate process
co i +co2 c03 + f04 For the single nondegenerate process
the initial growth (neglecting pump depletion), for sym-
metric initial conditions, can be shown to be given by the
analytic expression

-5.0—
P3 4 ao 1+ 1+

(Aa+3yP, )
sinh (gz), (29)

-8.0
0.0

I

50.0
Z (m)

I

100.0

0.015 (a)

FIG. 2. Dimensionless logarithmic trajectory separation A(z)
as a function of propagation distance z. (a) A(z) for two period-
ic trajectories. The initial conditions for the two trajectories are
identical to those for Fig. 1(a), except that p, is given the initial
value 10 for the primed trajectory. (b) A(z) for two chaotic
trajectories. The initial conditions correspond to those for Fig.
1(c), except that p3 is given the initial value 10 for the primed
trajectory.

where g is the gain defined by g =
I[(2yP I )—(ba+yP, ) ]' and ao is the normalized initial ampli-

tude of the first-order FWM peaks. ' Figure 5 shows the
comparison between the two cases for the growth of the
first-order FWM sidebands. Note that the hyperbolic
sine growth of the analytic solution Eq. (29) is very slow
compared with the results from numerical integration of
Eqs. (19)—(24). This is to be expected since in the case of
multiple FWM processes there are several contributions
to the growth of the first-order peaks. More significantly,
one of these contributions involves the cube of the pump
fields, as opposed to growth proportional to the square of
the pump fields and the (small) first-order peak for the
nondegenerate case.

0.010 IV. EXPERIMENTAL RESULTS
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The propagation equations (19)—(24) may be tested

directly by comparison of the results of numerical in-
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FIG. 3. Plots of the dimensionless linear trajectory separa-
tion 5(z) as a function of propagation distance z. (a) 6(z) for the
two periodic trajectories. The dashed curve is a quadratic poly-
nomial fit to the numerically computed separation. (b) 5(z) for
the two chaotic trajectories. The dashed curve is an exponential
fit to the numerically computed separation. Note the difference
in vertical scales between the two cases.

FIG. 4. Dependence on the pump detuning 0,» of the dom-
inant spatial frequency in the power spectrum of one pump
wave propagation trajectory. The solid squares show the dom-
inant spatial frequency in the power spectra obtained for
difterent detunings. The dashed line shows a quadratic polyno-
mial fit to the data. The parameters y, fI, and L and the initial
conditions for the normalized powers are identical to those of
Fig. 1, and the input pump power is P, =30 W for all the points.
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tegration with experimental measurements of the side-
band peaks generated when two pump waves with a given
detuning are launched into the fiber. Figure 6 is a
schematic representation of the experimental apparatus.
The pulses (5 ns long) from two tunable, pulsed, dye
lasers, pumped by a frequency-doubled Nd:YAG laser
(YAG denotes yttrium aluminum garnet), are linearly po-
larized and launched along a principal axis of a 1.5-m
length of single-mode polarization maintaining fiber with
a core diameter of 4 pm. The output of the fiber is then
directed into a spectrometer, and the spectrum is record-
ed by a charge-coupled device (CCD) camera. The spec-
tral image is digitized and stored by a frame grabber in a
microcomputer. The pump detunings can be determined
to an accuracy of -0.05 nm with the spectrometer sys-
tem. It is possible to obtain single shot spectra as well as
spectra averaged over a large number of laser pulses.
Figure 7(a) shows a spectrum of the light at the fiber out-
put averaged over 100 pulses. The two pump pulses are
adjusted to be of approximately equal intensity. Also
seen are the two first-order FWM sidebands. The input
pump waves are equal (17.6 W) in intensity. When the

FIG. 5. Comparison of the initial growth of the analytic solu-
tion [Eq. (29)j, that neglects pump depletion, for the single non-
degenerate FWM process co&+co2=co3+co4, with the numerical
solution for multiple FWM processes. The parameters y and P
are the same as for earlier figures. The initial normalized
powers were p& =pz=1 and p3=p4=0. 01. The pump detuning
was Q»=2 cm ' and the input pump power was P~ =20 W.
The numerical results are virtually identical whether the first-
order sidebands only are included or the second-order sidebands
are included as well.

power of the pump waves is increased to 163 W, several
orders of FWM sidebands are generated in the fiber. This
is illustrated in Fig. 7(b). In making comparisons with
theory we have restricted the pump wave power levels to
below 100 W, when only the first-order sidebands are ap-
preciable in strength. Even though the second-order
sidebands are very small compared to the pump waves
and first-order sidebands, they play a critical role for ob-
taining good agreement between experiment and theory
at the higher pump-power levels.

There were two types of measurements made that pro-
vide stringent tests of the theory for lengths of fiber on
the order of a meter and peak input pump powers of
& 100 W. The first set of measurements determined the
dependence of the output power of the first-order side-
bands on the input pump power for a given pump detun-
ing. For these experiments the pump detuning A, z was
set to some previously chosen value and the input pump
power varied over a range of 10—100 W. The output
powers (as a fraction of the pump) of the first-order side-
bands were then determined from the averaged spectra.
Figure 8 shows the experimental data for two pump de-
tunings (19.5 and 30.5 cm ') and the corresponding
theoretical match (solid curves). The agreement between
experiment and theory is quite good over the entire range
of the input pump powers. The same values of the non-
linearity coefficient y and the second-order dispersion
coefficient P' ' were used for both calculations.

A point of interest here is the question of why six fre-
quencies, instead of four, were included in the theoretical
model since our experiments are soley concerned with the
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FIG. 6. Experimental apparatus for the study of FWM in
single-mode optical fiber.
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FIG. 7. Typical FWM spectra for low and high input pump
powers. (a) P, =P, =17.6 W, detuning between pump waves of
14.8 cm '. Only the first-order sidebands are prominent. (b)

Pl =P2 = 163 W, detuning between the pump waves of 10 cm
Sidebands up to the sixth order are clearly visible.
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FIG. 8. Plots showing the dependence of the normalized
first-order sideband power (as a fraction of the input pump
power P& ) on the input pump power. The open squares are for
a pump detuning of 19.5 cm ' and the open triangles for a
pump detuning of 30.5 cm '. The solid curves are computed by
numerical integration of Eqs. (19)—(24). The dashed curves
show the behavior when only the first-order sidebands are in-
cluded in the numerical solution. The values of the parameters

y and P and the initial normalized powers for the six waves are
the same as in Fig. 1. The fiber length L =1.5 m. The parame-
ter values and initial conditions are the same for the solid and
dashed curves.

first-order sidebands. When the first-order sidebands be-
come strong enough it is possible for them to mix with
the pump frequencies to generate two additional side-
bands. In fact, one can easily experimentally generate
spectra with as many as a dozen peaks for sufficiently
high input power. It was conjectured that for higher in-

put pump powers in our experiments (in the range of
50—100 W) the second-order peaks might play a
significant role in the FWM processes. This was subse-
quently confirmed by the fact that the experimental data
could not be matched with realistic choices of parameters
by taking into account only the first-order sidebands.
The dashed curves in Fig. 8 illustrate the significant
inhuence of the second-order sidebands on the behavior
of the first-order sideband peaks. All the parameter
values and initial conditions used for computations with
only four waves are the same as in the model with six
waves.

The second set of measurements used as a test of the
theory determined the input pump power P, necessary to
generate first-order sidebands with a preset threshold per-
centage of the input pump power as a function of the
pump detuning Q,2. For these experiments the pump de-
tuning was varied over a range of —3—30 cm '. For
each detuning the pump power was adjusted so that the
average first-order sideband power was approximately at
the preset threshold. Figure 9 shows the experimental
data for a threshold of 13%. Also shown is the theoreti-
cal fit and other calculated curves for different threshold
values. The data fit the calculations quite well for the
smaller detunings. For the largest detunings experiment
and theory do not agree as well as in the case of small de-
tunings, although there is qualitative agreement in the
shape of the curves. The disagreement for large detun-
ings may be due to the inhuence of Raman scattering
since for these the input pump power is significantly

larger than for the small detunings. Also, spectral
broadening due to SPM and XPM, neglected in our
quasi-cw treatment, will be of increasing importance for
higher pump powers for our -5-ns pulses. For these cal-
culations the same values of y and P' ' were used as for
the calculations of Fig. 8.

The series of curves for different choices of threshold
show an interesting change in behavior as one goes to
progressively higher threshold percentages. All curves
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FIG. 10. Plots showing the difference in the growth of the
first-order sidebands for two points on the 13% threshold curve
of Fig. 9. (a) Input pump power of P& =13.9 W and a pump de-
tuning of Q&2=6 cm '. (b) Input pump power P, =48.5 W and
a detuning of Q&&=24 cm

FIG. 9. Plots showing theoretical curves of the input pump
power necessary for the first-order sideband power to reach
preset percentages of the pump, as a function of the pump de-
tuning 0». The open squares are experimentally determined
threshold pump powers for the sidebands to reach 13% of the
pump strength at the end of the 1.5-m fiber. The error bars
represent uncertainties in the determination of the pump thresh-
olds and detunings. The parameter values and initial powers for
the calculations were the same as for Fig. 8.



4996 JOHN R. THOMPSON AND RAJARSHI ROY 43

are quite Oat for small detunings and increase more steep-
ly for larger detunings. For larger values of sideband
threshold a kink develops at a detuning of -24 cm
For this region of the curve it is observed that the growth
of the FWM peaks along the fiber length is no longer
monotonic; there is an exchange of energy between pump
and FWM peaks. Figures 10(a) and 10(b) show the
growth of one of the first-order sidebands for small and
large detunings, respectively. In Fig. 10(a) the power tra-
jectory is monotonic, while in Fig. 10(b) it is not. In the
latter case, it is more difficult to determine the threshold
pump power needed to achieve a certain sideband ampli-
tude, resulting in the larger error bars for this regime of
measurements (large detunings and high peak powers) in

Fig. 9.

V. CONCLUSION

We have developed a model to describe multiple four-
wave mixing processes in an optical fiber. The propaga-
tion equations for two pump waves and four sidebands
generated by FWM processes are considered in the mod-
el. Conserved quantities are determined for this system
of equations. From numerical integration of these equa-

tions we find that both periodic and chaotic exchange of
energy between the pump and FWM sidebands may
occur during propagation through the fiber. For practi-
cal applications, this implies that the power at the pump
frequencies may fluctuate chaotically from pulse to pulse
at the output of the fiber for sufficiently high powers and
small detuning between the pump waves. We have
directly tested predictions obtained from the model equa-
tions in experiments on an optical fiber with two tunable
pump waves.
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