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Perturbation theory is applied to the evaluation of the multiphoton-detachment cross sections of
H™ in a number of approximations. The zero-range plane-wave approximation is the simplest, as its
effective dipole matrix element is reducible to a recursive differentiation, and it is applied to the one-
to seven-photon-detachment processes. Improvements on this are made in the bound state by
means of a short-range potential model and a dynamic screening representation, and in the continu-
um wave functions with the use of the best previously calculated e-H(1s) singlet scattering phase
shifts. The dynamic screening parameters are adjusted to give a good fit of the resulting one-photon
cross section to its correct well-known value, and the accurate phase shifts effectively include all the
important correlation effects in the free-free amplitudes. These improved wave functions are used
for the evaluation of the two- and three-photon generalized detachment cross sections by explicitly
carrying out all intermediate state sums. Our best &, and &3 are estimated to be accurate to order
5%. The present theoretical results are compared with other calculations and recent measurements,
revealing areas of agreement as well as certain discrepancies.

I. INTRODUCTION

The photodetachment of H™ has long been a process of
great astrophysical interest because of its importance in
the radiation equilibrium of the sun’s photosphere. This
motivated many calculations of its cross section with rel-
atively simple wave functions, mainly by Chandrasekhar
and his associates,! starting in the 1940s. Laboratory
beam measurements® were carried out in the 1950s with
flash lamps and filters between 4000 and 13000 A where
this cross section has its largest values. The then increas-
ing availability of large-scale computers led to accurate
Hylleraas-type calculations® on the bound state of H™ as
well as to variational and close-coupling treatments of the
e-H(ls) low-energy elastic scattering.* These latter con-
tinuum wave functions represent the final states in the
photodetachment process, and led to further improve-
ments in the calculated photodetachment cross sec-
tion.> 8

There was close mutual agreement among the various
calculations using these highly correlated bound and con-
tinuum functions. These were also in excellent agreement
with the measured cross section,? and so it was felt that
the one-photon-photodetachment cross section for H™
was finally accurately known.

As lasers came into use and the study of intense field
nonlinear processes became feasible, the multiphoton de-
tachment of negative ions became a subject of experimen-
tal and theoretical interest.”!® The H™ ion is the sim-
plest negative ion, and thus is the prototype system in
which one might expect the most detailed understanding
of these processes. A number of subsequent theoretical
calculations!! 713 on the two-photon detachment of H™
gave rather divergent results for this process, unlike the
close agreement®~’ obtained in the one-photon case. On
the experimental side, the absence of high-power laser
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sources at variable photon energies below the binding en-
ergy of 0.754 eV held back progress on normal cross-
beam studies.

This unavailability of suitable high-power laser sources
was overcome recently by Tang et al.!* with the use of
relativistic H™ beams at the Los Alamos Meson Physics
Facility. By intersecting this fast ion beam with a beam
of CO, laser pulses at varying angles, they were able to
obtain Dopper-shifted photon energies (0.117 eV in the
laboratory frame) according to Av=[(1+pBcosa)/
(1—B%)121hv,, which vary between 0.08 and 0.43 eV in
the atom frame. This corresponds to two- to nine-photon
multiphoton detachment (MPD) processes. With the
continuing improvement of these measurements we can
expect a wealth of new data on MPD cross sections for
H ™, and this is the motivation for the present theoretical
work.

In this paper we will begin in Sec. II with the back-
ground theory for the formulas for n-photon detachment
as derived from perturbation theory for applied radiation
fields which are sufficiently weak. We will then review in
Sec. III the previous work in arriving at the now well-
established result for the one-photon detachment. Going
on to multiphoton calculations in Sec. IV, we will intro-
duce the simplest approximation, the zero-range plane-
wave (ZRPW) approximation. Improved calculations on
two- and three-photon detachment will be covered in Sec.
V. Finally, our results will be compared with the latest
experimental data available and with other calculations
in Sec. VI, and the conclusions summarized in Sec. VII.

II. BACKGROUND THEORY
FOR MPD CROSS SECTIONS

Let us consider an atomic system initially in some
bound state which is perturbed by a rectangular pulse of
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duration 7 and electric field E coswt. The dynamical evo-
lution of this system is governed by the time-dependent
Schrodinger equation. Rather than writing this in its
well-known partial differential equation form, it is more
useful to write it in the form of the equivalent integral
equation,

W(r,t)=d,(r)e
. t ’ ’ eqe! 4! !
ifldr [drGir,e;r, 0 Er)
Xcos(wt")¥(r',t') . (1)

(We use atomic units, e =m =#=1, unless otherwise
specified.) G is the kernel or Green’s function for the free
atom (states ® i energies € j)
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e—iej(t—t ) )

G(r,t;r't')= 3 OF(r)P;(r') (2)
j

In the weak-field case, where E << 1 atomic unit of elec-
tric field strength, we may solve (1) by iterating it n times.
The projection of any final atomic state ®,(r) upon the
thus iterated approximate solution W'™(r,r) leads to the
atomic transition probability in the long 7 limit (.e.,
many cycles of the field)

2n

27778(Ef_€i_nw)|Dn|29 (3)

E
p}n)z 7

where the effective dipole matrix element in lowest order
is

(<1>b|dt<1>u1 ><‘I’vlld|¢v2> cee (¢Ur2|d|cl>un7])<<1>Un7]|d|<1>,)

and d is the effective field-atom interaction operator. The
factor E /2 arises from the rotating-wave approximation.
The counterrotating part of coswt is negligible since it is
of higher order, or will correspond to the absorption of
more than n photons. All of the many-electron wave
functions ®; are taken to be normalized to unity in a
large quantization volume for the configuration space of
each of the electrons. The effect of this condition is to re-
quire the wave function of the ejected electron to go to
unit amplitude asymptotically.

The total transition probability requires a sum over all
possible final states, which, if we are dealing with a
single-electron detachment process into a final state con-
tinuum, gives

P,=2m) [ dkp”
=(2m)"AE/2)*"tk, [ dk,|D,|* . (5)

This is the general Fermi golden rule for an n-photon
bound-free transition probability, where k, is now the
ejected-electron wave number as fixed by energy conser-
vation, kfz/2=nco+£b and g, is the bound state. This
leads to the definition of a generalized cross section &, in
terms of which the total probability is expressed in the
form

P,=&,F"r, 6)

where F is the incident photon flux. Note from this
definition that the cgs dimensions of the generalized cross
section are cm?"s” 1,

In terms of the energy flux I (laser intensity)
I E?

F=—= , (7)
o 8maw

where 1/a equals the velocity of light in atomic units.

" 2 (g;,—e;tw)e;,—ey,+20) - [e,—€, 1 +(n—1)w]

Combining (5), (6), and (7) gives us the formula for the
generalized MPD cross section

6,1=(21r)“2(27'raa))"kffdﬁf|D,,|2 . (8)

The generalized MPD cross section is a purely atomic
property, and the above derivation was carried out in
terms of a rectangular perturbing pulse of radiation of
duration 7. It is expected that a Gaussian pulse of full
width at half maximum (FWHM) 7 would lead to a final
transition probability P, which differs from (6) only by a
small amount.

III. REVIEW OF WORK ON ONE-PHOTON
DETACHMENT

A review of the theoretical work on the &, of H™ will
be useful in assessing the approximations to be used for
the higher-order &,’s. One property of &, that does not
apply to other &, is that it is independent of the polariza-
tion of the applied radiation. Thus the proper result for
unpolarized radiation, which applies to most astrophysi-
cal applications, will follow from any calculation using a
linearly or circularly polarized electric field.

The earlier calculations' of D, involved bound-state
wave functions of the form of symmetrized (singlet state)
products of purely radial functions in each of the elec-
trons which were variationally found to minimize the en-
ergy. This evolved from the simple forms
exp[ —B(ry+r,)] and exp[—(Br,+yr,)]+exp[—(Br,
+vyr;)] to forms of the Hylleraas type ®,(r;,75,75)
where electron-electron correlation was explicitly includ-
ed. The final state ®, was taken to be a symmetrized
product of the residual ¢,,(r;) and an ejected-electron
wave, most simply taken as a plane wave, then a scatter-
ing wave function in the static field of the residual H(1s)
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atom (Hartree approximation), and finally more sophisti-
cated scattering treatments which also included correla-
tion effects. Among these are scattering variational treat-
ments of the Kohn or Hulthen form> and close-coupling
calculations® (Hartree-Fock treatment of continuum
states).

Our formulation of the theory in Sec. I is based on the
so-called “length” form of the field-atom interaction E-r.
As is well known, the “length” matrix element is related
to the “velocity” and “acceleration” forms by the trans-

formations
(<I>-lz|<l>->=<<l>~ —a—‘d><>/(s»—e~)
i j 19z J i j
_ a o _ 2
=(®, |-V jA/@[ €7 . ©)

This identity holds when ®; and ®; are exact solutions
for the free-atom Schrodinger equation
(T +V —¢;)P,=0. As all the H™ wave functions used in
the evaluation of &, are approximate, since exact solu-
tions for the two-electron problem do not exist, different
values for &, will arise from each of the forms of the ma-
trix element in (9). It is argued that the closeness of the
three results, &,(L), &,(V), and &,( 4), will be an indica-
tion of their overall correctness. Doughty, Fraser, and
McEachran® have made a systematic study of the conver-
gence of & in its various forms as the bound and contin-
uum (!P state) wave functions are improved. While keep-
ing the same continuum state (1s-2s-2p close-coupling ap-
proximation) they observed the change in & (L) with a
series of 3-, 6-, 11-, 20-, and 70-term bound-state func-
tions, the largest of these being the bound state evaluated
by Schwartz.® As the bound-free matrix element D, is
dependent on the singlet P-wave phase shift, they have
shown how these phase shifts change as the number of
basis states is increased in the close-coupling expansion,
up to 1s-2s-2p-3s-3p-3d. Finally, they show a series of
6,(L),6,(V),6,(A) results corresponding to the
Schwartz 70-parameter bound state and a series of con-
tinuum functions from 1s to 1s-2s5-2p-3s-3p-3d. As ex-
pected, the spread between the three forms of &, de-
creased uniformly as the continuum function was im-
proved, but rather than converging to a single curve, each
form of &, converged to its own limit. In that limit
6,(L) and & (V) differed by ~10%, and &,(V) and
6 ,(A) differed by ~20%. Since & (V) uniquely agrees
with the experiment to within the experimental error
bars, and it is in ~1% agreement with other detailed
theoretical calculations,>”® it is generally accepted that
¢, for H™ is known to < 1% accuracy. This accurate &,
is shown in Fig. 1. The reason for the larger discrepan-
cies between the accurate &,(V) and the less accurate
o (L) and &,( A4) is believed due to the velocity dipole
operator’s weighting of an intermediate region of r,r,
space which is also the region contributing most to the
binding energy, or where the variational bound-state
wave function is most correct. The acceleration and
length dipole operators, on the other hand, tend to
weight the inner and outer spatial regions, respectively,

SYDNEY GELTMAN 43

ar M
AC

—~ 3
N
g ZRPW
~
T 2
o
<G

1+

| | | | |
0 1 2 3 4 5
o (eV)

FIG. 1. Calculated &,. Abbreviations: M (model potential),
AC (accurate result based on fully correlated calculations),
ZRPW (zero-range plane-wave).

where a smaller contribution is made to the bound-state
energy, and hence there is less accuracy in those parts of
the bound-state wave function.

An understanding of &, and its bound-free matrix ele-
ment is important as a basis for going on to higher-order
MPD processes. If we examine the effective matrix ele-
ment (4) for an n-photon detachment, we see that it con-
sists of a bound-free amplitude ( ®, |d|<1>,,1 ), followed by

a series of mainly free-free amplitudes each representing a
step in the total n-photon process. There may also be
subsequent returns to the bound state as an intermediate
state; for example, in the three photon process we may
have the b—kp —b—k;p sequence. Thus, in addition
to accurately representing the bound-free amplitude as in
&, we need to understand and get the best possible
values for the subsequent free-free amplitudes. Although
a number of free-free absorption calculations!®> have been
done for electrons on hydrogen atoms, these results are
generally given in averaged forms which are not useful
for the amplitudes needed here. The important parame-
ters for describing free-free amplitudes are the elastic
scattering phase shifts, in this case for the singlet
electron-atom system. They have been very accurately
evaluated for L=0 and 1 using correlated functions in a
scattering variational method by Schwartz!® and Arm-
stead.!” For L=2, Gailitis'® has obtained the best values
by a close-coupling calculation, and for / = 3 an accurate
representation at low energies is obtained from the
effective range formula'®

Tagk?
8(UI+1)I+1)i—1)”

tan81 = (10)

where ay=4.5 a.u. is the polarizability of the ground-
state H atom.

Unfortunately, the most accurate values of the bound-
free amplitudes as functions of k, which have been used
for the best evaluations of &, are not available to us as a
basis for calculating higher-order &,. It will therefore be
necessary to make use of a simpler model system for H™,
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which we will parametrize to give the correct &;, and
thus hopefully a good bound-free amplitude as a spring-
board for the higher &,. We take a model that we have
used many years ago,2’ based on the short-range cutoff
Coulomb potential

(11)

Taking r, such that this potential will accommodate only
one bound s state at the known binding energy of H™,
0.754 eV, gives r,=1.88 a.u. If ¢y(r) is thus the bound
state and ¢,(r) are the corresponding continuum func-
tions in this potential, then the model two-electron sing-
let wave functions

D, =do(ry)do(ry) , (12)

D= =[G i)+ dolr2 )byl (13

may be used to evaluate a model &, following the formu-
las in Sec. II. This resulting &, (model) is shown in Fig.
1. It agrees closely with &, (accurate) just above thresh-
old but becomes too large by about 20% at higher photon
energies.

Our simple model has used a continuum wave function
@, which does not satisfy the correct boundary condition,

O~ =t (R (14
r,—o0o V2

where ¥, is the hydrogen ground state and Fy is the

correct scattering wave of asymptotic unit amplitude.

Using v, instead of ¢, in (13) would have the effect of de-

creasing &, (model) by the square of the overlap integral

A= [dr g, =0.911, which would bring &, (model)

and &, (accurate) into better agreement at higher energies
but reduce the agreement near threshold. The best
overall agreement is obtainable by representing the resid-
ual bound electron as an energy-dependent mixture of
¢o(r) and ¥,,(r), which we may interpret as a dynamic
screening effect. When the ejected electron is very slow it
will provide enough effective screening so that the
screened function ¢, is a reasonable choice, and when it is
fast one would expect minimal screening, or ¢, as the
best representation for the residually bound electron. We
parametrize the bound orbital as

E(r;k)=[1—f(K)]po(r)+ f (k)5 (r) , (15)

with f(k)=1—exp(—ak"), and carry out a least-squares
fit of &, (model) to &, (accurate) by varying the dynamic
screening parameters a and n. This leads to a fit of the
cross sections to within <2% over the entire energy
range of Fig. 1, with best-fit parameters a=46.25 and
n=3.0. This improved model will now serve as the basis
of evaluations of &, and &, in Sec. V of this paper.
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IV. ZERO-RANGE PLANE-WAVE APPROXIMATION

Before proceeding on to the evaluation of improved
MPD cross sections based on the very accurate calcula-
tions of &, and of e-H(1s) elastic phase shifts, let us look
at the following simplest description of the MPD process.
Consider the one-electron process originating in the
zero-range bound state
172

e_b’/r, (16)

and involving intermediate and final states which are sim-
ply plane waves. The bound-free dipole matrix element
in the “length” form and linearly polarized radiation is

172 k

b

lb)= 2

b

2

z

D,=(blzlk)=8i (17)

(b2 +k?)?

Propagating this through the various continuum inter-
mediate states in (4), the effective free-free amplitudes are

<k|z|k’)= fdrzei(k’—k)-r

= i) 2 S(k—Kk') . (18)

z

This simple form allows us to trivially carry out succes-
sive integrals over continuum intermediate states by
means of partial integrations, giving the recurrence rela-
tion for the effective nth-order dipole matrix element

3] Dn—l

D =—2— )
" ok, k2+b%2—2(n — 1o

(19)

This method works equally well for the case of circularly
polarized radiation where the dipole operator is +(x %iy).
The simplicity of this recurrence relation allows for the
rapid evaluation of D, for arbitrary n. As a practical
matter, the algebraic expressions arising from the succes-
sive differentiations become quite cumbersome and nu-
merical differentiation is useful, as well as a numerical in-
tegral over final ejection angle. The resulting one-
electron cross section should be multiplied by 2 to ac-
count for both equivalent electrons in H™. We have ap-
plied this zero-range plane-wave approximation to H™
for n <7.2! The result for &, is shown in Fig. 1, and is
seen to lie ~20% below the accurate curve in the energy
range just above threshold, where the model result is
much closer to the accurate curve. Since the model ¢,
has the same form as the zero-range |b), this 20%
difference is mainly the result of the difference in normal-
ization constants. The zero-range normalization constant
is about 15% below the model one because the zero-range
function gets much larger than the model one for r <r(, a
region which gives a negligible contribution to the length
dipole matrix element. At larger photon energies the
difference in shapes of the model and ZRPW curves for
&, arises from the non-negligible contribution of the
model p-wave phase shifts in the final state.

The ZRPW results for &, for linear polarization and
7>n =2 have been previously given?! over the photon
energy region between threshold energy, |¢,|/n, and the
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next higher threshold, |e,|/(n —1). As the next higher
threshold is crossed and (n —1)-photon detachment be-
comes the lowest-order MPD process, the n-photon de-
tachment still remains as an ‘‘above-threshold detach-
ment” (ATD) peak (in terms of the ejected-electron ener-
gy distribution) in analogy with above-threshold ioniza-
tion (ATI) peaks in ionization. When a new threshold is
crossed in this way the last factor in the energy denomi-
nator in (4) is such that €, —¢, _;+(n —1)w goes through
a zero in the integration range 0=<g,_; < co. While this
pole may complicate the intermediate-state sum in a pre-
cise calculation, it is harmless in the ZRPW approxima-
tion because of the effective (g, _;—¢€,) and the pole’s
never coinciding with e,. This leads to &, and their
derivatives being continuous across new thresholds in the
ZRPW approximation.

The Wigner law for the threshold shape is governed by
the lowest orbital angular momentum quantum number

I
I, in the final state, i.e., ¢7~kf2°+1 Since [,
=1,0,1,0,... for n =1-,2-3-,4-,. . . photon-detachment

for the linear polarization case, o, will alternate between
the threshold forms (w—eg, )3/ and (0 —¢, )"/ In circu-
lar polarization the selection rule Al=1 leads to I, =n for
n-photon detachment, and the threshold forms
(@—e,)" 7172 The threshold behaviors for the linear po-
larization case would show up as a series of discontinui-
ties in the total detachment probability over an extended
frequency range, as is seen in the Tang et al.!* measure-
ments. On the other hand, these discontinuities would
not be expected with circularly polarized radiation be-
cause of the always vanishing derivatives at thresholds.
The occurrence of a new channel for MPD with the
infinite slope threshold form &, ~(w—¢,)'/? must be ac-

0 | | |
0 0.1 0.2 0.3

EJECTED ELECTRON ENERGY (eV)

FIG. 2. Generalized cross sections in the ZRPW approxima-
tion for linear polarization. Each &, is in units of cm®'s" ~! and
has the power of 10 indicated in parentheses.
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companied by a cusp in the old channels &, . in order
that total absorbed photon flux vary smoothly across
these thresholds. This is the analog of the Wigner cusp in
electron-atom scattering when a new excitation channel
opens up. We saw above that this feature is missed in the
ZRPW approximation because there new poles do not
affect the intermediate-state integrals.

In Fig. 2 we show the ZRPW results for &, in linear
polarization over an extended range of ejected-electron
energies which cover the crossing of several higher
thresholds. We have seen in Ref. 21 a detailed compar-
ison of this &, with other calculations from the literature.
The wide spread in these values was quite surprising, and
indicated the large degree of theoretical uncertainty in
&,, as opposed to the present universal agreement of
many calculations on &,. This provided motivation for
the more precise calculations of &, which we present in
the following sections. Another motivation is to try to
assess the accuracy of the ZRPW approximation since it
can so easily be applied to much higher values of .

In Ref. 21, we also compared our ZRPW results with
the early results of Tang et al.'* We found a qualitative
agreement in relative magnitudes over the n =3-7 pho-
ton range. In comparing our &'; with a later measure-
ment of Smith ez al.??> over the n=3 region there ap-
peared some significant differences near threshold, and
this provided additional motivation for a better calcula-
tion of &3, which is also done in the following sections.

V. IMPROVED CALCULATIONS FOR &, AND &,

In seeking to go beyond the ZRPW approximation we
will apply two improved methods. They both are based
on the approximate H™ wave functions for the bound-
free amplitude,

@y =do(r;)do(ry) , : (20)
Oy= =6+ 8RBT, @D

where ¢y(r) is the initial model bound-state wave func-
tion?® and £ is the dynamically screened residual bound-
state function defined in (15). As we have seen in Sec. III
these wave functions lead to a &, which is generally
within 2% of the most accurate correlated calculation of
6.

This should provide us with accurate values of the
(®,|d |<I>Ul ) bound-free matrix elements in (4) as the first

step in the nth-order process. It must be noted that the
least-squares fitting of &, with parameters in £ only
guarantees a good value for |(d>b|d[d>u‘ Y|?, but there is

no reason to expect an incorrect phase while getting a
correct amplitude in this fitting procedure. The fitting
was based on the reasonable physical assumption of dy-
namic screening by the ejected electron.

The first of our improved methods for higher-order &,
is called “model,” and it will use the ¢, corresponding to
our model cutoff Coulomb potential in the evaluation of
subsequent free-free amplitudes.

The second method will use continuum wave functions



43 MULTIPHOTON-DETACHMENT CROSS SECTIONS FOR H™

which contain the best phase shifts available for e-H(1s)
singlet scattering!®"!® as discussed in Sec. III. These
latter calculations are the result of highly correlated trial
functions for ®, in which the asymptotic forms become

1(r2)

1 . X
q)krz: —,\/Tzlpls(rl);ll(zl‘Fl)Pl(k'r)_];;z_ » (22)
with
X (r)—kr[cosS,j,(kr)—sind,;n;(kr)] . (23)

In this method, which we call the “best phase” approxi-
mation, we adopt asymptotoic form (23) for y;(>rg).
For r <r, we take y; as a continuous solution in the
cutoff Coulomb potential. This will necessarily involve a
discontinuity in ); at 7y, which has no appreciable effect
on the magnitude of the length form of the free-free radi-
al matrix elements. Although many correlation terms are
needed in an accurate variational or close-coupling calcu-
lation for the scattering phase shifts, these terms come
into play in the finite volume where electron-electron in-
teractions are important. The correlations do not persist
explicitly into the singly asymptotic region of Eq. (22),
but of course, their effects are contained in the asymptot-
ic phase shifts. This is similar to the effects of a nonlocal,
short-range optical potential in giving rise to characteris-
tic asymptotic phase shifts. The dipole matrix element in
its length form will give greatest weight to the outermost
parts of the wave functions, where we expect them to be
essentially exact with the correct phase shifts. Thus we
expect a very good description of all the free-free ampli-

4935
3o
0 Vi
0.03 y
//
0.02 /
31 s
7
0.01} _
P
- /
0 —
0.01} \/
82 0.05H
//
0 I i 1 e — = — ) |
0 0.2 0.4 0.6 0.8

k(a.u.)

FIG. 3. Electron-H(1s)'S, 'P, and 'D elastic scattering phase
shifts §, (in radians): Best phase (solid lines) and model phase
(dashed lines).

tudes in (4) in this “best phases” approximation. The
“model” and “‘best” phase shifts are given in Fig. 3.

Below we write down the resulting explicit expressions
for &, and &, in linear polarization,

M, (k)M o(k, /) M, (k)M (kK ;)
2 b1 10 f bl 12 f
=T 2
6,= gkf(smm f dk o o f dk pyp— ] (24)
8 00 M()l k kf co Mbl k)MIO(k k )
6:=—(8wa)® | ==
3T, 8o 197 S, ax —-Ek'+2a)f £y —tx T@
+if°°d My (K k) fw MM (k) M,,l(kf f°° M2 (k) |
5Y0 €, € t2m —ek+w g, — gt
 Mu(kokp) o My (RIM (k')
) 2
175 f dk €, — € t2m f € — €T @3

Here M, (k) is the bound-free radial integral
Mbl(k)=n(k)f0°°dr r2boX » (26)
where 7 is the dynamically screened overlap,
nk)= [ dr ¢o(rE(r;k) 27)
and the free-free radial integral is

My (k,k')= fo‘”dr XX - (28)

Aside from phase-space constants and angular factors,
these expressions represent the radial integrals involved
in the respective paths from the initial bound state to the
final free state. The two-photon cross section simply in-

volves the two incoherent paths
bl =1 {2
—>K,l = 1— _

ke le=0,

while &; contains the three coherently interfering paths
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k', l'=2
b—k,l=1— ik ,lb=0 —kpl,=1,

as well as the incoherent one
bk, l=1-k"I'=2—k1,=3 .

The corresponding paths for circular polarization in &,
and &; are those in which A/ and Am equal 1 at each
step. This results in the angular coefficients 4 and % in
(24) and (25) being replaced by % and %, respectively, to
give &, and &, for circular polarization, after dropping
the other nonparticipating channels.

All of the radial matrix elements are evaluated by nu-
merical quadrature with the infinite limit taken as some
large radius R. We have taken R=100a,,150a,,200a,
and found that while each M.(k,k’) changed with the
choice of R, the subsequent integral over k remained con-
verged, independent of R as long as R was large enough
so that short-range contributions (» <r;) become negligi-
ble. The integrand in k of an expression involving a fac-
tor M.(k,k’) has oscillations which peak at kK =k’, but
are not as extremely localized as the (d/dk)b6(k —k')
form which appears in the ZRPW approximation.

The effect of using dynamically screened &’s in the
free-free matrix elements rather than ¢, or y¥,, alone
would be small, since fdr E(r;k)E(r;k’)=1 at k =k’, in
which vicinity most of the free-free amplitude is concen-
trated, and that overlap cannot get below
A= [dr ¢g;,=0.911. In fact, we have omitted the dy-
namic screening factors entirely in the evaluation of free-
free matrix elements since the entire contribution comes
from the asymptotic part of the free-electron wave func-
tions, and the bound electron provides no further explicit
dynamic role. Also, the contribution of the
intermediate-state path which returns to the bound inter-
mediate state in &3 is found to be very small—Iless than
1% at all photon energies.

G, (2in) (10748 cm*s)
I

0 | | ] | J
0.3 0.4 0.5 0.6 0.7 0.8
o(eV)

FIG. 4. Calculated &, for linear polarization. Abbreviations:
A (Adelman, corrected, Refs. 11 and 23), BP and M (best phase
and model, presently calculated), C (Crance, Ref. 25), LS (Liu
and Starace, Ref. 27), ZRPW (Ref. 21 and presently calculated).
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COMPONENTS OF 5,(in) (10748 cm4s)

0.3
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FIG. 5. Final s- and d-wave components of calculated &, for
linear polarization: best phase (solid) and ZRPW (dashed).

The results for &, in linear polarization are given in
Fig. 4. The closeness of our best phase result to 1 of the
Adelman'! result is quite remarkable. That original re-
sult was indeed too high by a factor of 2 because the
1/V2 normalization factor in Dy, was omitted.?*

Adelman used an implicit technique to sum over inter-
mediate states, but also used the accurate Schwartz phase
shifts'® for /,=0. As the /’=1 and [, =2 phase shifts are
small, his neglect of them was reasonable. The difference
between our best phase and model results is an indication
of the error in the use of the model phase shifts (given in
Fig. 3). The very different shape for &, in ZRPW is a re-
sult of the large error in using a plane-wave s wave in the

o©

.3 0.4 0.5 0.6 0.7 0.8
o(eV)

FIG. 6. Calculated &, for circular polarization. Abbrevia-
tions: A4 (Adelman, corrected, Refs. 11 and 23), BP and M (best
phase and model, presently calculated), FZ (Fink and Zoller,
Ref. 26), LS (Liu and Starace, Ref. 27), and ZRPW (presently
calculated).
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FIG. 7. Calculated &; for linear polarization. Abbreviations:
C (Crance, Ref. 25), BP and M (best phase and model, presently
calculated), ZRPW (Ref. 21 and presently calculated).

final state. One sees that this can lead to an appreciable
error since the true s-wave phases start at 7 (because of
the presence of one bound s state) and have appreciable
values in the important range of k. This effect is more
clearly displayed in Fig. 5 where &, for linear polariza-
tion is broken into its two final angular momentum com-
ponents, /=0 and 2. Here it is seen that it is the
difference in shape of the ZRPW [/, =0 component which
is responsible for the difference in shape of the total &,
seen in Fig. 4. The differences in magnitudes for the
l¢=2 contributions are largely understood to arise from
the low bound-state normalization factor in ZRPW, as
discussed earlier. The results for &, in circular polariza-
tion are given in Fig. 6, and again we have the extreme
closeness of the model, best phase, and corrected Adel-
man results, showing the relative unimportance of the
small p- and d-wave phase shifts.

The three-photon results for linear polarization are

COMPONENTS OF G5({in) (10779 cmb s2)
S
I

0.2 0.3 0.4
w(eV)

FIG. 8. Final p- and f-wave components of calculated &, for
linear polarization: best phase (solid) and ZRPW (dashed).
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FIG. 9. Calculated &; for circular polarization. Abbrevia-
tions: BP and M (best phase and model), ZRPW (zero-range
plane-wave), all presently calculated.

shown in Fig. 7, the breakdown into /,=1 and 3 com-
ponents is given in Fig. 8, and the cross sections for cir-
cular polarization are given in Fig. 9. The closeness of
the model and best phase results is an indication of the
lesser effect of the small p- and d-wave phase shifts than
is the case for the large s-wave phase shifts. The ZRPW
result in linear polarization is relatively better for &; than
for &,, indicating the lesser relative importance of the s-
wave continuum function to the total cross section.

One would expect this declining relative influence of
the s-wave continuum function to continue into the
ZRPW results for higher &, in linear polarization. In
the high-n limit, the main error in the ZRPW approxima-
tion should be only the bound-state normalization, which
can be corrected with the factor 1.3, as discussed earlier.
It is a rather remarkable outcome that an approximation
as simple as ZRPW can give the high-order MPD cross
sections to such accuracy. The computation times on the
VAX 8600 and 6400 are about 5 min for a set of &,’s, and
about 5 h for a set of &3’s. This rapid escalation of
machine time needed to do successive intermediate-state
integrals is what prevents us from going to higher &,
with the improved calculations. Perhaps the use of impli-
cit summation techniques, such as used by Adelman,!!
might involve only a linear growth of machine time, and
thus be feasible for higher orders.

VI. COMPARISONS WITH EXPERIMENT
AND OTHER CALCULATIONS

The first MPD measurements by Tang et al.,'* using
Doppler tuning with obliquely crossed relativistic H™
and CO, laser beams, covered the photon energy range
0.10-0.32 eV in the atom’s frame. The intensity in the
laser pulse (I, in the laboratory frame) is transformed
into an atom-frame intensity by

I=Iy(w/wy) . (29)

We have in Ref. 21 evaluated the total MPD probability
over this range using the ZRPW cross sections of Figs. 2
and 7 for &, (n=3-7), the transformed intensity of (29),
the n-photon probability P, formula of (6), and have
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made allowance for initial-state depletion with 1012 .
P=1—-exp[—EP,, ] . (30) 12 awen
n — 1o
This sum starts at the minimum number of photons need- 2
ed for detachment at o, and goes over all higher ATD B 4010
contributions. Using the estimated laboratory peak in- P
tensity of 2X10'© W/cm? in the above theoretical pro- o 0
cedure resulted in essentially total detachment P=1 for =
all wR0.15 eV (n = 5), which correspond to much higher & 8
MPD probabilities than were observed. Only by using ! 10
the reduced laboratory intensity of 1X10'°© W/cm? were u
we able to obtain a qualitative overall fit to the measure- < 107
ment. The calculated MPD probabilities also include the
atom-frame time spent in the laser field at each of the 108 L | I | \ \

Doppler-tuning angles (7~ 1/sina).

An improved measurement by the same group (Smith
et al.??) concentrated on the three-photon region
(0.25-0.37 eV). In Ref. 21, we also attempted to fit the
measured detachment probability in this range with the
ZRPW approximation for &3, but it was found that to ob-
tain a good fit one needed a &'; in which (1) the maximum
was shifted from 0.29 to 0.31 eV, (2) which rose from the
threshold at 0.251 eV much more slowly than calculated,
and (3) which decreased with energy beyond its max-
imum much more rapidly than calculated. It was felt
that perhaps improved calculated values of &; would
satisfy these requirements, but a glance at Fig. 7 shows
that that is not the case, the model and best phase results
being not appreciably different in shape from the ZRPW
result.

More recent data obtained by this group of experimen-
talists®* at the peak laboratory intensities 3.3, 6, and 12
GW/cm? over the photon energy range 0.24-0.39 eV
continue to show the very slow rise from the three-
photon threshold, which remains inconsistent with the
presently calculated ;. However, the very sharp dip at
0.38 eV found by Smith et al.??> at 8 GW/cm? now ap-
pears to have diminished, in better agreement with the

) 1/2
Tw)= 21n2

T
In2

where we are averaging over values of p lying between O
and p,,, where atom frame F,= po(m/w%), and where
again n_;, in the sum is the minimum number of photons
needed for detachment at w. We use the ZRPW values
for &4,65,6, and the best phase value for ;. Note that
the average MPD rate decreases as p,,> and the choice of
pm is critical. We have taken p,, =2p, as the extent of
the focal volume over which to evaluate the average cal-
culated rates given in Fig. 10. With this choice of averag-
ing, the agreement between measurement and theory is
generally well within the estimated experimental uncer-
tainty®* of a factor of 5 as far as absolute values are con-

0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40
o (eV)

FIG. 10. Measured (Ref. 24) and presently calculated average
multiphoton-detachment rates for Gaussian pulses with peak
laboratory-frame intensities of 6 and 12 GW/cm?.

present & .

In addition, new measurements?* were obtained for the
absolute mean detachment rate over the photon energy
range 0.14-0.39 eV, covering three- to six-photon pro-
cesses. We compare these measurements with our calcu-
lated rate for peak laboratory intensities of 6 and 12
GW/cm? in Fig. 10. The calculated rates are obtained by
averaging present theoretical rates for a Gaussian pulse
with maximum laboratory frame intensity

— 2
Io(p)=IP0e In2(p/py) ) 31)
which should apply to an H™ trajectory displaced by p
from the axis of the laser beam with peak intensity Ipo,
whose effective radius [half width at half maximum
(HWHM)] is p,. This leads to an average MPD rate

(Po/pm S, a,,(w)F;/n {1—exp[—n In2(p,, /po)?]} , (32)

f

cerned, but there remain serious discrepancies in the
sharpness of the rises at several of the thresholds.

The data do not show the sharp onsets at the n-photon
thresholds which are expected from the perturbation-
theory calculation. This could be an indication that the
nonperturbative aspects of the experimental conditions
are significant. One such aspect is the shortness of the
laser pulses in the atom frame. There are of the order of
only ten laser cycles in the atom frame, which may be too
short for the long-time limit taken in Sec. II to be valid.
Another aspect is that the Keldysh adiabaticity parame-
ter y =wb /E is of order 2, while it should be >>1 for the
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multiphoton-detachment-rate picture to be valid. This
would imply that transient tunneling also plays a role in
the detachment taking place in those measurements.

There have been a number of other recent theoretical
calculations of these cross sections using various
methods. We have already commented on the Adelman
calculation!!?* for &,, as it is so very close to the present
one in method and result. Crance®® uses the dressed-
atom (Floquet) picture to expand the entire time-
dependent wave function in a finite basis of square inte-
grable functions. The basis is taken to be large enough so
that all important correlation effects are included. The
ground state then appears as a resonance, whose width
gives the detachment rate. Her results for &, and &, in
linear polarization are also shown in Figs. 4 and 7, and
they are seen to lie below our present results by about a
factor of 2-3, although for &, they are closer at larger w.
We feel that the full correlation effects in the intermedi-
ate and final continuum states are taken into account in
our best phase results, so we do not understand the
reason for such a large difference with Crance’s results.
Fink and Zoller®® have used an adiabatic hyperspherical
approach to evaluate &, for the circular polarization
case, and that result is included in Fig. 6. Liu and
Starace?” have also used an adiabatic hyperspherical-
coordinate representation in a perturbative evaluation of
6, and &3, and their results, also shown in Figs. 4 and 7,
appear to be about 50% higher than ours. Again the ap-
proach of these calculations is so different from ours that
it is difficult to pinpoint the reason for the differences in
results.

Mu and co-workers?® use Keldysh-Faisal-Reiss
methods to evaluate the H™ detachment rate, and have
also found a satisfactory fit to the data of Tang et al.!*

Becker, Long, and Mclver? use as a potential model
the three-dimensional regularized 6 function, and find an
integral form for the quasienergy in the Floquet picture.
The imaginary part of the quasienergy is the desired de-
tachment rate, which in the perturbative regime is related
to the generalized MPD cross sections by '=3 ,6,F".
This potential model is equivalent to a zero-range poten-
tial for the bound state, but it has a repulsive effect in the
continuum, which differs from our taking plane waves in
the ZRPW approximation. A comparison of the Becker,
Long, and Mclver result at their maximum I' (and in-
cluding a factor of 2 for the two initial equivalent bound
electrons) for I' /F" for n=2 and 3 shows an effective
maximum &, close to our best value, and an effective
maximum &5 about 0.5 of our best value.

Another study of Dérr et al.® evaluated detachment
rates of H™ in a variety of approximations, including per-
turbation, Keldysh-Faisal-Reiss, and Floquet. Their re-
sults are roughly consistent with ours in the region where
perturbation theory is expected to be valid.

A striking difference in the predictions of perturbation
theory and the Floquet methods is the absence of thresh-
old shifts in perturbation theory and the presence of pon-
dermotive potential threshold shifts in the Floquet re-
sults. In fact, the addition of the invariant ponderomo-
tive potential E?/40? to the atomic binding energy &, in-
troduces the so-called ‘“channel closings” each time
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E?/40? increases by one integer multiple of w. The pas-
sage from n-photon to (n+1)-photon detachment by in-
creasing the intensity at fixed frequency results in an
abrupt decrease of detachment rate at these channel clos-
ings in Floquet calculations.

An alternative description is that the detachment prob-
ability, and not rate, is the fundamental physical quanti-
ty. That quantity for H™ is defined as

P()=1—|{®,(r)|¥(r,1))|?, (33)

where YV is the full, exact time-dependent wave function
as defined in (1) and @, is the one bound-state stationary
wave function. For weak enough fields where perturba-
tion theory is valid, the approximate procedure we have
used in our present calculation culminating in expres-
sions (6) and (8) is satisfactory. However, it should be
noted that rate behavior in perturbation theory, for ex-
ample, expression (6), only results from a weak enough
interaction and only in the long-time limit. In contrast,
the rate I' is an intrinsic quantity in a Floquet theory,
arising as the imaginary part of the quasienergy.

If the field strength is too high the exact P(¢) will ap-
proach unity in a very unratelike manner. This departure
of P(t) from its perturbative ratelike behavior, which
corresponds to n-photon absorption, may be called “tun-
neling” or ‘“barrier suppression ionization (or detach-
ment),” and total detachment may take place over times
of the order of a period of the field or less. Such a regime
is clearly not acceptable for a Floquet calculation in
which the periodicity of the field is required to define the
quasienergy, and where only after a large number of cy-
cles of the field is that a meaningful entity. The onsets of
tunneling or barrier suppression detachment are expected
to be smooth, as a function of intensity. Thus, for a plot
of P as a function of peak intensity for fixed frequency
and pulse duration, one would expect a rising curve from
& ,F"r at lowest intensity and converging to P=1 for
large intensities (but not necessarily completely monoton-
ic). We believe that these are fundamental questions that
deserve additional theoretical study.

VII. CONCLUSIONS

We have evaluated the perturbative generalized cross
sections for the multiphoton detachment of H™ in a
variety of approximations. By far the simplest is the
zero-range plane-wave approximation, in which a quick
evaluation of high-order &,’s is obtainable by recursive
differentiation. The largest error in this procedure is the
neglect of s-wave phase shifts in intermediate or final
states, and shows up most markedly in &, for linear po-
larization. Apart from that case, all other &, in the
ZRPW approximation appear to be quite good, after ap-
plying a correction factor of 1.3 arising from the low nor-
malization constant in the bound state. Another con-
venient feature of the ZRPW approximation is that it is
equally simple above new thresholds as it is in the
minimum-photon region.

Two more precise approximations were applied to the
evaluation of &, and &3, which were based upon the elas-
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tic e-H(1s) singlet scattering phase shifts of a short-range
potential model and upon the best calculated phases
available. A dynamically screened ls orbital for the re-
sidual electron was used to provide an accurate represen-
tation of the initial bound-free amplitude in the n-photon
matrix element.

We thus expect our most accurate result to be that of
the best phase approximation. It is difficult to assign an
absolute percentage accuracy to this result, but we be-
lieve it to be of the order of 5% or better. One reason for
this is that we are representing &', to =2% accuracy with
our choice of dynamical screening parameters in §(7;k),
and expect the bound-free amplitude to be equally accu-
rate. Since highly accurate phase shifts are used for the
remaining free-free amplitudes, we do not expect this ac-
curacy to be appreciably degraded in the two- and three-
photon processes. A second reason is that given by Adel-
man,!! who felt that his &, should be good to 4.5% be-
cause similar calculations of the dynamic polarizability of
H™ were that close to highly accurate variational results
by Chung.’! (The normalization correction of 4 for
Adelman’s value of &, does not affect his result for the
dynamic polarizability.) The extreme closeness of
Adelman’s corrected results to our best phase results for
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0, in linear and circular polarization (Figs. 4 and 6) lends
additional support to our present error estimate.

While the overall agreement between theory and exper-
iment in absolute detachment rate and its rough shape
over the n=3-6 photon range is reasonable, there remain
some troublesome discrepancies. In particular, the mea-
sured rises above the n=3- and 5-photon thresholds are
much more slow and gradual than is indicated for the
theory. We do not understand the reason for this behav-
ior at this time.

It is hoped that additional tunable laser sources of
sufficient power in the wavelength region of &, and &,
may appear in the future to allow the measurement of
these cross sections under more conventional laboratory
conditions (i.e., thermal sources of H™).
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