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Paraxial Maxwell-Bloch theory is used to describe amplified spontaneous emission (ASE) in

strongly inverted media. Counterpropagation of waves coupled through gain saturation and
diAraction, and pumping by a laser beam which propagates transverse to the amplifier are included
in the treatment. The reactive part of the medium polarization is calculated by population-rate
equations in the limit of rapid dephasing of the atomic dipoles. The spontaneous emission noise
source needed for the numerical simulation of Maxwell's equations is derived from microscopic
theory by coarse-graining, thereby establishing the compatibility of the spherically symmetric mi-

croscopic source with paraxial propagation theory. The three coupled Maxwell equations for the
counterpropagating ASE waves and the transversely propagating pump wave are solved numerically
in time and two spatial dimensions. This simulation is used to calculate the longitudinal profile of
the transverse fluorescence, which measures the saturation of the gain, the longitudinal profile of the
transmitted pump wave, which measures the saturation of pump absorption, and the transverse
coherence function of the radiation emitted from the ends of the amplifier.

I. INTRODUCTION

The wave-optics description of amplified spontaneous
emission (ASE) presents several major difficulties. In the
case of strong inversion, i.e., when the lower level of the
ASE transition depopulates very rapidly, transverse
pumping produces two ASE waves which propagate to-
ward the forward and backward ends of a pencil-shaped
amplifier and are coupled through the atomic response. '

The nonlinear coupling results in gain saturation, and the
steady-state intensity at either end of the amplifier is ap-
proximately limited by GoL /2 (in units of the saturation
intensity), where Go is the small-signal gain and L is the
amplifier length. The atomic response is described by
population-rate equations, which are the result of the adi-
abatic elimination of the off-diagonal or coherence matrix
elements from the atomic density matrix. This is ap-
propriate when the decay of the atomic dipole moment is
much faster than the rate of growth of ASE radiation,
i.e. , when Tz «(Goc) '. In the more familiar case of
swept gain pumping the propagation is unidirectional;
therefore, the coupling of counterpropagating waves
through gain saturation does not occur, ' and the calcu-
lation of unidirectional propagation, including transverse
effects, e.g., diffraction, is readily carried out in the
retarded-time frame, in which the time (t) and propaga-
tion direction (z) are combined into t —zlc. Thus a ma-
jor difficulty in a two-way calculation is the need to treat
t and z as separate, independent variables if complete gen-
erality is to be attained.

Another major difficulty and source of confusion in a
wave-optics description of ASE is the prescription for
augmenting Maxwell's equation with a phenomenological
source. The source should simulate spontaneous emis-
sion noise in the appropriate T2 «(Goc) limit and be
correctly normalized with respect to the single-atom
spontaneous emission rate (i.e. , the Einstein

coefficient). Microscopic noise theory is used to find a
source which satisfies these criteria, and is appropriate
for paraxial wave propagation with diffraction along the
two directions transverse to the propagation axis. This
analysis shows that the correct treatment of diffraction
automatically leads to the appearance of a solid-angle
factor in the source strength. This replaces the intuitive
argument, often used in plane-wave calculations, that the
source strength should be reduced by a solid-angle factor
in order to represent the dominance of the strongly
amplified near axial waves. '

The elementary aspects of ASE have been understood
for a long time, but new experiments, especially those
oriented towards applications, have created renewed in-
terest in a more microscopic and detailed approach to
this problem. The older model calculations were usually
restricted to ray tracing or at most plane-wave optics,
and could not address issues, such as transverse coher-
ence, which are important for certain applications. Re-
cent experiments involving laser-pumped dye solutions,
and the continuing work on plasmas in which some ionic
species are selectively excited, as in a line pumped x-ray
laser scheme, are examples of strongly inverted media
which require a more detailed treatment. These systems
are approximately described by the model presented
below, as well as by recent closely related work.

In Sec. II we describe the propagation theory used in
our simulations. We present the stochastic scheme used
to simulate the quantum equations in Sec. III, and in Sec.
IV we give some characteristic results and some compar-
isons to experiment. A summary is given in Sec. V.

II. THEORY OF PROPAGATION
IN STRONGLY INVERTED MEDIA

In this section we make use of a quantum propagation
theory (hereafter called QASE) formulated in Ref. l to
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A. Quantum paraxial approximation

For the geometry used in our model, the electromag-
netic fields can be treated in a paraxial (slowly varying
envelope) approximation. The total (quantized) ASE field
is given by the ansatz

E(x, t)=+[6 (x, t)ge' "' "+H.c.], (2.1)

describe bidirectional propagation of ASE signals. We
also allow for transverse propagation of a pump laser
beam. The active medium occupies a rectangular region
with dimensions d (x axis), h (y axis), and I. (z axis),
where L, ))d, h. For applications involving laser pump-
ing, we assume that the sample is pumped through the in-
put (x = —d/2) face by a long pulse (e.g. , a pulse dura-
tion of 100 transit times) laser beam which is uniform in y
and z and propagates in the positive x direction. With
this geometry two ASE signals will grow up from quan-
tum noise and counterpropagate along the z axis. Our
propagation simulations include the effects of diffraction
and transverse gain profile in the x direction, cross-
saturation between the ASE signals and the pump, and
nonlinear coupling between the two ASE beams.

useful. In order to obtain a manageable model, we follow
the usual procedure in which the levels involved in pump-
ing and stimulated emission are treated as an effective
four-level atom with the level scheme shown in Fig. 1.
The complex level structures of the actual medium are
represented by discrete levels with phenomenological de-
cay rates, y (aE [h, a, b, g]). In our model y =0, and

y, is the spontaneous radiative decay rate of the upper
lasing level. The rates yb and y& correspond to very rap-
id decays which are radiative for x-ray lasers and nonra-
diative for dyes. In all cases y, « yb and y b =y&.

In QASE we describe the atoms by the operators R &.

(2.6)

where a,p&I h, a, b, g }, R tt=R&, co=(e, —eb)/A, and
e is the energy of the uth level. The dipole operator for
the ASE transition is Mb, =pb, Rb„where pb, =g.pb, is
the projection of the vector matrix element along the
direction q of the signal polarization. Standard operator
noise theory" yields the dynamical equations for the
atomic operators:

—Rb, = —y,bRbat

[8 (x, t), 6' (x', t)]= 5 5(x —x')27TACO
(2.2)

and the paraxial equation

where o E [+,—} labels the counterpropagating waves,
and the operators 8 are slowly varying on the scale of
the carrier wavelength and frequency. In (2.1) we have
made the simplifying assumption that only one polariza-
tion state is excited in the ASE field. The field operators
satisfy the commutation relations

3A'
ge' "'(R., Rbb)p. b@—(x )+I b.

at
R„=yl Rhg —y, R,g

„'y(p—b.—@."Rb.e ' "' H c )+—1... ..

(2.7)

(2.8)

8 1 8 i ~ 2' ik
o

Bz c Bt 2k
(2.3)

Rbb —y, R,g
—ybRbbBt

+ g(pb, @*Rb—,e ' '—H c )+I bb, (2.9)

i (kpz —a))
Ep(x, t)=@p(x,t)ape +c.c. , (2.4)

with polarization vector qp. The slowly varying complex
amplitude Np satisfies

where P is the macroscopic polarization operator that
couples to 8, e is the (linear) dielectric constant of the
medium, co=c/&e is the speed of light in the medium,
and k =co/co.

In experiments with dye solutions, it is convenient to
pump the sample with a suitable laser. The pump laser is
described by a classical field

a
RI,p,

= —
yI, RgI, +mpR +I ~I, ,Bt

Rgg ybRbb LUpRgg +1
ggBt

h

&

Nonradiative
decay

a

(2.10)

(2. 1 1)

cr + — — V' Bp=1 () i
Bx co Bt 2kp

2~ikp
( Pp ), (2.5) Pump ASE

where kp =cop/co and (Pp ) is the ensemble average of
the component of the macroscopic polarization operator
which couples to the pump wave.

B. Four-level atom model

A detailed description of the dynamics of the various
gain media would be both extremely dif5cult and not very

l
b

I
Nonradiative

decay

g

FIG. 1. Four-level-atom model for a rhodamine 6' dye solu-
tion. Levels h (width yI, ) and b (width y&) represent quasicon-
tinuous vibration bands.
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where y, b (=1/T2), the dephasing rate for the dipole
moment, is given by

Rb, (t)=Rb, (0)e

7'.b
= ,'()'—.+1'b»

and urp is the pumping rate. For laser pumping

(2.12) 0

0
(2.22)

LOP —Po p /scop )

P =ec, i( pi'/2m-,

(2 13) where

(2.14) lPabS„„(t)=— g e' "'[R„(t)—Rbb(t)]( (x, t), (2.23)
3A

where P is the pump intensity, and o.p is the absorption
cross section at the pump wavelength. We impose the
adiabaticity condition on the pumping rate as well as the
spontaneous decay rate y, :

and x is the location of the atom. We put (2.22) into a
more convenient form by adding and subtracting the
term

3 a &Yb ~P Yb (2.15) (2.24)

=y bp,.o(t —t'), (2.16)

where p =(R ) and ( ) indicates an ensemble aver-
age.

We next obtain the adiabatic solution of the atomic
equations based on the adiabaticity condition (2.15).
First consider the population operators Rbb and Rz& ', the
adiabatic solution of (2.10) is obtained by neglecting
BRbb /Bt to get

Mp
R hQ Rgg (2.17)

and in the same way adding (2.8) and (2.9) implies

1
Rbb = R~~ — R„.

yb yb t

These solutions show that

(2.18)

The correlation strengths of the noise operators I
and I b, are related to the dissipative constants by the
Auctuation dissipation theorem. ' We show in Appendix
A that the adiabaticity condition (2.15) guarantees that
the population noise terms I are weak compared to the
dipole noise I b, . We will therefore simplify the general
theory of QASE by dropping the I' 's from (2.7)—(2.11).
The dipole noise term satisfies

(I,(t)I „,(t')) =(y p„+w p )6(t —t')

to get
T

Rb, (t)= R„,(0)—f dt'e " I b, (t') e

0

(2.25)

In the limit of large y,b, the first term can be neglected
after the transcience interval 1/y, b, and the integral in
the second term can be evaluated by setting the slowly
varying term S„h(t') =S„„(t);this yields

Rb, (t)= S„h(t) +I b, (t),
y

(2.26)

Raa MpRgg Va Raaat

I b, (t) —= f dt'e ' I b, (t') . (2.27)

The operator I b, (t) represents colored noise obtained by
filtering the white-noise source I b, (t). We get the equa-
tion for R„by substituting the adiabatic solutions (2.26)
for Rb, and (2.17) for Rbb into (2.8). In doing so we will
introduce a further approximation by neglecting the
noise contribution to Rb, . This is consistent with our
neglect of I „,and it also avoids the complications intro-
duced by a multiplicative noise term. " The resulting
equation for R„ is then

Rbb =R~~ &&R

and combining them with (2.11) yields

(2.19)
2/(M i(p —a)kz@t g

CT P3R y, b p

(2.28)

(2.20)

Therefore, in the adiabatic limit, the conservation of pop-
ulation becomes

The constants multiplying the double sum can be recom-
bined in terms of the stimulated emission cross section
o ~sE, and (2.28) can be rewritten as

R, =wt, — wp+y, +
Bt aa E2

R„+R =1 . (2.21)

The adiabatic solution of the operator equation (2.7)
requires more care because of the rapidly fluctuating
noise term. We begin with a formal solution:

+ ' pe~' k'd (o R„,E2 (2.29)

where E0 and the corresponding intensity I0 are given by
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g2 2n 'Va~~ 2n
IQ .

6'Cp 0 ~sE E'CQ
(2.30)

—r.b

(r "„,(t)r„(t')) =y, p., (t )
2/ab

+0 (1/y, b )

a TaR =/Bp LUp+p + g J R
Io

(2.31)

where J, the intensity of the wave 6, is

Thus IQ is the intensity at which the stimulated emission
rate equals the spontaneous emission rate. The final term
in (2.29) corresponds to direct coupling of the counter-
propagating waves through degenerate four-wave mixing.
For our present purposes we will neglect this efFect; thus
(2.29) becomes

bI t —t'I=p„(t( )e (2.34)

( r,.(t)rb. (t) ) =p., (t) . (2.35)

where the final form comes from the near identity
2y, b =yb. This shows that the filtered noise has a non-
vanishing correlation time 1/y, b and that the correlation
function has the finite equal time value

2' (2.32) C. Macroscopic Maxwell-Bloch equations

t (
X f dt, p„(t, )e (2.33)

where t &
——min(t, t'). The t, integral is dominated by the

upper limit, and the average population p„(t, ) is slowly
varying so

Finally, we investigate the statistical properties of
rb, (t) by combining (2. 16) and (2.27) to get

(r,.(t)r,.(t )) =y e

In this section we will combine the results of Secs. II A
and II B to obtain the Maxwell-Bloch operator equations
on which our simulations are based. The slowly varying
envelope fields @ in the ansatz (2.1) are obtained from
the microscopic fields by a spatial and temporal coarse-
graining procedure. For this purpose we define a volume
5V and a time T satisfying (a) A, «(5V)'~ &&1/Go, (b)
5X=n5V))1, (c) 2'/co«T «1/y, b, where n is the
density of atoms and Go =no.&sE is the weak signal gain
for full inversion. The envelope field 6 is then given by

8 (xt)= f d x' —f «e 'O'E(x ')
5V SV(x) T (2.36)

where 5V(x) is a region with volume 5V centered on x.
We must apply the same averaging procedure to the mi-
croscopic polarization density, which is given by

p(x, t)=g pb, ~b;m )(a;m ~5(x —x )

for the S„h part is

27Tlk oh 0 1 i (p —o )kz
P""(x,t) = -g g p„(x,t)e

2 n5 V ~~v(„)

=g pb, Rb, (x, t)e ' '5(x —x ), (2.37)
X6 (x, t) . (2.39)

where the sum runs over all atoms, and the second line
comes from the definition (2.6) of R„,. By averaging

p (x, t) we find the source term in the macroscopic paraxi-
al equation (2.3):

2~ik ~,h( )
Go

2
JV, (x, t)D (x, t), (2.40)

After dropping the four-wave mixing terms (pWrr), (2.39)
becomes

P (x, t)= f d x' —f dt'p (x', t')
5 V 5V(x) T t —T/2 JV, (x, t)= g p„(x,t),1

m Ebv(x)
(2.41)

1 —i okz
pb Rb (x )e

m E6V(x)
(2.38)

where the final sum runs over the atoms contained in
5V(x), and we have used the fact that Rb, (x, t) is slowly
varying. We evaluate (2.38) by using the adiabatic solu-
tion (2.26) for Rb, . This yields two terms, corresponding
to S„„and 1 b, . According to (2.19), the population of
the lower lasing level Rbb is negligible; therefore (2.23) for
S„h can be simplified by neglecting it. When (2.23) is
substituted into (2.38), and the multiplicative constants
are expressed in terms of O.~sE, the resulting expression

where A; is the fractional occupation of the excited state
a, and GoJV, is the saturated gain. The noise term in

(2.26) yields

S (x, t)= P"""(x,t)2vrik
E'

27TlkPb~ ]. r,.(. , t), ""'-
. (2.42)

m E6V(x)

Combining (2.40) and (2.42) with (2.3) gives the macro-
scopic propagation equation
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1

3z ca Bt

A similar argument yields the propagation equation for
the classical pump wave:

GD
JV, (x, t)6 (x, t)+S (x, t) .

2
(2.43) 2, (2.45)

a 3'a
A;=tUt —

tUt +y, + QI A; .
Bt Io

(2.44)

The material response is described by applying the same
coarse-graining procedure to (2.31), with the result

where &pa =0 0.
b 0 b is the absorption cross section at

the pump wavelength, and the conservation of population
gives (Ã~ ) =1—(JV, ).

%'e complete this section by deriving the statistical
properties of the coarse-grained noise source. From the
definition (2.42) one finds

(S (x, t)S ( 'xt')) =
'2

' ( I,.( x, t ) I„(x„,t '
) ) .

)n E5V(x) n E6V(x )

(2.46)

The fiuctuation operators for different atoms are uncorrelated; therefore (2.34) allows (2.46) to be rewritten as

(S (x, t)S (x', t')) = 1 —y bluff
—I'Ip„(x,t& )e

J m Hsv(x)Asv(x')
(2.47)

where we have expressed the coefficient in terms of y„
the Einstein A coefficient, and the sum runs over the
atoms in the overlap region.

In the usual phenomenological approach, one would
assume that the sources are 5 correlated in space, and the
right-hand side of (2.47) would be proportional to a Dirac
5 function. Our result is a coarse-grained version of this.
If x and x' are sufficiently far apart, the volumes 5V(x)
and 5V(x') do not overlap, and the sum on the right-hand
side of (2.47) vanishes, i.e., the noise sources at x and x'
are uncorrelated. On the other hand, (2.47) differs from
the standard 5-correlation model since it yields a finite re-
sult for x=x'. By treating the right-hand side of (2.47) as
an integral kernel and applying it to slowly varying test
functions, i.e., functions that are essentially constant
across a coarse-graining volume, we show in Appendix 8
that this result can be restated as

2

(S (x, t)S ( tx')) = n(JV, (x, t& ))

X e ' 5&(x—x'),( (2.48)

5c(0)== 1

5V (2.50)

The form (2.48) for the correlation function resembles the
familiar phenomological assumption of 6 correlation in
which 5C(z) is replaced by the Dirac 5 function; however,

where we have used (2.41) to replace the sum over atoms
by the coarse-graining population A;. The "coarse-
grained 5 function" 5C(x —x) is defined by its action on
slowly varying test functions,

J d x'5C(x —x')f(x')=f(x), (2.49)

and by its finite value for x =x',

the finite value of 5C(0) allows us to calculate the tem-
poral correlation function of the noise source at a given
spatial point:

3~~ fig, n (iV, (x, t))(S (x, t)S (x, t')) = e
e k 5V

(2.51)

The strength of the noise source at a point, defined by set-
ting t =t' in (2.51), depends explicitly on the choice of
the coarse-graining volume 6V. This will play an impor-
tant role in the next section, where we consider a finite-
difference solution of the equations.

III. STOCHASTIC SIMULATION

As formulated in Sec. II, the theory of ASE is given by
the (Heisenberg picture) operator field equations (2.43)
and (2.44), together with the condition (2.48), defining the
statistical properties of the source term. Unfortunately,
these are nonlinear operator equations, which do not lend
themselves to numerical methods. Alternatively, we
could work with the equivalent master equation for the
total density operator, and then choose a representation
which would yield a generalized Fokker-Planck equa-
tion. ' No effective numerical solution methods exist for
such functional differential equations. The most common
escape from this dilemma is to assume that the Fokker-
Planck equation is equivalent to a set of Langevin equa-
tions for c-number stochastic fields. This assumption
finds some support from the use of the positive-P repre-
sentation, but there are still some apparent difhculties. '

In the absence of a completely rigorous argument, we will
simply adopt this assumption and replace the operator
equations with c-number stochastic equations. the sto-
chastic model is related to the quantum theory by impos-
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ing (2.48) on the Langevin forcing term in the stochastic
equations. «1;O(b, t) 1

Q (0) 2y, bb, t
(3.8)

A. Finite-difference noise model

The noise term in (2.43) has a correlation time
1/y, b

= T2, therefore, a straightforward finite-
differencing scheme would require very small time steps,
At « T2. In order to avoid this difhculty, we replace the
difFerential equation with a finite-step equation by in-
tegrating (2.43) over the integral (t, t +b, t):

6 (x, t+b, t)=A (x, t)+c,b, t —V' —o @ (x, t)
I 2 a

2k Bz

Go
+coht JV, A' (x, t)+S (x, t),

2
(3.1)

where the finite-step noise term is

S (x, t)=c,f dt'S (x, t') . (3.2)

In other words, the effective noise source S (x, t) is pro-
portional to the average of S (x, t) over one time step.
We have also assumed that the other terms on the right-
hand side of (2.43) are essentially constant in (t, t+b, t).
The statistical properties of S are obtained by using
(2.48) to calculate the correlation function:

3~2 nAy,(S *(x,t)S (x, t')) =co
E

X(A', ( tx, ))Q(t t')—
(3.3)X 5C(x —x'),

t+bt t +b.t '—y, b it r'i—
Q(t —t' = dt, dtze (3.4)

2[c soh(y, bb, t) —1]
Q(t —t')= e '"

yab
(3.5)

For a practical computation scheme, we can assume

y,bht ))1; therefore, the correlations between sources
more than one time step apart are exponentially small.
On the other hand, for sources at adjacent time points,
i.e., with ~t t'~=b, t, the—exponentials cancel and (3.5)
yields

The integral (3.4) can be evaluated explicitly, and for
~t

—t'~ ) b, t it has the simple form

therefore, we may regard the sources at distinct time
points as effectively uncorrelated.

We next turn to the relation between the coarse-
graining volume 6V and the spatial grid with dimensions
Ax, Ay, Az. An obviously necessary condition is
AxAyAz ~6V, i.e., the volume of the unit grid cell can-
not be smaller than the coarse-graining volume. On the
other hand, if the grid spacings are too large the finite-
difference scheme will not accurately represent the spatial
variation of the envelope fields. On this basis, we con-
clude that the optimum choice for the numerical grid is
to equate the unit cell and the coarse-graining volume:

6V=hxhyhz . (3.9)

(S *(x,t)S (x, t) ) =c '
( JV, (x, t) )2 3m nyaya 2ht

e k6V yab

(3.10)

This can be rewritten in a more useful way by introduc-
ing a factor of ~ in the numerator and denominator. In
this way we get

An alternative argument leading to this conclusion fol-
lows from recognizing that the finite-difference scheme
amounts to the assumption that the fields are piecewise
continuous, with jumps at the grid cell boundaries. This
is clearly a particular form of coarse-graining, so we are
again led to (3.9) as the optimuum choice. For example,
we can imagine each grid point at the center of a coarse-
graining cube with edges Ax, Ay, Az, so that the faces of
the cube will lie halfway between adjacent grid points.
Then the only atoms belonging to two different coarse-
graining volumes are those which happen to lie on one of
the faces. Since the cubes contain many atoms, these sur-
face effects can be neglected, and the presence of the
coarse-grained 5 function in (3.3) implies that sources at
different grid points are uncorrelated. Combining all
these considerations shows that the sources at distinct
space-time grid points can be treated as uncorrelated.
Under these circumstances, the only relevant parameter
is the strength of the source term at a given point on the
space-time grid.

We evaluate (3.3), with x=x', t =t', using the op-
timum choice (3.9) for 5V; this gives the strength of the
random source term as

Q(&t)= 1

yab
(3.6)

This last result should be compared to the strength of the
source at a given space-time point; this is proportional to
Q (0), and

2~
@co

ya
3~n %coco

yab

coAt

Az

(S*(x,t)S (x, t))=K(A;(x, t)), (3.1 1)

1

E AxAy

(3.12)

Q(0) =
yab

2 y,bb, t 2b—t
2

7 ah 1 ab
(3.7)

By comparing (3.6) and (3.7), we see that the correlation
between adjacent time points is weak compared to the
strength at a point, i.e.,

The first factor in K converts intensities into the squares
of Geld strengths, and the second factor may be interpret-
ed as the intensity due to noise photons. This follows
from the observation that the number of photons emitted
per atom in one dephasing time is y, T2 =y, /y, b. The
third factor in K will be unity when the natural grid
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AxAk =Axk50 =1,
AyAk =hykhO =1 .

(3.13)

(3.14)

On the other hand, a simple ray-tracing argument shows
that the end-fire modes represented by the fields 6' cor-
respond to bundles of rays filling the geometrical opening
angles p =d/L and p =h/L. In order for the wave
theory to recover this result, the diffraction angles must
satisfy

b.O„~P„, b, Oy ~P, , (3.15)

which, in combination with (3.13) and (3.14), yields

k bxby ~
X

(3.16)

For reasons of economy, we want the coarse-graining
volume to be as large as possible; therefore, we define the
noise source by choosing Ax and Ay to satisfy the equali-
ty in (3.16), and thereby obtain

k AxAy= L L 1 (3.17)

where 0=hd /L is the solid angle subtended by the out-
put face. This yields the final form for K:

2' —1
(37m @coy,coy, b )0 .

Ecp
(3.18)

The factor Q represents the dependence of the source on
the amplifier geometry; thus the ad hoc insertion of a
solid-angle factor, as done for plane-wave theories, is
eliminated. Also note that the general theory of stochas-
tic differential equations would lead us to expect an in-
tegrated noise term proportional to (cob, t)'/, but our
analysis yields instead

( br )1/2 (
—1)1/2 —

( 7 )1/2 (3.19)

that is, the difFerential At which would appear in a phe-
nomenological stochastic treatment is replaced by the
physical parameter T2.

B. Numerical methods

The theory is formulated generally for propagation in
the time and three spatial dimensions; however, we limit
our numerical calculations to the time and two spatial di-
mensions, namely the z axis and the x axis. We show in
Appendix C that this requires a modification of the noise
source in which K is replaced by

K = (37m %coy, coy, b') (3.20)
Ecp

where P is the opening angle d/L and h is the y dimen-
sion of the sample. For the simulation, the noise source

choice Az=cpht is made. The fourth factor is deter-
mined by conditions required for the proper treatment of
paraxial diffraction. The diffraction angles for radiation
emitted through the (b,x, by) face of 5V are determined
by the uncertainty principle:

at a given space-time grid point is given by

S (x, ,z, , t„)=IKA;(x, ,z, , t„)]'/ g (i j,k), (3.21)

where g (i,j,k) is a complex number chosen independent-
ly, for each wave at each lattice site, from a Gaussian dis-
tribution with unit average square modulus. The Auc-
tuating quantity A', should, strictly speaking, be replaced
by its ensemble average, but we will assume that
A; —( A', ) is small so that we can neglect this
refinement. We approximate the choice of g (i,j,k) by
setting

g (i,j,k)= —(a+ip),1

v'2 (3.22)

and drawing n and p from an approximately normal dis-
tribution with unit variance constructed by means of the
central limit theorem. '

For the ASE equations, whose bidirectional nature
means that the time and propagation direction must be
treated as separate, independent variables to achieve
complete generality, we use the Peaceman-Rachford (PR)
alternating-direction-implicit (AD I) algorithm. This
method applies to partial differential equations (PDE)
having parabolic form. It has received wide application
recently to integrate the Schrodinger equation for an
atom in the presence of a strong electromagnetic field. '

Our ASE equations are parabolic in form, except for the
first-order z derivatives. However, we modify the PR
method simply by representing this derivative by a two-
point forward or backward difference, as appropriate at
boundaries. The second-order x derivative is represented
by the usual three-point central difference. Then the z
and x derivatives, suitably represented by differences, are
alternated as implicit or explicit in the PR scheme. The
PR method uses reflective boundary conditions which
will give rise to spurious reflections from the numerical
grid boundaries. To avoid this, absorbing terms localized
at the grid boundaries are added to the paraxial equation.
The overall solution method treats the derivative terms
by a stable implicit scheme, but the nonlinear gain term,
the source term, and the absorbers are treated explicitly.
The method is suKciently general that the second-order z
derivatives, which would describe a reflective component
in the wave, could be retained. The pump action, with
propagation along x and diffraction along z, is solved in
the retarded-time frame, in which it has the standard par-
abolic form, using the Cranck-Nicolson algorithm.

Most of the sample calculations presented below were
carried out in conjunction with an experimental program
using laser-pumped dye solutions. The dye sample in
these experiments has the dimensions d =0.06 cm,
h =0.02 cm, and L =2. 1 cm, so the "solid-angle factor"
(P„/kh) in (3.20) is 9X10 . The dye is pumped by an
injection-seeded, frequency-doubled Nd: YAG laser
(YAG denotes yttrium aluminum garnet), so the ASE
propagation equations, the transverse pump propagation
equations, and the material response equations must be
solved self-consistently. Our experience shows that the
numerical solutions given here are reliable for
hx =6X 10 cm and Az =2.4X 10 cm. The value of
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Ax used in integrating the equations is about three times
larger than the optimum value used in the definition of
the coarse-grained noise source by (3.20). We employ a
dimensionless time y, t; therefore, the large factor cp/y,
weights all terms on the right-hand side of (3.1). This re-
quires a small step size y, At=6. 1X10 . If the tem-
poral step size is not small enough, then the z profiles for
the population JV, exhibit numerical noise; consequently,
we generally take smooth z profiles of JV, as our primary
test of numerical accuracy.

IV. APPLICATIQNS

A. Saturation in strongly inverted media

The gain associated with the lasing transition a~b is
proportional to the average population difFerence

p, —
pb&, but in a strongly inverted medium p„)&p&&.

This means that the saturated gain is given by

G =Gpss, , (4.1)

where I, = ( J, ) is the average intensity. This leads to
r

Ta
%, =wp — wj, +y, + QI X, .

Bt Ip
(4.3)

The stationary solution of (4.3), together with (4.1) gives
the following result for the saturated gain:

G =GpN, =Gp
'Ya

wp+y', + QI
Ip

(4.4)

where the weak signal gain and the saturation intensity
are given, respectively, by

Gp LUp

Va+ NP
(4.5)

NpI„,= 1+ Ip,
'Ya

(4.6)

where N, :—(A; ) is the average fractional occupation
We can estimate N, by means of the semiclassical limit of
(2.44), i.e., we take the ensemble average and assume that

(4.2)

pressed as

I„,= 1+ Ip,P
P 0 (4.8)

P a f1COp
Pp=

Op
(4.9)

1+I /I 0

1+P /Po+ I /IO
N =1—N, = 1

1+P/P„,
(4.10)

Thus P„, is the intensity at which the absorption is re-
duced to one half of the weak-pump limit; it is given by

P„,=P, 1+ 1

Ip
(4. 1 1)

This result for the pump saturation intensity and (4.8),
for the ASE saturation intensity, are related by I~P,
Ip~Pp ~ We refer to this reciprocal behavior as cross sat-
uration.

This phenomenon can be experimentally investigated
by observing transverse fluorescence from the excited dye
molecules and transmission of the pump radiation. The
Auorescence intensity is proportional to the excited state
occupation X, =G/G; therefore (4.4) shows that fiuores-
cence will be suppressed at the ends of the amplifier
where the ASE signal is strongest. Similarly, (4.11) shows
that P„, is larger at the ends, which means that more
molecules are in the ground state and transmission of the
pump is reduced. Thus we should expect that the Auores-
cence signal and the transmitted pump intensity will both
peak at the center of the amplifier. In Figs. 2 and 3 we
show time-averaged results of calculations of X, and N,
corresponding to Auorescence and transmission, respec-
tively, which exhibit this property, together with the cor-
responding experimental results. A more complete dis-
cussion and details of the experimental verification of this
phenomenon are given elsewhere.

where Pp is the intensity at which the absorption rate of
pump photons equals the spontaneous emission rate.
This is the intensity which usually describes saturation of
the absorption, but this definition also requires
modification. Since the absorptivity is proportional to
the ground-state occupation, it is sufFicient to calculate
% by using (4.4) and (4.9):

and I is the total ASE intensity

I =+I (4.7)
&. Transverse coherence

The saturation intensity I„, is the intensity for which the
gain is reduced to one half of the weak signal value; this
is the conventional definition. Recall that Ip is the inten-
sity for which the simulated emission rate equals the
spontaneous emission rate; this is the value usually quot-
ed for the saturation intensity. The modified value given
by (4.6) is a consequence of the rapid depopulation of the
lower lasing level.

For the case of laser pumping, the pump rate wp is
given by (2.13) and the saturation intensity can be ex-

One of the principal virtues of a wave-optics descrip-
tion is that it allows one to study the degree of transverse
coherence of the ASE signals. This is essential for under-
standing the growth of an organized signal from quantum
noise, and it is also important for applications. In this
section we present some preliminary results along these
lines.

A convenient measure of transverse coherence is pro-
vided by the complex degree of coherence y &2(x,z), which
is defined in terms of the cross-correlation function be-
tween a field, say 6+, and its adjoint at difFerent trans-
verse positions. ' We choose coordinates so that the
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FIG. 5. Visibility vs slit separation for ASE output. This is a
weak-pump (wp/y =0.09), low-gain (G =3.4 cm ') case.

V. SUMMARY

The radiative transitions in rhodamine 6G dye lasers,
which are important for ASE, involve states lying in
vibration-rotation bands that form quasicontinua. We
have modeled this by an effective four-level atom made
up of fictitious isolated levels with phenomenologically
assigned widths. From this model the strength of the di-

signal gain G=33.5 cm '; therefore, the gain-length
product is GL =74, and the system is highly saturated.
The resulting visibility curve generally resembles that ob-
tained by placing the slits in the far field region of an in-
coherent source. ' This suggests a simple model in which
spontaneous emission in the first gain length (at the far
end of the sample) provides the source, and the rest of the
sample merely serves as the amplifying medium. This
model must be viewed with some caution, since certain
details of the visibility curve do not correspond to the in-
coherent case. In particular, the visibility at the first
minimum in Fig. 4 is not zero. According to (4.14) this
means that the complex degree of coherence, y, 2(x), does
not vanish at this point; i.e., the effective source is not
completely incoherent. In Fig. 5 we show the same curve
for a weak pump ( top /y, =0.09), corresponding to
G=3.4 cm '. This gives GL =7.5, so the system is un-
saturated. This curve is qualitatively similar to the previ-
ous one, but we note that the central peak is much nar-
rower, suggesting a reduced coherence length. Let Ax be
the width of the central peak at half maximum; we will
adopt this as a crude measure of the coherence length.
For the high-gain case shown in Fig. 4, Ax =21 pm, and
for the low-gain case of Fig. 5, hx =7 pm. Thus the
ASE output from the high-gain, saturated sample has a
coherence length three times higher than that of the low-
gain, unsaturated sample.

pole fluctuations is derived by using the fluctuation dissi-
pation theorem, and the assumed rapid decay of the di-
pole (small T2) is used to reduce the atomic Bloch equa-
tions to a single rate equation for the population N, of
the upper laser level. We then carry out a coarse-
graining of the theory using volume 5V and time T. This
procedure yields the macroscopic polarization as the sum
of a coherent part, driven by the two counter propagating
ASE fields, and a noise term arising from the dipole fluc-
tuations. The normalization of the noise strength is
determined by the microscopic theory and depends ex-
plicitly on the coarse-graining volume.

In the formulation of the stochastic simulation scheme,
we argue that the optimum choice is to set the coarse-
graining volume equal to the volume of a unit grid cell.
For practical computation schemes with time steps
At &) T2 it then follows that the noise sources at each
space-time grid point can be treated as uncorrelated. By
requiring that the opening angle for radiation from a unit
grid cell is at least as large as the geometrical opening an-
gle for the sample, we show that the strength of the noise
source at a grid point is proportional to the solid angle
subtended by one output face. The resulting stochastic
paraxial equations for the ASE fields are solved by a vari-
ant of the Peaceman-Rachford alternating-direction-
implicit algorithm. This is done simultaneously with the
solution of the rate equation for N, and the paraxial
equation describing pump wave propagation.

By examining the stationary solutions of the atomic
rate equation we showed that the ASE saturation intensi-
ty depends on the pump intensity, and, conversely, that
the saturation intensity for pump absorption depends on
the ASE intensity. In this system, ASE gain and pump
absorptivity are proportional to the populations N, and
N =1—N„respectively. This allowed the complemen-
tary relation between ASE saturation and pump satura-
tion to be checked experimentally by measurements of
transverse fluorescence and pump transmission. Our nu-
merical simulations are in substantial agreement with the
measured values.

For the simpler case of uniform pumping, we have car-
ried out calculations of the complex degree of transverse
coherence, and thereby obtained predictions for the visi-
bility of the diffraction pattern produced by illuminating
two slits with the output ASE light. The visibility curves
roughly resemble those associated with diffraction using
the far field of a finite incoherence source, but there are
important difFerences in the details. The diffraction pat-
terns obtained from the simulation do not display any
true nulls in the visibility, which indicates that the
effective source is not completely incoherent. Compar-
ison of the visibility curves for an unsaturated case with
small weak signal gain and a heavily saturated case with
large weak signal gain show that increased gain leads to
increased transverse coherence of the ASE output.

In future work we will use the simulation code to see
how the transverse coherence depends on the various pa-
rameters that enter into the problem. We will also im-
prove the theory by including the formation of interfer-
ence gratings through wave mixing between the counter-
propagating ASE signals.
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APPENDIX A

In this appendix we will show that the noise terms I
associated with the population operators are small corn-
pared to the dipole Auctuation operator I b, . In the nota-
tion employed in QASE, we have

(A 1)

(A2)

For the four-level model used here, the coeKcients are

Therefore

(A12)

where the inequality results from the adiabaticity condi-
tion (2.15). This shows that the Langevin terms I ap-
pearing in the population equations are small compared
to the Langevin term I b, for the dipole transition opera-
tor.

APPENDIX 8

Here we derive Eq. (2.48), the coarse-grained 5-
correlated form for Eq. (2.47). Define the integral kernel
b, (x, t;x', t') to be the right-hand side of (2.47), which we
rewrite in the equivalent form

h
=

WPPgg +PhPhh

a XhPhh 3 aPaa

+b 7 aPaa + V bPbb

C'b WPPgg +'Y bPbb

ab 7 bPaa +7 hPhh

(A3)

(A4)

(A5)

(A6)

X g p„(x,t ( )e
—y, q ~~

—S'~

Xy (x)y (x'), (B1)

where p = (R ) is the average population. We esti-
mate these coe%cients averaging the operator equations
(2.7)—(2.11) and obtaining the stationary solutions in the
weak signal limit. This leads easily to

where y (x) is defined by

1 for m &5V(x)
~m 0 otherwise

wp /ppppp-, 13=h, a, b,
3'a

1

1+wp/y,

Substituting these estimates into (A3) —(A7) gives

(A8)

(A9)

=f d r5(r —x )
6 V(x)

= f d'r5(r+x —x ) .
5 V(0)

(B2)

2wp
aeIh, b, a, g I,1+wp /ga

(A 10)
Now, regarding (Bl) as an integral kernel in x and x', we
multiply by a function f(x') and integrate over x'. Ac-
cording to (Bl), this requires the ealeulation of

(B3)f d'x'y (x')f(x') = fd'x' f d'r5(r+x' —x )f(x')
5 V(0)

=f d rf(x —r)=5Vf(x ),
5 V(0)

where the last line is valid for functions that are essentially constant across a coarse-graining volume. Combining (B3)
with (Bl) yields

d' A(xt;xt'x)f (x')= g p„(x,t ( )f(x )
m E6V(x)

n (A', (x, t ( ) )f(x),
E

(B4)

where the final line was obtained by using the slow variation off (x) and the definition of the coarse-grained population
given by Eq. (2.41). This shows that b, ( t;xt'x) behaves like a 5 function when applied to slowly varying test func-
tions. If we define a coarse-grained 5 function 5, (x—x ) by its action on slowly varying functions,
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fdix'5c(x —x')f(x')=f(x), (85)

the A(x, t;x', t') is clearly proportional to 5c(x—x'), at least for xWx'. The finite value of b(x, t;x', t') at x=x' can be
included by defining

15c(0)= (86)

then combining (86), (85), and (84) gives Eq. (2.48).

APPENDIX C

Here we will show how to modify the source term, derived in Sec. III A for the three-dimensional theory, to deal with
the restricted calculation in which one spatial dimension is neglected. We begin with the finite time step equation (3.1)
and average it over y using the definition

(C 1)

This gives

8 (x,z, t +At)=—8 (x,z, t)+cobt —cr 8 (x,z, t)
2k g~~ Bz

60 ae.(x, t)
"

+c~bt (JV, (x, t)0 (x, t)) +S (x, z, t)+cobt (C2)

where the new fields and sources are given by

W (x,z, t) =:(E' (x, t))

S (x, z, t)=(S (x, t))

The necessary approximations are to drop the final term in (C2) and to assume

( JV. (X, t)e (x, t) &, = & JV, (x, t) &, & 6 (x, t) &, .

Thus (C2) is replaced by

g
g' g . ~p

(x, z, t+ht)=A (x,z, t)+coht cr E (x,z, t)+—coht JV, (x,z, t)P (x,z, t)+S (x, z, t),
Zk g~2 az

' ' ' 2

(C4)

(C5)

(C6)

and we need only calculate the strength of the new source term S (x,z, t). We proceed as usual from the definition (C4):

(S (x,z, t)S (x,z, t) ) = —f dy, —f dy2 (S ' (x,y, ,z, t)S (x,y2, z, t) ) . (C7)

We also need (3.3) evaluated at t = t':

(S *(x,t)S (x', t)) =co —(A', (x, t)) 5c(x—x'), (C8)

5c(x—x') =5c(x —x')5c(y —y')5c(z —z') .

From the last equation we see that

(C9)

5c(y —y')
5c(x—x') ~

Axhz
as x ~x, z~z (C10)

therefore, inserting (C8) and (C10) into (C7) gives

(S (x,z, t)S (x,z, t) ) =co (JV, (x,z, t) ) (C11)
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which differs from the three-dimensional result (3.10) only by the replacement hy —+h. This means that the result (3.12)
for K is changed by the replacement k Ex' ~k hxh, and the diffraction argument now becomes

1
kAx =—=

d

Combining these results finally gives the new value for K:

2~ )33,
K = (3vrnficoy, coy, b )a 0 ab
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