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Phase sensitivity in two-photon optical bistability
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A two-photon optical bistability equation is derived for a three-level V-type atom in a cavity. We
consider the bistable states of the purely absorptive type and investigate the influence of the phase
difference of the two cavity field modes on bistability characteristics due to the nonlinear coupling
between atomic transitions and fields. Very different results are found for the three cases of phase
difference we considered. The bistability is found to diminish when the two modes are in phase, in
contrast to the two-level case. In addition, we also discuss the effect of longitudinal and transverse
relaxation times on the bistability and how the bistability operation characteristics of one mode can
be controlled by adjusting the other.

I. INTRODUCTION

Optical bistability has been a subject of extensive
research in recent years. ' Of particular interest is the
two-photon bistability phenomenon in the case of a
three-level atom near the resonance ' that has been ob-
served experimentally. ' Theoretical treatment usually
employs the method of the two-photon vector model.
The idea is to simplify the complicated three-level system
by replacing it with an equivalent two-level system.

The degenerate two-photon optical bistability has been
investigated by Zhu, ' who has obtained an optically bist-
able state for a cascade three-level atom with arbitrary
detunings of the middle level. On the other hand, be-
cause of the two-mode coupling, multistability phenome-
na may appear in a system of many-level atoms. Further-
more, the nondegenerate two-photon bistability equation
has also been considered'" for a cascade three-level atom.
The asymmetry of the two-mode operation and tristabili-
ty are found to be consequences of the energy-level asym-
metry.

Based on the relative phase coherence of the two-mode
radiation field, a mechanism for optical bistability' in a
three-level atom of the V or A type has been proposed.
On the other hand, it has been noted that' the nonlinear
susceptibility can cause an intensity-dependent phase
shift between the pump and the signal modes in two-
photon devices and that this effect can be taken into ac-
count by means of an additional term in the interaction
Hamiltonian. In the interaction of a three-level atom
with the multimode cavity field, the presence of two-
mode two-photon processes and higher-order transitions

enhances the field-atom coupling strength. Such process-
es due to the cooperation eftect among the atoms usually
show remarkable nonlinearity as has been noted in two-
photon lasers of three-level atomic systems with homo-
geneous' and inhomogeneous' broadening.

Since the phase difference between the two modes of
the cavity field has important inAuence on multiphoton
processes due to the atom-field nonlinear coupling, and
since the higher-order nonlinear coupling has a strong
eftect on optical multistability, it is therefore of interest
to investigate the significance of the change of the two-
mode phase difference to the optical multistability. We
consider in this article the two-mode two-photon optical
bistability for a system of V-type three-level atoms in an
optical cavity and study the higher-order eftect of the
atom-field nonlinear coupling on the bistability due to the
relative phase change between the two-mode cavity fields.
Characteristics of the purely absorptive bistability for
various relative phases are discussed. The intensities of
the two-cavity output modes are given as functions of the
intensity of one incident mode, while the intensity of the
other mode is fixed. The possibility of controlling the
switching character of one mode by the other is also ex-
amined.

II. THEORY

Consider a system of X three-level atoms with V-type
level configuration as shown in Fig. 1. The atoms are
contained in an optical cavity with two modes of cavity
fields. When the system is irradiated by two incident
modes of pumping field and is interacting with the cavity
fields, the total Hamiltonian can be written as
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FIG. 1. Schematic diagram of a three-level V-type atom cou-
pled with two-mode cavity fields of frequencies Q& and A2. p23
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where the first term represents the total energy of nonin-
teracting atoms and cavity fields
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The second term gives the energy of interaction between
the atoms and the cavity fields

H, = g fi(g*, a, A3„2,„+g2a233 A2 +H. c. ),
n =1

)jc 1
(g21 P23 g 2 1 P32 ) P33T]

where we have defined the longitudinal and transverse re-
laxation times T, and T2 of level 3, and the detuning pa-
rameters

(2b)

and the third term describes the coupling between pump-
ing and cavity fields

6, =II,—(co, —co3),

b,2= Q2 —(co2 —co3), (6b)

H2 =ifiic, [a, el(t) —a, e,*(t)]

+l fiK2[a 262(t) —a2E2 (t)] . (2c)

for the cavity modes 1,2 from atomic resonance frequen-
cies, respectively.

III. EQUATIONS OF BISTABILITY

The notation is as follows. The operator A„,. ( A„, )

creates (annihilates) the nth atom in the level i with ener-

gy fico; and the operator a, 2 (a, 2) creates (annihilates) a
photon of the cavity field mode 1,2 of frequency A& 2.

g i 2 stands for the coupling constant in the interaction of
the atom with the cavity field mode 1,2, and ~, z are in-
troduced just for convenience. The pumping fields of am-
plitudes E, 2 and frequencies v, 2 are given by
e; (t) =E, exp(i v, t), i = 1,2.

The density operator p for the atom-field system
satisfies the equation

P = — [H,p] . —

To obtain the optical Bloch equations for field operators
and the atomic density Inatrix elements, we replace the
operators by their corresponding mean values by neglect-
ing all the quantum fluctuations as usual. Thus,

In steady states, we set the left-hand side of Eqs. (4) to
zero and find the amplitudes of the pumping fields

E, = [i ( 0,—v, ) /lc, + 1 ]ct +iNg, p, 3/ic, ,

E2 —[i (02 —v2) /ic2+ 1]p+ iNg2P23/ 2 .

(7a)

(7b)

P»=« *P g*13P»/e =P-»*»

P23 [g 1 +P21 g 2 1 (P33 P22 ) l /e3 P32 &

P13= [g2 PP, 2
—

g 1 a(P33 P, l)]/62=P31

p» = iT, (g, ct*p, 3
—g 1 ctp31)

P22 iT1(g21 P23 g2 ~P32)

(8a)

(8b)

(8c)

(9a)

(9b)

p33 iT1(g 1 cc p13 g 1 +P31)+ iT2(g21 P23 g 2 IP32)

The matrix elements of the density operator satisfy a set
of coupled equations that follow from Eqs. (S) by setting
the time derivatives to zero,

cc=Tr(pa, )

= —[ic, +i (II, —v, )]a iNg, p, 3+le,E, , —

lt3= Tr(pa 2 )

= —[ic2+i (02 —v2) ]p—iNg2p23+ ic2E2,

(4a)

(4b)

where we have defined

e,=a, i/T, ,

e3=b2 i/T2 . —

(9c)

(10a)

(10b)

(10c)
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After some algebraic manipulation, we can eliminate
the off'-diagonal matrix elements and obtain the set of
coupled equations for the three diagonal matrix elements

It is noted that in deriving Eqs. (13), we have included
nonlinear terms of the atomic dipole moment coupled
with cavity field modes. In other words, two-photon pro-
cesses of Raman-type transition' as well as four-photon
processes are included in our calculation as can be seen
from terms involving two or four coupling constants.
These fourth-order transitions are ordinarily ignored in
the literature. They can change the strength of the non-
linear coupling and cause phase sensitivity in the optical
bistability.

While the coupling between the two-mode cavity field
and the atomic dipole moment is highly nonlinear, the set
of equations (11) is linear and can be easily solved. The
solutions are

Ig i I'I a I' e,* e,
gta gzP „„giagzP

1 2

(12a)

p„=—[T,B,C2+i (1+iT,B2 )T, C, ]/D,

P~2= —[T)A ~C) —iT) C2(1+iT) A ) )]/D,

(14a)

(14b)

C, = —(A, +B,), (12c)

, Igzl'I&l' „gia*gz I3—,g f again"
2 1 3 1 3

(12b)

p»= [(1+iT,A, )(1+iT,B2)+T, A2B, ]/D, (14c)

where D is the determinant of coeKcients in Eq. (11) and
can be found after a tedious but straightforward calcula-
tion. The result is too long to be reproduced here.

From Eqs. (12)—(14), we find

B2

» Ig~ I'II31'

Ig2 I'IPI'

1 2 1 2
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e e gi ag zIB „'„gia g20
1 3

(13b)

P33 P]1 [I+iT&(Bz—Bi)]/D
= [1+p, +p2cos(0, —02)

f~(p)+p3sin(0, —0z) ] /D =

P33 P22 [I+LT1(A
1 Ap)]/D

= [1+v, +v2cos(0, —02)

2(v)
+v3sin(0, —02)]/D =

D

(15a)

(15b)

C~= —(A2+B2) . (13c) where the parameters p, and v, are given by

p =(2T /T )Ig I'IPI'/I I',
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and v; are obtained from corresponding p, by making the
replacements g, ~gz, gz~g„a~P, /3~a, h, ~bz,
bz —+hi, H, ~H2, and Hz~H, . The functions f, (p)
and f2(v) are defined just for convenience. We note here
that the phases of the cavity Geld modes 1 and 2 are ex- g213= Ig2PIe' ' (17b)

plicitly included in Eqs. (15). They are introduced by

(17a)
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To find the amplitudes of the pumping fields, we need
the off-diagonal density matrix elements p&3 and p23 It
can readily be shown from Eqs. (8), however, that the first
terms in (Sb) and (8c) involve only higher-order coupling.
Since the coupling constants are much smaller than uni-
ty, we can neglect the first term for all practical cases.
Thus the pumping fields can be obtained by substituting
Eqs. (15) in (Sb) and (Sc), which are then plugged in (7).
That is,

in which the effects on higher-order atomic transitions
due to the relative phase of the cavity fields are already
included. Such nonlinear interactions between the cavity
field modes and multiatomic transitions have significant
inhuence on the optical multistabilities as we shall see bui
have usually been ignored in the literature. It is observed
from Eqs. (19) that the characteristic equations are sym-
metric with respect to the interchange of modes 1 and 2.
A similar situation is found in the coherent A-type laser
problem. There is, of course, no such symmetry if the
V-type atom is replaced by a =-type atom.

2—

0,—v,+l
K)

&z —vz
z(v)

(18a)

(18b)

IV. PURELY ABSORPTIVE OPTICAL BISTABILITY

In the case of pure absorption, we have 6&=62=0,
0,= v&, and Q2= v2. To simplify the notation, we intro-
duce the dimensionless quantities

$1=2lgi~lv'Ti Tz, sz =2lgzPlv'T1 Tz,

&1=2lgiE1IV'T1Tz, iz=2lg, E, IV'T, Tz .

The intensities of the input laser field and the cavity field
are then given by

The multistability equations for a two-photon two-beam
system then follow directly by taking the absolute square
of (18). More explicitly, we have

I „'=r, I; =s
y l 1y2in

Equations (19) then become

I,'„'=I;(1+2c;f;/Dp), i =1,2,

(20)
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where

c, =Wig; I'T /2~;, (22a)

Dp = 1+&I1Iz —(I1Iz ) cos(01 Oz) 64(I1Iz )

+(I, +Iz )[1—
—,'cos(0, —Oz)I, Iz(1+Tz/T, )],

(22b)

f, z= 1+—,'Iz, . (22c)

Substituting Eqs. (22) into (21) and making use of (20), we
can rewrite explicitly the bistability equations in terms of
the amplitudes. Thus,

$)

7"
2

$2

—1=2c,(1+—,'sz)[1+ —,'s, sz ——,'(s, sz) cos(0, —Oz) —
—,', (s, sz)

+(s1+sz )[1—
—,'s, sz(1+ Tz/T, )cos(0, —Oz)] J

—1 =2cz(1+—,'s, ) [1+—,'s, sz —
—', (sisz ) cos(0, —Oz) —

—,', (sisz )

+(s, +sz )[1—
—,'s, sz(1+ T, /Tz )cos(0, —Oz)]]

(23a)

(23b)

These two equations, as expected, show complete symme-
try with respect to the interchange of modes 1 and 2. It
is also observed that the bistable operation of one mode
depends on the intensity of the other through the factor
(1+—,'s,. ). In what follows, we consider the characteris-
tics of bistable operation for three different values of the
relative phase.

to
(A) 01—Oz=n'/2. Equations (23) reduce, in this case,

—1=2c,(1+zsz)[l+ &($1$2) gg($1$2)

2 + 2]—1/2
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FICi. 2. Transmission curves of mode 1 vs the incident intensity of mode 2 for a fixed incident intensity of mode 1 and
0, —02=~/2. (a) c& =18, c&=6, r& =20; (b) c& =18, c&=6, r& =30; (c) c& =8, c&=6, r& =20.

$2
—1=2c2(1+—,'s& )[1+—,'(s&sz) —

—,', (s&sz)

2 + 2]—1/2
S1 S (24b)

It is seen that the intensities do not depend on the ratio
Tz/T&, a particular property of this case. In principle,
each s; has five roots. However, not all of them are phys-
ically meaningful. When one of the pumping fields, say,
mode 1 has a fixed intensity, s& and s2 are calculated as
functions of r2. Because of symmetry, the situation is the
same if r2 is fixed and r, varies. Numerical results are
plotted in Figs. 2 and 3. We first note that s& shows
much more remarkable bistability than sz when r

&
is

fixed. A more careful examination of Fig. 2 reveals that
the bistability operation of cavity mode 1 can be con-
trolled by adjusting rz via the nonlinear interaction be-
tween cavity mode 2 and the coherent atomic transition.
For the same r, and c2, the range of bistability operation
decreases with increasing c

&
as is seen from Figs. 2(a) and

2(c). However, the range may be restored as in Fig. 2(b)
if r, is increased at the same time as c&. On the other
hand, the bistability range of s2 remains small for reason-
able choices of the parameters according to our numeri-

cal study. The situation is depicted in Figs. 3. Reasons
for this may be understood as we consider other cases in
the following.

(B) 0, —92=0. When the two cavity modes are in
phase, Eqs. (24) become

r& —1=2c,(1+—,'sz)
S)

X [1+—,'(s, sz) —
—,'(s&s2) —

—,', (s&sz)

+(s, +s2)[1—
—,'(s, s~)

Sp

—1=2cz(1+—,'s& )

X [1+—,'(s)s~) ——', (s, s2) —
—,', (s,sq)

+(s, +s2)[1—
—,'(s, s2)

X(1+T,/T2)]] 'i . (25b)

Results for fixed r, are shown in Figs. 4 and 5. It is clear
that the bistability is no longer as remarkable as in case

IO-

75- 75- (b) 745

CU

5.0- 5.0- 50-

2.5- 2.5- 2.5-

0
IO 15 20

I

IO
I

l5
I

20 20 25 50

FICx. 3. Transmission curves of mode 2 vs the incident intensity of mode 2 for a fixed incident intensity of mode 1 and
0&

—02=~/2. (a) c& =8, c2=20, r& =30; (b) e& =8, c2=20, r& =20; (c) c& =12, c2=30, r& =30.
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FICx. 4. Transmission curves of mode 1 vs the incident intensity of mode 2 for a fixed incident intensity of mode 1 and 0&
—0~=0.

(a) c& =8, cp=6 Tp/Tl =3 I" ] =8 (l3) c] =8 cp =6 Tp/Tl =3 l"& =30' (c) c] =20 cp=6 Tp/Tl =3 P'& =8.

(A). This is especially true for sz when r, is fixed as can
be seen in Fig. 5. The situation is similar to what has
been pointed out in general laser theory. When the two
modes of the cavity field are in phase, the coupling be-
tween higher-order transitions and the field enhances the
mode coupling in spite of the value of c, , which is related
to the cooperation parameters. Such enhanced coupling
of cavity modes destroys the bistability which may occur
in the two-level case. This is especially so when c, =cz,
the atom-field coupling for one mode helps the coupling
for the other mode to saturate. Figure 5 shows that the
cavity field mode 2 increases with the pumping field mode
2 and loses bistability character, because the interaction
of atomic transitions with the cavity mode 2 saturates as
rz increases.

(C) 9&=Oz=rr. When the cavity field modes are out of
phase, we have

I"
i —1 =2c, (1+—,'s z )

X I 1+ ~(s~sz) + 8(sisz) 64(sisz)

+(s, +sz) f 1+—,'(s, sz)

X ( 1+Tz /T, ) ] j ', (26a)

sp

—1 =2cz(1+—,'s, )

X I 1+—,'(s, sz) +—,'(s, sz) —
—,', (s,s3)

+(s i+sz)[l+ —,'(s, sz)

X(1+T, /Tz) jI ' . (26b)

Results are plotted in Figs. 6. For both s, and sz, the bi-
stability character is clearly more noticable than the
above two cases. When the cooperation parameters are
close to one another as in Fig. 6(b), multistability occurs
as expected. Even though the lower branch has only a
relatively small range of variation and is separated from
the upper branch by a small gap so that it may not be
very meaningful in practice, nevertheless, it indicates the
coupling of multitransition including the ~1) ~~2) tran-
sition with one mode of cavity fields causes negative feed-
back to the other mode. In Fig. 6(a), c, and cz are very
different from one another while other parameters are
similar to those in Fig. 6(b). The condition is apparently
more favorable for mode 1 to operate in a tristable state
than the other cases where c, =cz. A similar situation is
observed for sz versus rz plot as shown in Fig. 7. They
all indicate that the feedback effect is enhanced by the
coupling of mode 1 with the coherent transition. From
the symmetry, we conclude directly that same results are
expected for the variation of s, and sz with f, when rz is
given.

5.0- V. ANALYSIS OF STABILITY

2.5—

0'
2

FICs. 5. Transmission curves of mode 2 vs the incident inten-
sity of mode 2 for a fixed incident intensity of mode 1 and
0&

—Hz=0; e& =8, can=6, Tz/T~ =1.25, r& =8.

The stability of all steady-state solutions must be exam-
ined. This can be done by a standard linearized theory. '

For simplicity, we discuss here only the AO=m. /2 case as
an illustration. Since terms involving T, and Tz do not
appear in this case, it may be considered as a high-Q limit
of more general cases in which the atomic-decay time is
much shorter than the cavity-decay time. Other effects
such as dispersion are neglected, and we are left only with
variables r; and s;, i =1,2. The equations that govern the
stability are then
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FIG. 6. Transmission curves of mode 1 vs the incident intensity of mode 2 for a fixed incident intensity of mode 1 and 0&
—0~ =m.

(a) c
&

= 12, c, =40, T, /T, =2, r, =30, (b) c
&

=30, c& =40, T~ /T, =2, r, =20, (c) c, =30, c& =20, T~ /T, = 1.5, r, =20.

ds;
=r, —s, 1+

dt

2c;(1+—,'s; )

1+—,s,s~ ——„,(s,s~) +s, +s~3 2 2 3 4 2 2

where we have defined

dS I

dt

dS2

dt

F)i Fi2 s]

F21 F22 $2
(28)

(27)
The steady-state solutions are given by Eqs. (24). Assume
a small perturbation s; around the steady-state value s
and substitute in Eq. (27), we find after linearizing the re-
sulting equation and neglecting higher-order terms, that

(29)

TrF )0 and detF )0, (30)

which, for Eqs. (24), take the forms

The steady-state solution will be stable if the matrix F
has eigenvalues with positive real parts. Thus the neces-
sary and sufhcient conditions for stability are

) [ci(1+ 'I~ )(Ii Iz+—'l, I& —' IiIz —1)+c—z(1+ 'I, )(Iz Ii+—'I, Iz ' I&I—i —1)]— (31)

2ci 2C21+ (1+—,'I~ )(1—
—,'IiI~+ —,

' IiIq Ii +Iq ) 1+ —(1+—,'Ii )(1—
—,'IiI~+ —,

' I iI~+Ii Iq)—
4IiI2

[(1+ci)+ —,'Ii( —', +ci )
—

—,', IiIq(1+2ci )
——' IiIq]

X [(1+cd )+—,'Iq( —', +cq )
—

—,', IiIq(1+2c~) —
—,'„IiIq ] )0, (32)
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l5-
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0-
0

0
0

I

l2
0
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I

J2 l6

FIG. 7. Transmission curves of mode 2 vs the incident intensity of mode 2 for a fixed incident intensity of mode 1 and 0&
—0~=~.

(a) c& =60, ca=6, Tz/Tl =1.5, r, =20, (b) c& =8, c~ =6, T~/Tl =1-2» rl =8 (c) ci =18, c& =20, T&/T& =1.5, r, =20.
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where 3 = 1+ ,'I,—I2——,', I,I2+I, +I2 and I, =(sI' )2.

All the solutions represented in Figs. 2 and 3 are stable
solutions of Eqs. (24) as tested by (31). It is noted that as
TrF or detF approach zero, a critical slowing down ' will

occur. When 68=0 or ~, we are working with Eqs. (25)
and (26) which involve T, terms. The stability conditions
become complicated and will not be discussed explicitly
here.
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