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Cotangent states of the electromagnetic field: Squeezing and phase properties
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We analyze the phase and squeezing properties of the cotangent states of the electromagnetic
field. We calculate the phase distribution, phase variance, and number-phase uncertainty product
for these states. Under appropriate conditions, the phase distribution develops oscillations resulting
from the formation of states, reminiscent of macroscopic superpositions. In other cases the co-
tangent states are nearly minimum number-phase uncertainty states, emulating the coherent states.
We also study the quadrature squeezing properties of the cotangent states and find that under a
wide range of conditions they are highly squeezed.

I. INTRODUCTION states. We find that the cotangent states may be highly
squeezed. Finally, Sec. V is a summary and conclusion.

In a recent series of publications, ' we introduced a
new class of states of the electromagnetic field, the so-
called tangent and cotangent states. These states can be
prepared in a single-mode, lossless cavity pumped by a
stream of polarized two-level atoms. Under appropriate
conditions, these states resemble macroscopic superposi-
tions or alternatively may exhibit sub-Poissonian photon
statistics. In further studies, we found that these nonclas-
sical properties are surprisingly robust under the effects
of cavity damping. The present paper extends this ear-
lier work by calculating the phase and squeezing proper-
ties of the cotangent states.

The problems associated with developing a single Her-
mitian phase operator for the harmonic oscillator are
well known as is the troublesome interpretation of the
phase-number commutator. Recently, Pegg and Bar-
nett have used a semiclassical approach to circumvent
these problems. ' This approach leads to a well-
defined Hermitian phase operator and a phase-number
uncertainty product which takes into account the period-
icity of the phase variable. In this paper we use this for-
malism to calculate the phase properties of interest.

The squeezing of a single-mode coherent field interact-
ing with a single two-level atom has been studied, "'
with results indicating that transient squeezing can ap-
proach 100% as the field intensity increases. ' Here we
calculate the squeezing of the cotangent states and find a
somewhat analogous result.

The paper is organized as follows. Section II reviews
the circumstances under which tangent and cotangent
states can be generated in a lossless micromaser. We give
the photon statistics and basic properties of these states.
Section III analyzes the phase properties of the cotangent
states. We compute the phase distribution, phase vari-
ance, and number-phase uncertainty product. These re-
sults indicate that for a large range of parameter values
the cotangent states are nearly minimum uncertainty
number-phase states, while under other circumstances
the phase distribution develops oscillations. In Sec. IV
we evaluate the quadrature squeezing of the cotangent

II. REVIEW OF THE COTANGENT STATES

The conditions under which the intracavity field of a
lossless, single-mode cavity pumped by a sequence of po-
larized two-level atoms can evolve to tangent and co-
tangent states include (a) the fact that the field frequency
must be resonant with the atomic transition frequency co,
and (b) the existence of trapping states of the field. '

These trapping states are number states
~
M ) satisfying

(2.1)

(2.2)

where

s„=C( i)"(a/p—)" + cot(xr+j /2) . (2.3)

(The minus sign in these probability amplitudes differs
from the convention of Refs. 1 and 2 and follows the no-
tations of Ref. 14.) Here C is a normalization constant
and the polarized atoms are injected inside the cavity in
the state

(2.4)

where a and p are the upper and lower atomic-state prob-
ability amplitudes, and ~ is the interaction time of each
atom with the field mode.

(where q is an integer), i.e., they are such that the Bloch
vector of an initially excited two-level atom interacting
with the field in the state ~M ) undergoes a 2qvr rotation
during the interaction time ~. Similarly, an atom initially
in its ground state undergoes a 2q~ rotation for
~&N r =q vr, a condition sometimes referred to as a
down-trapping condition. If the field density matrix is in-
itially confined between two trapping states ~N ) and ~M )
with M &N, ~&N r=qvr, and tci/M+ lr=p~ such that
q is even and p is odd, then the steady state reached by
the field is '
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Similarly, if q is odd and p even, the field evolves to the
pure state

m=0
(3.5)

with

n=N
(2.5)

t =C'(i)"(a/p)" + tan(irrVj /2) .
j=1

(2.6)

In practice, the field initial conditions usually include a
finite probability of occupation of the vacuum state, so
that cotangent states with N =0 are of particular
relevance. We concentrate on this special case
throughout the remainder of this paper. For notational
convenience, we also designate cotangent states bound
between the vacuum and a trapping state such that an in-
itially excited atom undergoes a 2p ~ rotation as p-
cotangent states. Reference 1 shows that the photon
statistics of the 1-cotangent states are sub-Poissonian for
all M and for all probability amplitudes a. The photon
statistics of the 3-cotangent states are also sub-
Poissonian, except in the approximate range
0.2~ a~ ~0.4, where they are bimodal with a peak at
n =0 and the other one near n =0.6M. In this region,
the cotangent states acquire characteristics reminiscent
of macroscopic superpositions. ' For higher values of p,
multipeaked photon statistics are possible, the maximum
number of peaks being given by (p + 1)/2.

where this operator is single valued on the interval
0 &[0,2'[. The operator P& has /+I eigenvalues and
can be interpreted as a phase operator only as I tends to
infinity. Pegg and Barnett's prescription is to evaluate
any observable of interest on the finite basis (3.3) and then
take the limit l —+ (x).

Applying this recipe to the problem at hand, we note
that the probability that the cotangent state ~cot) is in
the state

~
0 ) is given by

m=0
(3.7)

Numerically, such expectation values are evaluated by
taking l ))M. The convergence of the result is then test-
ed by checking the independence of the results on larger
values of I. For future use, we finally note that in the lim-
it l ~ ~, the discrete set of probabilities (3.6) is replaced
by the probability density P (0),

M
P (0)= g s„s„*,e'"

27K I
Q

(3.8)

Pz —= ((cot~e )
~

= g s„s„*.e, (3.6)I+1 „,,
and quantum-mechanical expectation values of powers of
the Pegg-Barnett operator Pi are given by

III. PHASE PROPERTIES

Consider an infinite set of so-called phase states '
~0) =(2~) ' g exp(ine)~n ),

n=0

which evolve in time according to

exp( —icosa at )~e& = ~0 ~t & .

(3.1)

(3.2)

where the $ + 1 values of 0 are given by

2'
(3.4)

For a given value of Oo these states form a complete
orthonormal basis set on the (1 +1)-dimensional Hilbert
space. Taking for concreteness Oo =0, a Hermitian
operator P& can now be defined as

Despite this desirable property, these phase states are
plagued by a number of difhculties, the most important
being that they are not normalizable. Furthermore, they
are not orthogonal, (0'~0)%6(0' —0), and are not the
eigenfunctions of any Herrnitian operator.

To circumvent this problem, Pegg and Barnett ' re-
cently introduced the finite set of states

I

~0 ) =(/+1) ' g exp(ine )~n ),
n=0

m =0, 1, . . . , l (3.3)

and lim& „(P& ) is abbreviated as ( P ) .
Figures 1(a) and 1(b) display the probabilities Pz as a

function of the upper-state population ~a~ of the injected
atoms for 1- and 3-cotangent states, respectively. Here
we have taken l =10000, and the discrete probabilities
have been connected by a line. For such a high trunca-
tion value, these probabilities are practically indistin-
guishable from the continuous distribution function
P(0). In both figures the cotangent states are bound be-
tween the vacuum 0) and the trapping state ~20).
Three different regimes can be distinguished. For very
weakly excited atoms,

~

a
~
(( 1, both the 1- and 3-

cotangent states resemble the vacuum state. Here the
phase of the field is completely undetermined and
P(0)=1/2'. As ~a~ is increased, the mean number of
photons of the 1-cotangent state increases monotonically,
as does its sub-Poissonian character. ' There is, howev-
er, a large range of upper-state populations where it
resembles a coherent state. In this region the phase dis-
tribution P(0) develops a well-defined maximum, indicat-
ing that the phase of the field becomes reasonably well
defined. As the injected atoms become more and more
inverted, however, this character disappears: For

~
a

~

~ 1, the cotangent state degenerates into the number
state ~M ), in which limit P (0) becomes again constant.

Although the 3-cotangent states behave in the same
qualitative way in the limits ~a~ ~0 and 1, the domain of
intermediate inversions is completely different. After a
region of small ~a~, where P(0) is essentially constant,
we observe the appearance of oscillations in P(0). The
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FICi. 1. Phase distribution P(0) vs ~a~ for the (a) 1-

cotangent states and (b) 3-cotangent states bound between the
vacuum state 0) and the trapping state ~20).

onset of these oscillations corresponds precisely to the
onset of "macroscopic superpositions" characterized by
bimodal photon statistics.

These oscillations can be understood intuitively by
mimicking the cotangent states by the simple superposi-
tion

ton statistics always remain single peaked, and the quan-
tum interferences in P (8) are washed out.

Figure 2 shows the standard deviation of the phase
o =((~ —(P) )' versus ~a~ for 1-cotangent statesOg-
(dashed line) and 3-cotagent states (solid line) bound be-
tween the vacuum ~0) and the trapping state ~20). In
the limits ~tr~ ~0 and 1, the cotangent states reduce to
the number states ~0) and ~20), respectively, and have a
completely random phase distribution with variance
a /3. The standard deviation of the phase of the 1-
cotangent states decreases with increasing

~
a

~

until
a~ —=0.90, at which point the field begins to take on the

characteristics of the upper trapping state ~20) and the
phase variance returns to ir /3. Notice that the standard
deviation in phase of the 3-cotangent states is somewhat
larger than that for the 1-cotangent states. It also drops
off significantly at ~a~ =—0.36, a signature of the transi-
tion of the 3-cotangent states photon statistics from a bi-
modal to a single-peaked distribution corresponding to a
state of relatively well-defined phase.

In the above graphs, we have chosen the relative phase
between the atomic probability amplitudes a and I3 such
that (P ) =sr, i.e., the expectation value of the phase is at
the center of the phase window [0,2ir] and the standard
deviation is minimized. Clearly, cotangent states with
the same photon statistics but with different mean phases
than the case shown here would have different phase vari-
ances. This result, due to the arbitrariness in the choice
of the 2~ interval over which the phase is measured, has
been discussed by Pegg and Barnett.

In Figs. 3(a) and 3(b) we show the uncertainty product
b, n b, P (solid lines) versus

~
a

~
for 1- and 3-cotangent

states bound between the vacuum ~0) and upper trapping
state ~20). Pegg and Barnett as well as Shapiro,
Shepard, and Wong' have shown, using the phase opera-
tor (3.5), that the uncertainty relation between number
and phase is given by

(3.1 1)

Only when P (Oo) is zero do we recover the "convention-

scot) =—coi0)+c m ),
where m =—M. In this case we have

(3.9)

P(0)d8= I ice + ic—2'
+2~coc ~cos[m(0+1t)]]d0, (3.10)

where coc* = ~coc exp(iitj). This simple argument
shows that the oscillations in the phase distribution can
be interpreted as resulting from the interferences in Fock
space' between the two "macroscopically" separated
quantum states of the superposition. Of course, the situa-
tion is somewhat more complicated for cotangent states,
as they cannot be described precisely as the sum of only
two number states. These oscillations therefore have the
same origin as the oscillations in the Q function discussed
previously. ' In the case of 1-cotangent states, the pho-

0
0.0 0.4 0,6 0.8 1.0

2FIG. 2. Standard deviation in phase o.z vs ~a~ for the 1-
cotangent states (solid line) and 3-cotangent states (dashed line)
bound between the vacuum ~0) and the trapping state ~20).
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0.8 1ba, ha2 (4.2)

(a)
Squeezing is sai o'd to occur if the fluctuations in one of the
quadratures a, or a2 satisfy the relation

(ba, ) &-', i =1,2 . (4.3)

0.0
0.0 0.2

(b)

1.0

In terms of a and a, the variances of a i and a2 are

(~., )'=((., —(., ) )'&

=
—,'(4(a ta ) +1+(a') + (a t') —(a+a t)')

(4.4a)

and

(&,)'=((,—(,) )'&

=—'(4(ata)+1 —(a') —(a ')+(a —a )') .
4

(4.4b)

For the cotangent state (2.2), this gives

M
(ba ) =—' g (4nls„l +1+&n(n —1)s„zs„a) —

4

+&(n +2)(n + 1)s„*+~s„)

M

g (Vn s„*,s„+v'n + ls„+,s„)
n=0

2

(4.5a)

0
0.0 0.2 0.4 0.6 l.0

FICx. 3. (a) Uncertainty product Andes (solid hnej vs ~cK, fof
the 1-cotangent states bound between the vacuum ~0) and trap-
ping state

l
. e as~20). The dashed line shows the minimum va ue

'
~1

—2mP(00j~ where 00=0. (b) Same for the case of the2'
cotangent states.

M
2(ha ) =—' g (4n ls„l +1 &n (n——1)s„zs„2 4

n=0

—&(n +2)(n + 1)s„*+zs„)

M
+ g ( &n s„*,s„&n—+1 „s,+s)

n=0

2

(4.5b)

IV. SQUEEZING PROPERTIES

In this section, we investigate the quadrature squeezing
properties o e - af th 1- and 3-cotangent states. Introducing
the quadrature operators a

&
and a2 via

a =a&+ia2,

we have the uncertainty relation

(4.1)

al" uncertainty principle; otherwise, t,
'P(8 ) enables the

s to fallnumber- hase uncertainty product of some statenum er-p ase u
below —,'. For example, any number state has a chas a constant
P (00) equal to 1/2m, resulting in an uncertainty product

always finite. The dashed lines of Fig. 3 are the rig t-
d f E . (3.11). We see in both Figs. 3(a) and 3(b)

that at intermediate values of lal, And, P is muc arger
than the minimum allowed uncertainty,

t 0.70 the product decreases to about itscreases past . , e
minimum value. Finally, as

l
a

l approac es, e co-
20tangent states degenerate into the number state ),

where b, n AP and —,
' [1—2m.P(8c) l

return to zero.

In ig. we sF' 4 show the squeezing of the cotangent
2 dashedt t The variances ( ha, ) (solid line), ( b,a ~ ) ( as e

r lot-line), and the product (ba, )(ha&) (dotted line) are p o-
ted versus lal for the 1- and 3-cotangent states in Figs.
4(a) and 4(b), respectively. Here the relative phase e-
tween the probability amplitudes a and /3 is set at m. /2.
The maximum squeezing in quadrature a

&
for the

1-cotangent states is approximate y 67 o while it
reaches about 41% in the 3-cotangent states. Figure 4(a)
shows that when

l
a

l

~ 0.9, the uncertainty product
(ba, )(b,az) is only slightly larger than —,'. The peak in
the variances in the range 0.25 o. ~ &0.36 of Fig. 4(b)
corresponds to the region where the cotangent states ex-
h b b' d l hoton statistics. These results are con-
sistent with those of Qamar, Zaheer, and Zubairy, w o
computed the evolution of squeezing as the field evolved
to a 1-cotangent state in steady state. For the case o
M =20 and

l
a

l

=0.7, they found the 1-cotangent state
to have variances (ha& ) —=0. 1, (b,az) =-2= =—0.5.

Figure 5 shows the standard deviations b,a, (solid line)
and b,az (dashed line), as well as the uncertainty product
(b,a& )(ha&) (dotted line) versus the relative phase P e-
tween the probability amplitudes a and P. Here we have
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develops the oscillations that occur in the 3-cotangent
states where they acquire the characteristics of "macro-
scopic superpositions" of states. Both the 1- and 3-
cotangent states are nearly minimum number-phase
states for a large range of atomic inversions, approxi-
mately 0.5 & ~a~ &0.9.

We also calculated the quadrature squeezing of the 1-
and 3-cotangent states and found that for increasing ~a~

in the 1-cotangent states the squeezing increases up to a
point. For

~
a

~
close to l, the cotangent states start to

resemble the trapping states ~M) and the squeezing
disappears. The 3-cotangent states are generally less
squeezed than the 1-cotangent states for the same value
of ~a~, and the variances (b,a, ) and (Aa2) are quite
large in the region of ~a~ where these states resemble a
macroscopic superposition. The maximum squeezing of

both types of cotangent states for any ~a~ increases with
the upper trapping state M, approaching 100 Jo as
M~ ao. The value of ~a~ of this maximally squeezed co-
tangent state also increases with M. Reference 12 found
that for a given field intensity the squeezing in the
Jaynes-Cummings model can become stronger as the de-
tuning between the field mode and the atomic transition
frequency increases. In a future paper we will consider
the squeezing properties of the steady states of the non-
resonant lossless micromaser.
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