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Statistics for the transient response of single-mode semiconductor laser gain switching
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For a gain-switched semiconductor laser we study the statistics of the time at which the laser in-

tensity first reaches a threshold level and also the laser intensity fluctuations in the nonlinear re-
gime. The dispersion in the maximum value of the laser intensity at the first peak of the relaxation
oscillations is calculated. A simple relation between this maximum value and the passage time for
each individual switch-on event is found.

I. INTRODUCTION

The statistics of laser switch-on processes have been re-
cently considered a variety of systems and situations. '

An historical perspective on the problems associated with
transient fluctuations during the switch-on is given in
Ref. 8. There are in general two different statistical prob-
lems to be considered. One is the statistics of the switch-
on time at which laser emission is observed. This is de-
scribed by the method of passage times. ' "" This
problem can generally be studied during a linear regime
of laser amplification. The second problem refers to the
large statistical fluctuations of the laser intensity during a
later nonlinear regime. These problems might appear in
a variety of forms for different types of lasers. In fact
lasers have been classified from the point of view of
dynamical systems in three categories (A, B, C) according
to the number of effective degrees of freedom. ' For
type-A lasers (He-Ne, Ar, dye, etc. ) results for passage-
time (PT) statistics are well established. ' ' '5 The inten-
sity fluctuations in the nonlinear regime were considered
earlier' ' than the PT statistics. A description of these
fluctuations is possible by taking a simple average over a
distribution of random initial values of the laser field. ' '
The consequence is that the time evolutions of the laser
field for different switch-on events correspond to shifted
versions in time of the same trajectory. The problem of
PT statistics for type-8 lasers (CO2, semiconductor, etc.)

has been already considered in Refs. 5 —9 and 11, but the
statistical properties of these systems in the nonlinear re-
gime have not been considered in any detail until very re-
cently. ' The nonlinear regime of type-8 lasers is charac-
terized by the existence of large relaxation oscillations in
the laser intensity whose peak value can be orders of
magnitude larger than its stationary value. For type-8
laser during this regime there are important differences in
the statistical properties of the laser intensity in the cases
of Q switching and gain switching. In the gain-switching
process it is found that the laser intensity at the peaks of
the relaxation oscillations takes random values in
different switch-on events. In particular, the dispersion
in the values of the intensity at the first and dominant
maximum after switch-on is rather large. The control of
this dispersion is of obvious importance in the practical
applications of semiconductor lasers. This dispersion in

the value of the first maximum in the laser intensity is not
observed in Q-switching events.

In this paper we consider the statistical properties of
the transient response of single-mode semiconductor
lasers. Semiconductor lasers are usually gain-switched,
so we shall not consider here Q-switching processes. Our
main purpose is to characterize the statistics of the laser
field intensity at its maximum value occurring in the first
relaxation oscillation and to relate them to the statistics
of the passage times. The fact that this maximum value
shows a rather large dispersion indicates, as also pointed
out in Ref. 17, that the switch-on events are not shifted
versions of the same time evolution. It will be shown that
in gain-switching a simple relation between the maximum
intensity and the passage time holds for each individual
switch-on event. Moreover, if the laser is operated well
above threshold, the variance of the PT distribution be-
comes rather small. This small statistical spread in the
leading edge of laser transients allows us to establish a
linear relationship between the maximum intensity and
the PT for each individual switch-on event.

The paper is organized as follows. In Sec. II we intro-
duce the stochastic rate equations on which our calcula-
tions are based and we describe the laser gain switching
process. In Sec. III we revisit the problem of PT statis-
tics as appropriate to our specific situation. The accura-
cy of the analytic expressions obtained for the PT statis-
tics is checked by numerical simulations. In Sec. IV we
describe the statistical fluctuations in the nonlinear re-
gime of relaxation oscillations. In Sec. V we calculate the
fluctuations of the maximum intensity and we find a sim-
ple relation between the dispersions of the passage time
and the maximum intensity which depends on the operat-
ing point of the laser. The validity of this relation is also
shown by numerical simulations. Our conclusions are
summarized in Sec. VI.

II. STOCHASTIC RATE EQUATION
DESCRIPTION OF LASER GAIN SWITCHING

Our description is based on the Langevin formulation
of the rate equations for a single mode semiconductor
laser. The equations for the slowly varying complex am-
plitude E(s) of the optical field and the minority-carrier
number N are' '
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d, E =
—,
' [g (1+ia )N —y ]E+ (PN)' g(s),

d, N = y—,N+C g—NlEl

(2.1)

(2.2)

where a is the linewidth enhancement factor; g gives the
gain rate per carrier; y, the inverse cavity lifetime; y, the
carrier-recombination rate; C =y, Ão, the injection
current; P the spontaneous emission rate per carrier. The
random spontaneous emission process is modeled by a
noise term g(s) taken as a complex Gaussian white noise
of zero mean value and correlation

(2.3)

In these equations we assume constant values for the gain
rate per carrier g and for the recombination rate y, .

In this paper we shall consider the statistical properties
of the intensity I =lEl and carrier number N, but we
shall not address any questions concerning the statistical
properties of the electric field phase. Since the statistics
of I and N are independent of a, for simplicity we hence-
forth set e =0.

Equations (2.1) and (2.2) predict that the laser thresh-
old occurs for NO=N, h—= (y/g). At this point the sta-
tionary off-solution I = lEl =0, N =No becomes unsta-
ble. For No & N, h the stable stationary state is I„
=(No/N„—1)y, /g, N„=N, h. The asymptotic ap-
proach to this stable state shows relaxation oscillations
for y, /y (4N„(NO N„)/No. —

The stochastic rate equations are conveniently written
in dimensionless form normalizing E and N to their
steady-state values 10 I I I I

I

I I I I i I

from the numerical integration of (2.6) and (2.7) with 10
different sequences of random numbers associated with
g(t). In each individual event there is a clear correspon-
dence between the evolution of the minority carrier num-
ber and the laser light intensity. In each switch-on pro-
cess, the carrier number n grows due to current injection,
and attains the threshold value n =1 at the same time t.
There is a delay between t and the time at which laser in-
tensity is amplified to observable values. For t & t, n still
increases up to a time T, different for each realization, at
which stimulated emission rate is large enough to satu-
rate the growth of n. Then, the laser light intensity is
strongly amplified, reaching a maximum value i „at
times T „at which n is reduced to its threshold value.
For t & T,„, n is below threshold, so the laser intensity
decays to a value close to zero; meanwhile, n has passed
through its first minimum, and is again at threshold when
the laser light intensity reaches its minimum value. From
there on, similar relaxation oscillations follow. If satura-
tion effects in the gain parameter g or in the recombina-
tion rate y, were considered the oscillation damping
would be much larger with only a few oscillations being
observed. ' '

The difference between the various switching events
arises from the stochastic character of the time at which
recombination occurs. Essentially, the later the
amplification to observable values occurs, the larger n

E N
11/2 '

Introducing a dimensionless time t

t =(yy, )'i s

(2.4)

(2.5)

10.0
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we find

(n —1)+&gn g(t),
2E

n = —~[(1+Xlzl')n —X—1],

(2.6)

(2.7)

where z and n indicate differentiation with respect to t,
and

e—:(y, /y)', A. =NO/N, „—1,
q—:5/1, —:P/[e (yy, )' k] .

(2.8) 1.5

g(t) is a complex Gaussian white noise with correlation
(g(t)g*(t') ) =25(t —t'). The parameter A, gives the
operating point of the laser while e and 6 are characteris-
tic of the laser. For a typical semiconductor laser

y, '=10 sec, y '=10 ' sec, 13=10 sec
Throughout this paper we take ' e=0.036,
6=1.54X10, and let X vary over a wide range of
values. Laser gain switching is modeled by the solution
of (2.6) and (2.7) with initial conditions n(t =0)=0,
z(t =0)=0, and A, )0.

The superposition of 10 switching events for
i(t)—:lz(t)l and n (t) is plotted in Fig. 1 as obtained

1.0

0.5

0.0
0

max

b I. . . , I

4 6 t

FIG. 1. Switching events as obtained from (2.6) and (2.7) for
X=20.
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grows and as a consequence the larger is the peak in the
laser light intensity. This fact points out that the crucial
dynamics for the different switching events occurs for
times t around the first maximum of n,
t&T &t~T+ &T „.For times t &T ~T, the laser
light intensity is very small. Therefore the evolution of n

is mainly deterministic and due to the current injection.
In this regime, noise effects, which enter via the satura-
tion term (n~z~ ) are negligible. For times
T „)t )T+ + T the laser electric field z and n are large,
so that the evolution of z and n is again deterministic. In
the regime T ~ t ~ T+, both noise and nonlinearities are
important, and small changes in the value of n give rise to
large differences in i

The result of this complicated dynamics around T is
that the difFerent curves i(r) are not shifted versions of
the same deterministic curve and the initial spread in tra-
jectories is not conserved along the trajectory: a spread
of the order of 2 —3 % in the switch-on time is converted
into a dispersion ofi,„fothe order of 10%. In addition
the spread in T,„ is less than that of T. These effects do
not appear in the first peak of the transient dynamics of
an instantaneously Q-switched laser, in this case the
switch-on occurs at a random time but the value of n at
this time is the same for all switching events. The conse-
quence is that there is no dispersion in the value of i
In this paper we primarily focus on the relation between
the dispersion of i „, o.;, and the spread in the

max

amplification time o.z. In the insert of Fig. 1 the peak
structure for different switching events is displayed in de-
tail. The locus of the peak heights is seen to be well ap-
proximated by a straight line as a function of time.

The threshold time t can be obtained considering the
linear regime for the minority carrier density in which
saturation effects can be neglected in (2.7). In this regime

d, n = —e(n —
A,

—1)

so that

n(t)=(1+A, )(1—e ") .

(2.9)

(2.10)

The threshold time defined by n (t) =1 is given by

11 1+1,
E A,

which in the limit A, ))1 becomes

(2.11)

(2.12)

where

A (r)= —J dr'[n(r') —1]
0

and the stochastic process h (t) is defined as

h(t)= J dr'i/gn(t') g(t')e
0

(2.14)

(2.15)

The time at which the amplified intensity becomes notice-
able can be estimated as follows. Equation (2.6) is for-
mally solved as

(2.13)

Arnplific"tion becomes noticeable at a time t* such that
A (t*)=0. For times of interest, et «1, it follows from
(2.10) that n (r) grows linearly in time:

n(r)=(1+A, )et . (2.16)

Replacing (2.16) in (2.14) we obtain t *=2/[( I +A, )e]
which for A, )) 1 gives from (2.12)

t*=2t . (2.17)

The difference between t* and t gives a switch-on delay.
It happens that t is essentially independent of spontane-
ous emission noise while it is clear from Fig. 1 that ob-
servable intensity is reached at random switch-on times
T. The estimation above of t' neglects noise effects
which determine the time delay between t and the actual
switch-on time. As a consequence t* only gives an esti-
mate for the switch-on time. Jitter in the switch-on pro-
cess is reflected in the randomness of T. This jitter is also
responsible for the dispersion of i

III. STATISTICS OF SWITCH-ON DELAY

In this section we address the calculation of the statis-
tics of the switch-on time at which the signal becomes ob-
servable. This time is identified with the time at which i
reaches a prescribed reference value i„. Mathematically
it corresponds to the passage time (PT) to reach i„ from
i =0 under the effect of the random term g(t) The . time
T at which amplification occurs identifies the time at
which saturation comes into play so that it is the upper
limit of validity of the approximation (2.9). The statistics
of such time can then be calculated from (2.10) and (2.13).
The general idea is to solve (2.13) to obtain T as a random
function of the reference value i„. This is basically the
same problem of calculating the PT statistics of a type- A

laser when the control parameter is swept through
threshold at a finite rate. In such a situation one general-
ly distinguishes between the cases of fast and slow sweep-
ing. Fast sweeping corresponds to Q-switching dynamics
in a type-B laser while slow sweeping in a type-B laser
corresponds to the case of gain-switching considered
here. The slow sweeping condition corresponds here to a
requirement that the final value of the amplification fac-
tor (n —1)/2e in (2.6), as obtained from (2.10), be much
larger than the sweeping rate a =(1+A, ) /2 obtained from
(2.6) and (2.16). This is guaranteed whenever e A,

' « l.
Equation (2.13) can be understood as the amplification

of the time-dependent random initial condition h(t).
From (2.10) and (2.15), h (r) is seen to be a Gaussian pro-
cess whose time dependent variance ( ~h (t)

~
) converges

to a finite value ( ~
h ( ~ )

~
) . If such convergence occurs

at times much smaller than PT's of interest, h (t) in (2.13)
can be replaced by a Gaussian random variable with the
same variance as that of h (oo ). Solving (2.13) for t, the
statistics of t are then determined as a function of this
random variable which plays the role of an effective ran-
dom initial condition for the laser field z at t =0. Howev-
er we have noticed in connection with Fig. 1 that noise is
only important for times t ) t. In fact the variance of a
distribution of random initial conditions at t =0 is con-
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tracted by the dynamical evolution from t =0 to t = t. A
simpler and more physical approach in our situation is to
consider a deterministic evolution from t =t with initial
condition n (t = t ) = 1 and z (t = t ) =h ( ~ ). Solving (2.9)
with this initial condition the amplification factor (2.14)
becomes

T t—=&T& —t

ln 8'(p, )
d

dp p=O

—Q2 g
—1/2 1/2 —I /2g —I /21II( 1 )

2
(3.9)

—e(r —~)

2 (t t)=-
E

(3.1) and

and from (2.15)

& lh (t —t)l & =22)e[1—e "I' "]+2rtB (t t)—,
where

(3.2) 2
ln W(ILI)

dp

'II/'( I ),
p=O

(3.10)

B(t t)=—f ds e (3.3)

B (t t) =(m—/2A )' erf[(A/2)'/ (t —t )], (3.4)

For times of interest such that e( t t ) « 1—,
A(t —t)=(A, /2)(t —t)2, and

where %(1) and III'(I) are the digamma function and its
derivative, respectively.

Equation (3.9) gives the mean delay in the observation
of laser amplification. The consistency of (3.9) with the
conditions e( T t ) « 1 a—nd (X/2)' ( T t ) )) 1 i—s
guaranteed if simultaneously we have that e A,

' (&1 and
5 '))1. In this domain of parameters the second

where erf(z) is the error function. If in addition we
consider times such that (A, /2)' (t t)))1—the process
h (t t ) approach—es a random variable h ( ~ ) with vari-
ance

(3.5)

It follows from (2.13) that in this regime a reference value
i„=lz„l is reached at a time T given as a function of the
random variable h ( ~ ) by

(3.6)

The simultaneous fulfillment of the conditions
e(T t) &(1—and (A. /2)'/ (T t)))1 th—at guarantee the
validity of (3.6) requires working with parameter values
such that e'X ' «1, as it is in our case.

From Eq. (3.6) the statistics of the PT's T are obtained
by calculating the generating function W(Iu, ) as an aver-
age over the bivariate Gaussian distribution P(hi, h2) of.
h(~ )=h, +ih

0 I
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= f dh, dh2P(h, , h2)e

(3 7)
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&lh
(3.8)
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is a large quantity of order ln A,
'/ /21= Ink, / /5 [see (2.8)]

for e A, (&1. Equation (3.7) follows from an expansion in
The mean PT, T, and its variance o. z- are obtained

from (3.7) as

FIG. 2. Distribution of passage times for different values of A,

(as indicated) and i„(,i„=0.05, ——,i„=0.5, and
——- —-, i„=2). The distribution of times T „at which the
maximum intensity is reached is indicated by sma11 dashes.
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FIG. 3. Comparison of (3.9) and (3.10) with results from nu-
merical simulations for i„=0.05 (

———theory, X simula-
tions) and i, =0.5 ( theory, 0 simulations).

term on the right-hand side (3.9) is negligible. The vari-
ance o T is a small quality due to the factor r ' in (3.10)
and becomes smaller with larger values of A, .

A precise test of the above results on the PT statistics
has been performed by extensive numerical simulations of
(2.6) and (2.7) with z(0)=0, n (0)=0 by averaging over
10 trajectories. The distribution of passage times for
several values of A, and i, are shown in Fig. 2. As can be
seen in the figure, for a given value of A, the PT distribu-
tion becomes narrower as the reference value increases.
This is due to the deterministic nonlinear evolution of z
and n. Moreover, the mean PT for increasing A, is smaller
and also the spread of the PT distribution decreases. Ex-
plicit results for the mean PT and its variance as obtained
from these distributions are compared in Fig. 3 with our
results (3.9) and (3.10) with t given by (2.11) and r by (3.2)
and (3.5). The agreement is remarkable for a broad range
of values of A, of interest and different values of i„.

single closed equation for the slowly varying amplitude of
the optical field. It is well known that the transient dy-
namics of those lasers is satisfactorily described by a
deterministic evolution from a random initial condition
so that noise along the dynamical path plays no
significant role. The exception to this fact are dye lasers
in which important pump noise cannot be reduced to a
random initial condition. ' The dynamics of semicon-
ductor lasers (type 8) cannot be reduced to a single equa-
tion since y ))y, in (2.1) and (2.2). Additionally an ana-
lytic solution of the deterministic version of these two
equations is not known. Still, the question arises if the
stochastic dynamics defined by (2.6) and (2.7) with
n (t =0)=z(t =0)=0 is well represented by a determinis-
tic evolution from a random initial condition. We have
seen in the previous section that this is so in the early re-
gime. In this regime the PT statistics are well determined
solving (2.6) and (2.7) deterministically with n (t =t )=1
and a random initial condition for z at t = t:
z(t =t)=h(~). We now show evidence that this pro-
cedure remains valid in the nonlinear regime where relax-
ation oscillations occur ' (Fig. 4). We remark that our
conclusions are taken in a statistical sense of the ensem-
ble average over different switch-on events. It is also im-
portant to note that although noise effects can be reduced
to a random initial condition at the threshold time this
does not imply that the stochastic trajectories are just
shifted versions of the same deterministic curve as al-
ready explained in connection with Fig. 1. In Fig. 4 we
show that there is good agreement between the time
dependent ensemble averages obtained from a numerical
simulation of (2.6) and (2.7) and those obtained from the
numerical integration of the deterministic equations with
the initial conditions just mentioned. This result reduces
the problem posed by (2.6) and (2.7) to the problem of
solving the coupled nonlinear deterministic equations
with a random effective initial condition. Moreover, it
can be seen that the agreement is better for large A, due to
two factors: (i) substituting h ( co) for h (t) is a better ap-
proximation for large A, [see (3.4)] and (ii) for small A, the
minimum intensity after the first maximum becomes very
small so that noise (which is neglected in this time inter-
val) can be relevant for later evolution.

A noticeable fact in Fig. 4 is that the intensity Auctua-
tions show large transient anomalous fluctuations associ-
ated with the decay of an unstable state as in lasers of
type A. However these fluctuations follow the relaxation
oscillations and have an interesting local minimum at the
time that the mean intensity reaches a maximum in the
oscillations. This minimum arises from the fact that the
standard deviation of the PT distribution is appreciably
smaller than the duration of the first peak.

IV. PHOTON AND CARRIER NUMBER
FLUCTUATIONS DURING RELAXATION

OSCILLATIONS

Lasers of type A are those in which the cavity decay
rate is much smaller than the material linewidths' and as
a consequence the dynamics is well characterized by a

V. STATISTICS OF THE FIRST LASER
INTENSITY PEAK

In this section we characterize the statistical properties
of the first peak of the laser intensity after gain switching.
Results for the distributions of the times T „at which
the maximum occurs are shown in Fig. 2. The distribu-
tion of the intensity at the maximum i „is shown in Fig.
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5 as obtained from our numerical simulations. Due to
the nonlinear coupling of Eqs. (2.6) and (2.7), T,„ is a
nonlinear function of T, as can be seen by comparing the
different curves of P (t) with P ( T,„)in Fig. 2.

Results for (i,„) and its standard deviation
0.;

—=((i,„)—(i,„) )' as obtained from the simu-
max

lation are shown in Fig. 6. We observe a rather large
dispersion in the values of i,„. This dispersion results
from the amplification of the spread of stochastic trajec-
tories around the amplification time T. We now address
the question of relating o.; to cr „.

max

e—~lzl'n .

Introducing a new variable u by

(5.1)

Our discussions in Secs. III and IV makes it clear that
a deterministic evolution from a random initial condition
for z at t = t gives a good approximation to the stochastic
dynamics defined by (2.6) and (2.7). We then look for a
simple deterministic approximation for the dynamics in
the vicinity of T,„. Strictly at the maximum, z =0, and
n crosses threshold, n =1. For n =1 saturation e6'ects
dominate so that (2.7) can be approximated by

10 ~ ~ t I
I

~ I ~ I
I

~ ~ I ~

I
I I ~ ~ I ~ ~ ~

I
~ I ~ ~

I
I I I I

I
I ~ I I

&i(t) & 'I
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FIG. 4. Average values for i and n and associated standard deviations o.; and o.„ for A, =5 and A, =20. The solid line corresponds
to numerical integration by averaging over 10 trajectories. Dashed line is obtained from the deterministic solution averaged over
random initial conditions as explained in the text.
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Since at t = T „,n =1 we find

n p
—1 —lnnp

l max l 0 (5.6)

Equation (5.6) gives the peak intensity in terms of the
value of i and n at a time to T,„. The validity of (5.1)
requires that tp should be larger than the time T+ intro-
duced in Sec. II in the discussion of Fig. 1. Physically
this means that i p and n p are values reached after satura-
tion comes into play and amplification of laser light is al-
ready noticeable. The approximation is better the closer
to is to T,„. A lower bound of validity of (5.6) is to = T.
On the other hand, the PT, T, also gives an upper limit of
validity for the linear dynamics of n described by (2.10).
Extrapolating for each stochastic trajectory (2.10) up to
the PT and (5.6) down to the PT we obtain

FIG. 5. Distribution of i,„ for different values of X:——,
A,=5;, A,=10;, A. =20; ———., X=40;
A, =80, as obtained from simulations.

(1+A, )(1—e '
)
—1 —In[(1+A, )(1—e ' )]

l max Ip+ 2E' k

(5 7)

n=e (5.2)

it follows from (5.1) that

(5.3)

0 e 1
(5.4)

Replacing (5.3) in the deterministic version of (2.6) gives

which relates the peak values of the intensity to the pas-
sage time T. From (3.6) we have T as a function of the
random variable h ( ~), and as a consequence (5.7) and
(3.6) determine the statistics of i,„as a transformation
of the bivariate Gaussian variable h ( Oo). This relation is
rather cumbersome. However, simpler relations hold to a
very good approximation. Indeed, we now show that
(5.7) gives rise to an approximate linear dependence of
i „on the passage time with known slope. Our results
(3.9) and (3.10) indicate that the dispersion of passage
times around the mean value T is rather small so that
(5.7) should be safely approximated by

which can be integrated once with a given initial condi-
tion u(to)=uo, u(to)=uo. Making use of (5.2) and (5.3)
we obtain

dl maxi,„=io+i „(T=,T)+
T

(T —T)
. T=T

np n +inn lnnp
Izl = Izol + (5.5)

=i,„+a (A, )T, (5.8)
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FIG. 6. Mean value of the maximum intensity and associated
variance as obtained from the distributions in Fig. 5.

FIG. 7. i „vs the passage time (i„=0.5) for each trajectory
and different values of A, as indicated.
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TABLE I. Values of the slope a(A, ) for different values of A,

obtained from a least-squares fit to numerical simulation data
(see Fig. 7) and the corresponding theoretical values from (5.9)
and (3.9).

10 5

10
20
40
80

a(A, ) (best fit)

6.99
9.29

11.80
14.61
17.22

a (k) (theory)

6.68
9.04

11.68
14.43
17.09

0 l I I I I I I I I I I I I I I I I I I I I I I I I

0 20 40 60 80 2, 100

FIG. 8. Ratio o.; /o. T vs A. as given by a(A, ) in (5.9) for
max

i„=0.5 ( ) and i„=0.05 ( . ) and obtained from simula-
tion: o (i„=0.5) and X(i, =0.05). The dashed line corre-
sponds to a (X) given by the approximation (5.10) for i, =0.5.

where the slope a (A, ) can be calculated from (5.7). We ob-
tain

calculated from (5.9) and (3.9). The agreement is very
good for i„=0.5. The matching process leading to (5.7)
implies that the reference value i„cannot be chosen too
small as explicitly shown in the figure. Considering times
of interest eT ((1, (5.9) can be approximated as

a(A, )= 1 1 +—', +A, —( —,", +A, )eT
E'T

(5.10)

This approximation is very accurate for large value of I,
as is shown in Fig. 8.

a (A. ) = (1+A, )e1,T 1

E'A, FT
(5.9)

VI. SUMMARY AND CONCLUSIONS

A direct test of the linear relation (5.8) for each stochastic
trajectory is given in Fig. 7 where i „is plotted vs the
passage time T as obtained from our numerical sirnula-
tions for several values of k. The best fit to straight lines
and the corresponding values obtained from (5.9) using
the values of T obtained from (3.9) are compared in Table
I. The agreement is very good and becomes better well
above threshold. For large values of A, the variance of the
PT distribution trT becomes very small [see (3.10) and
Fig. 3] and the approximation (5.8) is then better justified.

A further important consequence of (5.8) is that a (A, )

gives the ratio of o.; to o.T so that the variance of the
max

peak intensity o.; can be obtained from the variance of
max

the PT distribution given the knowledge of a (A, ). A com-
parison of a (A, ) with the ratio o, /cr T as obtained from

max

simulations is shown in Fig. 8, where the slope a (A, ) is

We have shown that a linear relationship between i
and the passage time T holds for a broad range of values
of A, . This permits us to obtain the statistics of i „in
terms of the statistics of the PT. Our results are based on
a quasideterministic approximation for a type-B laser
which properly describes the whole time evolution of the
system. In the linear regime this approximation allows
the calculation of the PT statistics. The validity of our
results is supported by simulations of the stochastic pro-
cess.
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